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Abstract 
Recent economic events, the changing attitude of regulators, and a possible global 
change in reporting to shareholders have put the options and guarantees included in 
today’s insurance products at the top of the list of management’s concerns. Indeed, 
many senior insurance executives around the world have indicated that they regard the 
identification, pricing, management, and valuation of guarantees and options 
embedded in insurance contracts as the most important and difficult financial 
challenge they face. 
On too many occasions over the years, insurance company executives have been 
surprised by the financial costs of embedded guarantees and options that were not 
properly understood. An understanding of options and guarantees has become 
essential to the sound financial management of insurance companies. This paper 
provides an introduction to the valuation of guarantees and options embedded in life 
insurance products. It explains the link between investment guarantees and embedded 
options, and consequently their measurement on a market-value basis. It also explores 
the implications of guarantees and options for asset and liability valuation, product 
pricing, and managing balance-sheet volatility. 
To show practical application of the concepts introduced we also show a case study 
through the investigation of a class of investment guarantees that prevail in 
continental Europe. 
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1. Introduction 
1.1 Guarantees Matter for Insurers 
Options and guarantees are common in insurance contracts everywhere in the world. 
They have been offered for a number of reasons, including: 
• Enhanced competitiveness, by providing the policyholder with additional certainty 
• Regulatory requirements (such as guaranteed minimum cash values) 
• Requirements to receive favorable tax treatment (either for the issuer or for the 
policyholder) 
The additional certainty provided to the policyholder comes at a cost that may or may 
not be passed on to the policyholder when pricing the contract.  
 
Accounting standards increasingly require fair valuation. Under Canadian GAAP, for 
example, the cost of the option must be reflected in the valuation of the contract. In 
other parts of the world, similar requirements are being considered. Examples of 
guarantees that have received increased attention recently include guaranteed 
minimum death benefits (GMDBs) in the US, and guaranteed annuity options (GAOs) 
in the UK.  
The Draft Standard of Principles (DSOP), which is the working document for valuing 
insurance contracts under the new International Accounting Standards (IAS), states in 
principle 5.6 that such guarantees should be valued in a manner consistent with 
option-pricing techniques. In addition, IAS 39: Financial Instruments: Recognition 
and Measurement requires embedded derivatives to be valued and disclosed at fair 
value. 
 
Good business management requires an understanding of their cost or associated risk 
The proposed valuation approach based on an option-pricing model is likely to have a 
significant impact on the valuation of the liabilities, with consequent balance-sheet 
and income statement volatility. It follows that companies will reconsider their 
investment, pricing and discretionary policy benefits strategies as they develop a more 
thorough understanding of the costs and dynamics of options.  
 
This paper provides an introduction to the valuation of guarantees and options 
embedded in life insurance products. It explains the link between investment 
guarantees and embedded options, and consequently their measurement on a market-
value basis. It also explores the implications of guarantees and options for asset and 
liability valuation, product pricing, and managing balance-sheet volatility. 
 
 

2. Understanding the Costs of Guarantees 
 
2.1 COMPONENTS OF THE GUARANTEE COST 
Where an insurer promises to pay a certain quantity, the valuation of policy benefits is 
usually straightforward.  It becomes more complicated when the promise is to pay the 
greater of two quantities, say, A and B, where it is not certain which amount will be 
greater. For example, when the guarantee is defined as the greater of the accumulation 
of premiums invested in an equity index-tracking fund, or a refund of the premiums 
paid, then it is uncertain which will be the greater amount and therefore the final 
benefit. In this case, the valuation should reflect the uncertainty and potential for 
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either amount to be paid, which will have an additional cost over considering just one 
component.  
The principles of IAS recognize the need to reflect the associated additional cost since 
the valuation must be at fair value and consistent with option-pricing techniques. In 
the above example, the additional cost is related to the uncertainty around the 
performance of the equity index-tracking fund. 
 
Where there is uncertainty, the cost of the guarantee can be calculated as the cost of 
the normal benefit under the contract (say, quantity A) plus the residual cost of the 
second benefit, i.e., the guaranteed cost (excess of B over A). This is described in 
simple Example 1. 
Expressing the contract as a host contract plus embedded option leads one to apply 
market valuation techniques to value the guarantee as an embedded option, with 
simpler techniques applied to the host contract. Some examples of the quantities being 
compared in a typical guarantee and option are summarized in Table 1. 
However, options and guarantees do not always need to be split out to value the 
associated liability. For example, consider a policy that pays a fixed cash sum at a 
particular policy anniversary. If there is an asset that is guaranteed to pay the same 
fixed sum, then the policy may be valued by discounting the guaranteed payment at 
the appropriate market rate. The value of the liability would be equal to the market 
value of the asset. Equivalently, the policy may also be valued by splitting out the 
liability into the accumulation of premiums plus the excess of the fixed cash sum over 
the accumulated premiums. The latter approach may encourage the company to invest 
part of its premiums in an asset or derivative to match the excess benefit. 
 

 
 
2.2 The Link Between Insurance Guarantees and Traded Options 
Options are derivative instruments where one party has the right, but not the 
obligation, to buy or sell a specified underlying financial instrument at a future date or 
dates on predefined terms (e.g., at a fixed strike price). The option to buy is known as 
a call option, and the option to sell is known as a put option. These options can be 
shown to be very similar to guarantees implicit in many insurance contracts. 
Identifying the embedded option, if any, in a more general situation involves 
bifurcating the benefits into ‘normal benefits’ and the ‘extra guarantee benefit’. 
When the guarantee is expressed as the greater of A and B, this is equivalent to 
expressing the normal benefit as A, plus the positive excess, if any, of B minus A. The 
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extra guarantee benefit is also equivalent to the payoff of an option. For example, 
when the normal benefits are A, with a guaranteed minimum of B, this is equivalent to 
a put option on A, with a strike price of B. 
This bifurcation of benefits into normal and excess, and the link between excess and 
option payoffs, are illustrated in Example 2. 
 

 
 

3. Approaches to Valuing Guarantees 
There are several approaches and methods to valuing guarantees and options in a 
manner consistent with the financial markets. These include: 
•  Replicating portfolio techniques 
•  Analytic (closed-form) solutions 
•  Simulation methods, including use of risk-neutral models and deflators 
•  Lattice methods 
•  Approximate methods 
All of these rely on the principle that the market is arbitrage-free, which means that 
benefits cannot be guaranteed above a risk-free return without there being an 
additional cost to someone. In practice, any price variations between different assets 
that have the same cash flows are likely to be unsustainable and short-lived. The 
cheaper asset would be bought, and the more expensive asset sold until the arbitrage 
opportunity was eliminated.   
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Note that all of the valuation methods should produce the same market value result, 
assuming the market is arbitrage-free and sufficiently complete to identify traded 
assets that will replicate the cash flows of the guarantee or option. However, it may be 
that the market is not sufficiently complete with respect to insurance risks, and there is 
no uniquely defined market-consistent value, although there may be upper and lower 
bounds on the possible values. In this case assumptions would have to be made, and 
the range of possible values would have to be considered carefully. 
 

 
 
 
3.1 Replicating Portfolio Techniques 
In certain situations, it is possible to find assets that will have cash flows that exactly 
match those of a liability under each and every possible future scenario. These assets 
are then described as a replicating portfolio for that liability (see Example 4). An 
example might be a put option to match a minimum maturity guarantee liability. 
The market value of these assets must also be the market-consistent or fair value of 
that liability, since otherwise arbitrage between the two values for the same cash 
flows would be possible. Unfortunately, finding a matching portfolio is not always 
easy. This is especially the case when demographic risk factors and dynamic 
policyholder behaviors are taken into account.  
 
3.1.1 Static v.s. Dynamic 
It is important to distinguish between a static replicating portfolio (a portfolio that 
once bought will match all future cash flows) and a dynamic hedge portfolio, which 
requires continual rebalancing to match exposure. For instance, put options could 
replicate a minimum maturity guarantee, while a dynamic hedge portfolio might 
consist of futures contracts. Both replication and dynamic hedging are, at least in 
theory, valid investment strategies to offset the risks associated with a liability.  
In practice, due to frictional costs and the inability to rebalance continuously, dynamic 
hedge portfolios are less likely to exactly replicate the guarantee, although the value 
of the dynamic hedge portfolio may still provide a good estimate of the value of the 
guarantee. 
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3.1.2 Using options to replicate 
As explained earlier when considering the link between guarantees and options, the 
cash flow for the investment guarantee shares the same basic formula as the cash flow 
for an option (i.e., the greater of B-A and zero). Because the option and guarantee 
share the same basic formula, the question then arises as to whether it is possible to 
find an option whose cash flow is identically equal to the guarantee cash flow under 
each and every scenario. In certain situations, the answer is yes. 
The ability to find an option (or other derivative) whose cash flows match those of the 
guarantee (under each and every possible scenario) can be extremely helpful to 
provide information on how to invest in order to match the liability and reduce 
balance-sheet volatility. If two items, (the financial derivative and the investment 
guarantee under the insurance guarantee) can be shown to have exactly the same cash 
flows under all possible scenarios, and if one of the items (the financial derivative) 
has a known market value, then, to preserve the arbitrage-free concept, the other item 
(the investment guarantee under the insurance guarantee) must have the same market 
value. In other words, where asset combinations in the market can replicate 
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guarantees, their prices converge. As mentioned previously, replicating strategies may 
be static (buy and hold) or dynamic (which involves actively rebalancing the portfolio 
as financial conditions change). 
Finding the matching derivative may be complex. However, just because a matching 
derivative cannot be easily found does not necessarily mean that it does not exist or 
could not be constructed. Some of the complex areas for consideration when applying 
replicating techniques are shown in Table 2. 

 
 

4. Analytic (Closed-Form) Solutions 
If we are able to find a replicating strategy then this often helps us find an analytic 
solution. For example, if a mix of put options are found to replicate a guarantee then 
the Black Scholes formula could be used to value the replicating assets and the 
guarantees they replicate. Unfortunately, embedded options in insurance products are 
often too complex for analytic solutions to be found. However, as noted later in the 
section Practical Issues and Shortcuts, simulations or approximations to closed-form 
solutions can be very useful even when there is no exact solution. 
 

5. Lattice Methods 
Under this approach, the possible paths that the assets can take are structured to form 
a lattice, and any one scenario is equivalent to the assets’ following a specific path 
within the lattice. Values are calculated along all the paths within the lattice, working 
backward from the end period to the present (see example 6). 

 
It follows that the estimated values of embedded options are also available at all 
future periods. Lattice methods are therefore especially useful for assessing embedded 
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options where future exercise will depend on future option values. American options 
fall into this category. 
Lattice methods are an intuitive way of covering a large number of asset price 
scenarios, and can be computationally efficient because a limited number of nodes can 
represent a large number of price paths.  Unfortunately this advantage quickly breaks 
down if multiple asset classes need to be modeled (interest rates, equity returns, etc.).  
The lattice concept can extend to multiple dimensions but the number of paths 
required to obtain accurate results significantly increases. In addition, where payouts 
depend on prices over a window of time it is no longer valid to condense in one node 
information that must be used for multiple price paths passing through that node. 

 

6. Simulation Methods 
In the situations where replicating portfolios or closed-form solutions cannot be 
found, the valuation of the guarantee requires one to revert to the principles that 
underlie option-pricing methods. In this case, the idea is to simulate the cash flows 
that a matching derivative would have produced, had there been such an asset. This 
could involve projecting the guaranteed liability cash flows under several thousand 
scenarios, and computing the discounted present value under each and every scenario. 
The mean (or average) of the numerous scenarios provides an estimate of the fair 
value of the embedded option.  
To illustrate, consider a simplified situation where the number of potential scenarios is 
limited rather than unlimited, as is usually the case. Under each investment scenario, 
there may be corresponding management and policyholder responses that lead to a 
different net result of benefits paid. The projected management actions and 
policyholder behaviors are scenario-related, as shown in Example 5. 
The objective is to calculate the market consistent value for the benefits paid, 
allowing for possible variations across the scenarios. In the absence of known 
replicating assets, one constructs a model, or economic scenario generator, for 
projecting non-insurance assets (since the insurance assets do not have readily 
observable market values). The scenario generator must be calibrated to current 
market prices. This may be done by using the generator to provide a set of scenarios 
such that the expected value of the relevant cash flows under a large number of 
scenarios reproduces the market value of readily available assets. The expected value 
is a weighted average calculation. 
These weights can be seen as the product of a present value discount factor and a 
probability of the occurrence of an event. If the discount factors are calculated using 
risk-free discount rates, there is one set of corresponding probabilities. These are the 
probabilities corresponding to a risk-neutral model (described later). 
If, alternatively, the probability factors are fixed at the best-estimate probabilities, 
there is an implied set of present value discount factors (varying by scenario), 
different from the risk-free discount factors. These discount factors will be the 
deflators, which are also discussed in more detail later. Having determined the 
scenario weights, one can then value any set of potential cash flows using the 
weighted average across the scenarios. This same approach can be generalized to the 
situation with an arbitrarily large range of potential outcomes. 
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6.1 Risk-neutral approach 
To use this approach, the economic scenario generator needs to be calibrated to 
market conditions and needs to be what is known as “risk-neutral”. 
Risk-neutral valuations are so-called because they involve calculating the expected 
value of future cash flows as though in a world where investors are risk-neutral, i.e., 
they do not require a premium to be induced to take risks, and therefore the expected 
return on all assets is the risk-free rate. The use of this approach does not necessarily 
imply a belief that investors are actually risk-neutral. As noted above, the combination 
of risk-neutral probabilities and discounting at the risk-free rate is just a convenient 
method for finding the scenario weightings that are consistent with market prices. 
In practice, the risk-neutral approach involves calibrating the model so that the 
benchmarking assets have been assigned volatility parameters consistent with current 
market pricing (e.g. implied volatility in quoted option prices) but their mean 
investment returns are all equal to the risk-free rate. The risk-free interest rate is also 
used to convert future liability cash flows to present values. 
A potential disadvantage of the risk-neutral approach to valuing guarantees is that the 
scenarios are derived from a risk-neutral scenario generator, under which all asset 
classes have the same expected return, regardless of their volatility. Such a scenario 
set may not be useful for other purposes, such as risk-reward analyses involving 
‘realistic’ probabilities to measure risk and influence the likelihood of reward 
outcomes. 
 
6.2 Deflators 
An alternative approach is a deflator approach. This also involves stochastically 
generating several thousand economic scenarios, computing the present value of the 
asset’s (or liability’s) cash flows under each scenario, and taking as the fair value the 
mean of these several thousand scenarios. However, under this approach the economic 
scenario generator used to project the cash flows is a ‘realistic’ one and the discount 
factors used to convert the projected cash flows to present-day money values are not 
the risk-free discounts. The factors that are used to convert the cashflows to present-
day money values are known as deflators and they vary by scenario. 
Note, however, that one does not have freedom in the choice of deflators. For 
instance, one key constraint on any set of deflators is that the mean deflator across all 
scenarios for any given time period must equal the risk-free discount factor for that 
time period. In a complete arbitrage-free market, there is a unique set of deflators, that 
reconciles the present value of the cash flows to market values. If different deflators 
are used, the present value derived will not be equal to the arbitrage-free value and 
therefore will not be equal to the fair market value.  
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Working out what the deflators are for a general realistic scenario generator is not a 
trivial mathematical task, although deflators have been found for a number of popular 
models such as lognormal models of stock price variation or asset price variation. 
It should also be noted that using realistic probabilities with deflators would produce 
exactly the same result as using risk-neutral probabilities and risk-free discount rates, 
under consistent calibration to current market values. 
 
 

7. Interest rate guarantees on saving account by 
Monte Carlo simulation 
 
7.1 Purposes and structure  
The purposes of this sector are:  
1) to show the complexity of the whole issue of guarantees valuation through four 
simplified minimum interest rate guarantees based on four contract conditions;  
2) to show how the intuitive simulation methods are used in pricing complex 
guarantees; and also discuss the inherent drawbacks of simulation methods;  
3) to give visual impression about the guarantee prices from ‘guarantee term 
structures’, in order to help insurers in product design and setting up reserve and risk 
management.  
 
The structure of this section: 
In Section 7.2, we first categorize and define two main Interest rate guarantees, 
namely the maturity guarantees and multi-period guarantees. Then we give a brief 
literature review over the recent treatments of this complex issue. In section 7.3, the 
transformed Hull&White short rate model, which acts as the economic scenario 
generator in our Monte Carlo simulation, is described, together with its simulation 
procedures. In section 7.4, four general pricing formulas for interest rate guarantees 
based on four contract conditions are given. Section 7.5 presents numerical results of 
guarantee term structures, followed by an application to a hypothetical policy 
portfolio. Section 7.6 concludes Section 7 with remarks and proposed future works. 
 
7.2 An overview and literature review on interest rate guarantees  
Minimum interest rate guarantees (IRG ), which cause structural solvency weakness 
across the European life industry, are embedded in various life insurance contracts, 
such as unit-linked products and profit-sharing contracts. Example guaranteed returns 
on legacy business were 4% in The Netherlands and Germany, 4,75% in Belgium, 5% 
in Italy. Even on current new business, guarantees can be high relative to risk-free 
rate, for example 3,25% in Germany, 3% in The Netherlands, and up to 3,75% in 
Belgium. In addition, participation in upside profits on a formulaic basis, as in Italy 
and The Netherlands, increases the effective floor and the complexity of the 
guarantee. Policyholders have the best of all worlds: a valuable floor in difficult 
circumstances, upside participation if markets perform well, and the ability to cash out 
on fixed terms if more attractive returns are available elsewhere. Someone must pay 
for these benefits. In first instances, the guarantees must be prices in market consistent 
base.  
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Broadly speaking, interest rate guarantees embedded in Unit-linked products are 
categorized and modeled as maturity guarantees; whereas the interest rate guarantees 
embedded in profit-sharing products are categorized and modeled as multi-period 
guarantees.  
 
To illustrate the difference of the two guarantees, we take a pure endowment contract 
as example. Now we first fix some notations used in Section 7. Rate of returns are 
expressed in continuous compounding manner. The contract holding period, [0,T], is 
divided into n sub-periods Tttt ni =<≤= 00 , for ( 1,...,1,0 −= ni ).  
 
In a Unit-linked product, a maturity guarantee secures the policyholder a minimum 
rate of return over the holding period till the termination of the contract (e.g. at the 
maturity of the policy or upon death or surrender). The benefit payable for the 
contract with a maturity guarantee over the holding period [0, T] can be expressed, 

with initial investment of 1, as: 














∑
−

=

gT
n

i
i ,maxexp

1

0
α , where iα  denotes investment 

return during the i -th period [ ii tt ,1− ), and g denotes guaranteed rate of return, say 3%. 
 
In a profit-sharing product, where the policyholder participates in upside profit, the 
benefit is periodically adjusted according to the performance of the reference fund and 
a minimum is guaranteed to the policyholder. Thus the multi-period guarantee secures 
the policyholder a minimum rate of return in each period1. The benefit payable for the 
pure endowment contract with a profit-sharing scheme (that is a multi-period 

guarantee) can be expressed as: 






 −∑
−

=
+

1

0
1 )](,max[exp

n

i
iii ttgα .  

 
Literature review:  
Many publications discuss Interest Rate (or Rate of Return) Guarantees embedded in 
Unit-Liked products and Profit-sharing products. Most or all of the publications focus 
on analytical valuation method and numerical methods (e.g. Monte Carlo simulation, 
lattice method). When analytical solutions are not immediate attainable, people resort 
to numerical methods.  
 
An incomplete review on analytical solutions published recently: 
 
Persson and Aase (1997) consider and derive analytical solution for maturity 
guarantees on saving account in a Vasicek stochastic interest rate environment. 
Miltersen and Persson (1999) (hereon M&P99) present analytical solutions for 
maturity guarantees and 2-period guarantees on stock account in a general stochastic 
interest rate environment. Snorre Lindset extends the work of M&P99 in deriving 
analytical formula of multi-period guarantees and implementing a numerical example 
up to 5 periods. The above publications all avoid the problem of considering contracts 
which pay regular premium instead of single premium. Schrager and Pelsser (2003) 
consider the rate of return guarantees in regular premium in  Unit-Linked products 
and give analytical solution to the problem.  

                                                 
1 Readers might not find such contracts in the market. However our prototype formulations can be seen 
as references for real business. 
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Pricing interest rate guarantees using numerical methods: 
 
Grosen and Jorgensen (2000) proposed a recursive binomial lattice method in valuing 
surrender option in profit-sharing contract.  
 
In this paper , we use Monte Carlo simulation to price interest rate guarantees 
embedded in both unit-linked and profit-sharing products, for both single premium 
and regular premium payments.  
 
 
7.3 Asset Modeling 
7.3.1 Asset assumption – the stochastic saving account 
In principle, a guarantee may be connected to any specified rate of return, referred to 
as the rate of return process or simply the return process. Real-life examples include 
rates of return on stocks and mutual funds, various indexes, or interest rates.  
 
To highlight the valuation framework, we only work with one underlying asset in 
Section 7, that is the saving account, for the minimum interest rate guarantees. It is 
also called money market account. It represents the market value at date t of one unit 
of account where interest is accrued according to the short-term interest rate. Let sr  
denote the short-term interest rate at time s. Let )(tβ  denote the cumulated return of 

the short-term interest rate process, i.e. ∫=
t

sdsrt
0

)(β . The saving account is defined 

as )()( tetA β
β = . We adopt the notations in M&P99. 

 
7.3.2 Model setup 
Forward rate models and spot rate models of the term structure have been intensively 
analyzed in literatures (see for example Moraleda and Pelsser 2000). We favor the use 
of the Hull&White (H&W) model, because of its analytical tractability and easy 
implementation. It gives analytical prices of bond options and hence of 
caplets/floorlets, so that the model can be calibrated to market observations easily.  
 
The original H&W short rate model: 
Hull and White (1990) ( “Pricing interest rate derivative securities”)assume that the 
spot interest rate r follows the process 
 trt dWdtartdr σθ +−= ))(( ,        (1) 
under the equivalent martingale measure Q (i.e. the risk-neutral measure),  
where )(tθ  is an arbitrary function of time, the reversion speed a , the volatility rσ  
are treated as constants, and tW  is a Brownian Motion under Q.  
 
The Transformed H&W short rate model  
Pelsser (1999) proposed an equivalent formulation of the process of r as: 
 ttt xr +=α          (2) 
 trtt dWdtaxdx σ+−= , 00 =x       (3) 



 13

where ∫ −−− +≡
t sta

s
at

t dsere
0

)(
0 θα , a deterministic function of time, is to be determined 

from the initial term structure. It is shown in Pelsser (1999) that, 

2

22 )1(
2

),0(ln
a
etD

t

at
r

t

−−+
∂
∂−=

σα ,        (4) 

where D(0,t) is the discount bond price at time zero.  
 
Solutions to the interest rate process under risk neutral measure 
The Stochastic Differential Equation (3) has the following solution (after apply Itô’s 
Lemma to t

at xe ): (See Itô’s Lemma in Appendix A) 

∫ −−=
t

s
sta

rt dWex
0

)(σ         (5) 

If conditional on the information at time t, (T > t),  
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T

t s
sTa
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tTa

T dWexex )()( σ       (6) 
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t

s dsr
0
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s dsxdsdsr
000

α  
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where 
a

etsB
sta )(1),(

−−−= . 

The time t value of the saving account (with initial investment equals 1) is then 
determined by:  

)exp()(
0

)( ∫==
t

s
t dsretA β

β        (8) 

However, in simulations, we need a discrete time model, instead of the continuous 
model like (7). In 7.3.3 we explain further about the discrete model. 
 
7.3.3 Monte Carlo simulation from the transformed Hull&White model 
Here we briefly review the simulation approach suggested in D. Schrager (2002). 
When pricing complex derivatives, only in special cases analytical formulas are 
available. When these formulas are not available, one solution to calculate the risk 
neutral expectation is to use Monte Carlo simulation. In general when one want to 
calculate the expectation of a function of a random variable X, )(Xf , and X has a 
known distribution (e.g. Normal distribution). One can approximate E[f(X)] by 

∑
i

iXf
N

)(1
)( .  

Where )(iX ’s are drawn (simulated) from the known distribution. This result is a 
consequence from the Law of Large Numbers, as the average converges to the 
expectation. In this section we will discuss how to simulate the Hull&White model.  
 
We want to simulate interest rate paths. From the solution of (6), we know that, 
conditional on the value of the short rate at time t, tx , we can write for Tx  as 

 ∫ −−−− +=
T

t s
sTa

rt
tTa

T dWexex )()( σ  
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Hence we write tx  as a function of htx − , where h is the time step 
 thtt xx εβ += −         (9) 

where ahe−=β  and 







− − )1(

2
,0...~ 2

2
ahr

t e
a

Ndii σε 2.  

The discrete version of the value process of the saving account )exp(
0∫
t

sdsr  can be 

approximated by: 

)*exp()(
1/

1
∑

−

=

≅
ht

i
i hrtAβ       (10) 

 
7.4 IRG valuation formulas 
7.4.1 mortality assumption and deterministic lapses assumption 
We adopt the common practice and assume independence between mortality and 
financial risk. This enables us to consecutively take expectations with respect to 
mortality and financial risk. Furthermore, the independence determines that risk-
neutral mortality probabilities equal real-world mortality probabilities.  
 
We adopt the view that mortality risk can be diversified by increasing the number of 
policies. In practice, the real world mortality probabilities are known and are part of 
the products. Thus we treat the real-world mortality probabilities as known constants 
and take them outside of the risk-neutral expectations. Examples are the survival 
probability txtT p +−  and the death probability txtT q +− . 
 
Recent attempts have been made to value surrender option as optimal stopping time 
problem (such as, the early exercise of American Option). There, surrender is purely 
triggered by investment performance. When the fund value is much higher than the 
guaranteed value (minimum surrender value), that is, the guarantee is deeply out of 
money, the policyholder is assumed to sell back the policy (lapse). Therefore the 
surrender behavior is stochastic and interest-rate-dependent.  
 
In section 7, however, we don't adopt the above-mentioned approach, but restrict 
ourselves within the deterministic surrender behaviors, which are quantified by best-
estimated lapse rates. The reasons why we treat surrender behavior deterministic are 
mainly:  
1) Surrender decisions are actually partially triggered by investment performance. 

Besides benefiting from upside gains, other reasons for surrender could be that, 
for example, the policyholder needed cash or couldn't afford the premium.  

2) Policies with profit-sharing mechanism attract policyholders to stay, since upside 
gains are locked and thus less necessary to surrender. 

3) Contracted penalties also prevent policyholders from surrendering.  
4) Occasionally, regulations and other facts can force policyholders to stop contracts 

prior to maturity (e.g. a product line might be stopped by regulators). Such non-
foreseeable facts cannot be modeled purely by 'best stopping time' problem.  

 

                                                 
2 ... dii  denotes identical and independent distributed 
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Due the above listed reasons, we work with deterministic surrender probabilities in 
this section3. Thus it can be taken outside of the risk-neutral expectation and treated as 
known constants (see formulas (11) through (14) below).  
 
Let lapse(i) be the lapse rate of the i-th  period [ ii tt ,1− ). We denote stay

ti
p  as the 

probability that the insured stays within the pool till the end of i -th period ( it ), 

hence ∏
=

−=
i

k
k

stay
t lapsep
i

1

)1( . The probability that a contract reaches its maturity 

without surrender, taking both mortality and lapse rate into account, can be expressed 

as ∏
=

+ −
n

i
itx tlapsep

i
1

))(1(  which equals stay
txT n

pp ⋅  , ( Ttt ni =<≤0 ).  

 
7.4.2 The general interest rate guarantee pricing formula 
Before going into four explicit interest rate guarantee pricing formulas based on four 
contract conditions, we first give the general pricing formula as the following. 
 
For an endowment contract, the amount payable (the amount assured) is either upon 
the survival of the insured till the contracted maturity date, or upon death or surrender 
prior to the maturity date. Here we adopt the same actuarial notations for survival 
probability txtt p

i +−  and death probability 
iii txtt q +−+ )( 1
. Let txtT p +−  denote at time t the 

survival probability till time T of an insured, who is x-year old when the contract 
starts. At time zero, this simplifies to xT p . The probability that the insured dies 
during [ 1, +ii tt ) is 

iii txtt q +−+ )( 1
. 

 
Supposing no lapse happens for all contracts, then the value of the contract at time 
zero, 0C , equals the survival probability (or death probability) times the expected 
amount payable at maturity (or at death) discounted back to present time. Hence, we 
have 

∑
−

=
+− +++

⋅⋅⋅+⋅⋅=
1

1
)(0 ][][

111

n

i
tt

Q
txttxtTT

Q
xT iiiiii

CDEqpCDEpC , 2≥n            (11) 

where TD  denotes the discount factor and ][⋅QE  denotes risk-neutral expectation. The 
first term can be seen as the actuarial present value of a pure endowment contract and 
the second term can be interpreted as the actuarial present value of a term insurance 
contract. 
In the same way, the IRG element within an endowment contract is given by: 

∑
−

=
+− +++

⋅⋅⋅+⋅⋅=
1

1
)(0 ][][

111

n

i
tt

Q
txttxtTT

Q
xT iiiiii

IRGDEqpIRGDEpIRG , 2≥n          (12) 

If we also take the deterministic lapse rates into account, the general pricing formula 
becomes: 

][0 TT
Qstay

TxT IRGDEppIRG ⋅⋅⋅=  

 ∑
−

=
+− ++++

⋅⋅+⋅⋅+
1

1
)( ][)(

1111

n

i
tt

Q
ttxtt

stay
txt iiiiiiii

IRGDElapseqpp           (13) 

                                                 
3 For future research, the non-deterministic lapses is an interesting topic, to investigate the inter-relation 
of the policy discontinuance with other stochastic factors  
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In the rest of Section 7.4, we focus on the expectation components ][ tt

Q IRGDE ⋅  in 
expressions (12) and (13). These components form the interest rate guarantee “term 
structure like” curves presented in Section 7.5. The mortality factors and lapse rates 
can be incorporated with the “term structure” afterwards according to (12) and or 
(13). In Section 7.6, we apply the guarantee “term structure” to a pure endowment 
policy portfolio according to the first term in (12). Therefore instead of valuating IRG 
in an endowment contract, we are going to valuate IRG in a pure endowment contract.  
However, the extensions to (12) and (13) are straightforward.  
 
 
7.4.3 Single premium maturity guarantee 
The single premium paid by the insured at time zero is denoted as 0L . After some cost 
deduction, a certain percentage of 0L , which equals 0π , is invested into the saving 
account. The liability is financed by the value of the asset at expiration date, T, of the 
contract.  
 
The maturity guarantee guarantees an averaged rate of return, denoted as g, say 3%, 
over the holding period [0, T].  We denote the total return on the asset over a time 
interval [0, t] as R(0, t). Express this in term of short rate sr , we have 






== ∫

t
dssrttR

0
)(exp)),0(exp(),0( β . Here we implicitly define a quantity 

∫=
t

dssrt
0

)(),0(β . Furthermore, we normalize the initial investment premium to 1, 

that is, 10 =π .  
 
Without incorporate the survival probability, the present value of the interest rate 
guarantee, 0IRG , is then given by 

 



 





⋅





−=+ ∫∫ ],)(max[exp)(exp1

000 gTdssrdssrEIRG
TTQ  

Hence, 

 1])(,0max[exp
00 −



 





 −= ∫

TQ dssrgTEIRG ,           (14) 

Notice that 0IRG  is proportional to 0π .  
 
The 0IRG  can be interpreted as difference between the present value of a contract 
with interest rate guarantee IRGV0  and the present value of a contract without any 
guarantee 100 == πV . Thus, 100 −= IRGVIRG . 
 
7.4.4 regular premium maturity guarantee 
Let the start of the contract at time 00 =t  and let 1,...,0, −= niti  be the time points at 
which a premium iP  is credited to the reserve.  With premium we mean investment 
premium. iP  could be path-dependent, due to the cost reduction scheme and the 
changing asset value over time. For simplicity, we keep iP  constant, which equals  a 
fixed percentage of the gross premium.  
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The maturity guarantee guarantees an averaged rate of return (known as internal rate 
of return), denoted as g, say 3%, over the holding period [ it , T] for every paid 
premium iP . We denote TK  as guaranteed amount payable at maturity date of a pure 

endowment contract. Thus we define ∑
−

=

−⋅=
1

0
))(exp(

n

i
iiT tTgPK , 1,...,0 −= ni .  

Further we denote the total asset value at maturity time as TF , which evolves 
according to the total return process. We define the return on the investment over sub-

periods of ),[ Tti  as ( ) 




== ∫

T

tii
i

dssrTtTtR )(exp),(exp),( β .  Thus we define 

∑ ∫
−

=

⋅=
1

0
))(exp(

n

i

T

tiT
i

dssrPF .  

Without incorporate the survival probability, the present value of the interest rate 
guarantee, 0IRG , equals to the present value of the expected put option payoff at 
maturity. 

 



 −⋅





−= ∫ ],0max[)(exp

00 TT

TQ FKdssrEIRG  

Plug in the expressions for TK  and  TF , without incorporate the survival probability, 
the present value of the interest rate guarantee, 0IRG , within a regular premium 
payment scheme, is then given by 





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                  (15) 
 
7.4.5 Single premium multi-period guarantee 
The multi-period guarantee, which is embedded in a profit-sharing contract, entitles 
the holder to a minimum rate of return ig  in sub-periods of ),[ 1 ii tt − . 
We define the real return on the investment over sub-periods of ),[ 1 ii tt −  

as ( ) 




=== ∫

−
−−

i

i

t

tiiiii dssrttttRR
1

)(exp),(exp),( 11 β .  Here we implicitly define a 

quantity ∫
−

== −
i

i

t

tiii dssrtt
1

)(),( 1ββ . We still normalize the initial single premium to 

1, that is, 10 =π .  
Without incorporate the survival probability, the present value of the interest rate 
guarantee, 0IRG , is then given by 

 
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
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
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exponential terms and get 
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7.4.6 regular premium multi-period guarantee 
The same as in 7.4.4, denote the start of the contract at time 00 =t  and let 

1,...,0, −= niti  be the time points at which a premium iP  is credited to the reserve.  
With premium we mean investment premium. iP  could be path-dependent, due to the 
cost reduction scheme and the changing asset value over time. For simplicity, we keep 

iP  constant, which equals  a fixed percentage of the gross premium. 
 
The multi-period guarantee embedded in this profit-sharing contract entitles the 
holder to a minimum rate of return ig  in sub-periods of ),[ 1 ii tt − .We define the real 
return on the investment over sub-periods of ),[ 1 ii tt −  as 

( ) 




=== ∫

−
−−
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i

t

tiiiii dssrttttRR
1

)(exp),(exp),( 11 β .   

Here we implicitly define a quantity ∫
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)(),( 1ββ .  

 
If we denote IRGV  as the present value of a profit-sharing contract with IRG element, 
and denote V as the present value of the regular premium investment without the IRG 
element. Then the value of IRG should be the difference of these two contracts. That 
is,  
 00 VVIRG IRG −=  
Since  
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0V is actually the sum of the discounted regular premiums, where discount factors are 
discount bond prices.  
Therefore, 
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        (17) 
 
7.5 Numerical results for Interest rate guarantees 
7.5.1 Model parameters and input data 
The short rate model should be calibrated using market prices of actively traded 
interest rate products, like caps, floors or swaps. By using implied volatilities and 
parameter(s), we obtain market consistent view over the future return processes.  
 
For the single factor H&W model  ( ttt xr +=α ; trtt dWdtaxdx σ+−= ;  00 =x ), the 
following parameters are used in the numerical examples shown in section 7.5: 
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 15.0=a  015.0=σ   
The initial zero-coupon bond prices (discount factors) and initial forward rates term 
structures are U.S. data of April 30, 2003, which can be downloaded from: 
http://economics.sbs.ohio-state.edu/jhm/ts/ts.html 
 
In section 7.5.2.1 we also use another set of initial forward term structure of U.S. data 
of June 30, 1999, where higher zero yields were offered at that time and a flatter 
forward curve took place (see Figure 1). By changing data inputs, we see how the 
economic environment influences the guarantee values. 
Figure 1: Two initial forward curves 
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The number of simulation is specified as M in the corresponding figures and tables 
below. The executing time of the MATLAB program is reported in table 3 and 4.  
 
7.5.2 Term structures of interest rate guarantees 
7.5.2.1 Single premium maturity guarantee 
A single premium of 1 Euro is paid by the insured at the inception of a life policy and 
a maturity minimum interest guarantee is proved by the insurer. The guaranteed 
minimum interest rate ‘g’ is continuously compounded. 
 
Figure 2: single premium maturity guarantee “term structure” 1 
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We observe a humped pattern in this guarantee ‘term structure’. We think that the 
sharp increase of the guarantee values within the first 5 years might be caused by the 
sharp increase of the initial forward rate curve of April 30, 2003, U.S. data.  
 
Hereunder we also present another experiment, where initial term structure are from 
1999 June 30, when higher bond yields were prevailing at the time, and flatter 
forward curve was observed. The resulting guarantee “term structure” shows a 
humped pattern, however the peak postpones to 15 years away from the valuation 
time. Another expected observation is that the guarantees were less valuable then 
current situation, due to a better economic environment in the past.   
 
Figure 3: single premium maturity guarantee “term structure” 2 
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7.5.2.2 regular premium maturity guarantee 
 
A monthly premium of 1 euro is paid by the insured and a maturity guarantee is 
proved by the insurer at the end of life policy subject to the survival of the insured. 
The guarantee values shown in this graph can be seen as the relative costs of the 
guarantee related to the present values of the regular premium.  
Figure 4:  monthly  premium maturity guarantee “term structure” 
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Roughly starting from year 5, the curve of ‘guarantee term-structure’ decreases. This 
is mainly because of the declining guarantee cost structure of the single premium 
maturity guarantee over long period. The regular premium maturity guarantee can be 
seen as a collection of single premium maturity guarantee. Hence a fraction of the 
guarantee for the premium paid at an earlier time depreciates as maturity becomes 
longer.  
 
7.5.2.3 Single premium multi-period guarantee 
A single premium of 1 Euro is paid by the insured at the inception of a life policy and 
a multi-period minimum interest guarantee is proved on yearly basis. The guaranteed 
minimum interest rate ‘g’ is continuously compounded. 
Figure 5:  single  premium yearly guarantee “term structure” 
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The multi-period guarantee is much more expensive than the maturity guarantee 
shown in Figure 2. The guarantee becomes more expensive when policy maturity 
becomes longer. The results presented in Table 3 and Table 4 will be used in a reserve 
calculation in Section 7.5.3. 
 
Table 3: single premium yearly guarantee “term structure” 

  a sigma M g 
exe time 

(sec)    
parameters  0,15 0,015 10000 0,04 89    

maturity 2 3 4 5 10 15 20 25 30 
 (g=0.04) 0,0473 0,0633 0,0754 0,0844 0,1096 0,1267 0,1412 0,1544 0,1679 
 (g=0.03) 0,0284 0,0375 0,0441 0,0488 0,0608 0,0688 0,0751 0,0807 0,0859 

 
 
7.5.2.4 regular premium multi-period guarantee 
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A yearly premium of 1 euro is paid by the insured and the insurer proves an annual 
interest rate guarantee. The following graph and results are for yearly premium annual 
guarantee: 
 
The multi-period guarantee is much more expensive than the maturity guarantee (both 
happening in single premium and regular premium scheme). The longer the maturity, 
the higher this guarantee costs. 
 
Figure 6:  yearly  premium annual guarantee “term structure” 
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Table 4: Yearly premium annual guarantee “term structure” 

 a sigma M g 
Exe time 

(sec)  
parameter 0,15 0,015 5000 0,04 1339  

maturity 3 4 5 10 15 20 25 30
irg_abs 0,1123 0,1573 0,1984 0,3687 0,5488 0,7458 0,9327 1,1305
pv_reg 2,9512 3,8898 4,7964 8,7376 11,7103 13,9112 15,5261 16,7062
IRG (g=0,04) 0,0380 0,0404 0,0414 0,0422 0,0469 0,0536 0,0601 0,0677
  
irg_abs 0,0664 0,0916 0,1141 0,1982 0,2823 0,3720 0,4586 0,5458
pv_reg 2,9512 3,8898 4,7964 8,7376 11,7103 13,9112 15,5261 16,7062
IRG (g=0,03) 0,0225 0,0236 0,0238 0,0227 0,0241 0,0267 0,0295 0,0327
 
 
7.5.3 Application to a hypothetical policy portfolio 
In this section we construct a hypothetical regular premium profit-sharing policy 
portfolio. Then we apply the results obtained in Section 7.5.2 to calculate the reserve 
needed for the interest rate guarantees. 
For illustration purpose, the portfolio consists only 20 policies, including 16 existing 
policies and 4 new policies. The ages of policyholders, (x), at the valuation time, are 
20, 30, 40 and 50. The remaining term to policy maturities are denoted by T, ranging 
from 3 to 20 years. The yearly premium paid by insured varies from 100 euro to 400 
euro. By the time of valuation, the credited surrender values of the existing 16 policies 
are taken from administration system. 
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Table 5: policy details of the hypothetical policy portfolio  

 
For simplicity, we assume that the 20 policies are pure endowment contracts, where 
the benefit payable is conditional on the survival of the policyholder, and further 
assume no lapse happens. The extension to endowment contract is straightforward as 
given in (13), and the inclusion of deterministic lapses goes in the same 
straightforward manner as given by (14) (see the guarantee pricing formulas in 
Section 7.4). The mortality tables and lapse assumptions are company specific. The 
illustrative survival probabilities shown in Table 6 are based on Dutch GBm9500 
mortality base table.  
 
Table 6: survival probabilities xT p  (according to Dutch GBm9500 base table) 

Policy Remaining Term (T)    
(x) 3 5 10 15 20 

20 0,99798 0,99659 0,99314 0,98918 0,98370 
30 0,99773 0,99601 0,99049 0,98161 0,96720 
40 0,99515 0,99103 0,97649 0,95289 0,91467 
50 0,98693 0,97583 0,93669 0,87139 0,76847 

 
The reserve of the guarantees are split up into two parts, namely reserve for already 
credited surrender value (resulted from the paid premiums) and the reserve for the 
future premiums to be paid till policy maturity. The first part of the reserve can be 
treated as the reserve for newly issued single premium annual guarantees, where the 
credited surrender values are seen as the single premiums paid immediately prior to 
valuation time, as shown in Section 7.5.2.3.  The second part of the reserve is treated 
as the reserve for newly issued regular premium annual guarantees, as shown in 
Section 7.5.2.4.  
 
The calculated reserve is presented in Table 7, for two guaranteed minimum interest 
rates respectively. The subtotals group the policies with the same maturity time, and 
give an idea of how many percentage of the reserve will be paid out in certain future. 
In this hypothetical example, we see that nearly 45% of the reserve is going to be 
cashed out within 5 years from the valuation date. While the rest will be paid out over 
10 to 20 years from the valuation date.  
 
Table 7: technical reserve for the interest rate guarantees  

 (x) 3 5 10 15 20 
irg_reserve 20 42,79 61,83 63,82 85,61 73,36 

g=0,04 30 117,14 140,39 159,86 169,90 144,27 
 40 285,49 309,91 268,49 277,57 204,65 
 50 356,69 489,24 343,40 301,65 229,25 

total reserve sub total 802,11 1001,38 835,56 834,73 651,54 
4125,31  19,44% 24,27% 20,25% 20,23% 15,79% 

policy data credited surrender value 
(x) 

yearly premium 
 T=3 T=5 T=10 T=15 T=20 

20 100 500 500 250 250 0 
30 200 1500 1200 800 500 0 
40 300 4000 3000 1500 1000 0 
50 400 5000 5000 2000 1000 0 
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 (x) 3 5 10 15 20 

irg_reserve 20 25,33 35,70 34,78 44,94 36,59 
g=0,03 30 69,34 81,08 87,45 89,18 71,96 

 40 169,03 179,07 147,14 146,25 102,07 
 50 211,17 282,73 188,19 158,34 114,34 

total reserve sub total 474,87 578,57 457,57 438,70 324,97 
2274,68  20,88% 25,44% 20,12% 19,29% 14,29% 

 
 
7.6 Discussions 
 
The simulation method and the guarantee pricing framework presented in section 7 
can be easily extended to include an asset mix. We are currently working with the 
Black&Scholes-Hull&White model to generate interest rate, stock- and bond-price 
scenarios.  
 
The simulation framework can be connected with Asset Liability Management system 
naturally. And ALM studies will then take place to better match assets and insurance 
liabilities and achieve insurers financial strategies.  
 
The pricing formulas adopt product based pricing approach, which avoids calculations 
done in policy-by-policy basis. The simulation framework can be applied to multiple 
product lines valuations, as illustrated by four products.  
 
A by-product of the simulation is the shortfall probabilities, which could provide 
useful information about the solvency status affected by the interest rate guarantees. 
 
Sensitivity analysis can be performed with respect to changes in underlying asset 
assumptions, economic environments and or contract conditions. The information 
resulted from these analyses could also be helpful in finding some replication assets 
and or hedging strategies.  
 
The accuracy and performance of the simulations can be further improved by variance 
reduction techniques, and or by parallel computing.  
 

8. Practical Issues and Shortcuts 
There are a number of practical considerations that must be addressed in calculating 
values of guarantees and options. All of the methods described in this paper can 
involve a considerable amount of work, including modeling effort, especially in the 
first year of valuation of a contract. The determination of a replicating asset may or 
may not be an easy task. Where the replicating portfolio can be found, the valuation is 
easy; simply take the value of the replicating assets. Short of asking a potential 
counter-party to quote, the main challenge involves finding a simple closed-form 
solution. 
 
8.1 Deepness of guarantee 
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When the guarantee is very deeply in or out of the money the following could be 
considered subject to certain constraints: 
•  Guarantee is very deeply out of the money. If the underlying assets are not too 
volatile, the value of the guarantee is likely to be very small, and not materially 
different from zero. Only extreme scenarios then need to be considered. However, 
when the assets exhibit volatile behavior, caution is required as they are likely to have 
value even though they may be deeply out of the money 
•  Guarantee is deeply in the money. If the underlying assets are not very volatile, the 
discounted cash flow value of the liability (intrinsic value) will be much larger than 
the time value of the guarantee. The time value reflects the value relating to the 
possibility that the guarantee will start to bite, or will bite even more than currently. In 
this case, ignoring the time value or estimating it crudely as a small percentage of the 
intrinsic value may not materially misstate the total value of the liability 
However, this approach should be exercised with caution and monitored regularly, 
even for a guarantee deeply out of the money.  
 

 
 
8.2 Dealing with demographics 
If the source of the complexity for finding a replicating strategy is due to demographic 
factors (lapses, mortality, etc.), then one approach might involve finding the 
replicating asset both where the demographic assumptions are much lower and much 
higher than expected. A closed-form formula such as Black Scholes may then be used 
to value the option in both cases. The actual value of the option will lie somewhere 
between these two values. Provided the two values are not too far apart, the actual 
value of the option may not be materially different from an interpolation between 
them as shown in Example 7. The interpolation should be based on sensible 
assumptions for the demographic factors.  
 
8.3 Correlations 
If the source of the complexity is the uncertainty around the correlation between 
multiple asset classes, then the value might also be estimable by interpolating between 
the upper and lower bounds for the correlation factors. 
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8.4 Pre-calculated Tables 
In some situations, the use of a stochastic model can be avoided by using pre-
calculated tables of factors that indicate the relative magnitude of the time value and 
the intrinsic value appropriate for the relevant contract type. 
The tables would be indexed with the relevant financial variable (e.g., current interest 
rate or share index level) relative to the level at which the guarantee bites, outstanding 
term of the guarantee, volatility parameter and risk-free rate. The market value of the 
guarantee can then be estimated by scaling up the intrinsic value by the tabular 
percentage.  
In more complex situations, pre-calculated tables may oversimplify the situation or 
replicating assets may not be easy to find. Where this is the case, the risk-neutral 
model will often be the easiest method to apply. 
The risk-neutral approach avoids the search for a replicating asset and avoids the 
additional calculations for the deflators. However it still requires building a stochastic 
model with a risk-neutral economic scenario generator and choosing risk-neutral 
parameters. 
 

9. How to Win the Chess Game 
An understanding of the different approaches available to calculating a fair value for 
guarantees and options is only part of the story. In the insurance industry, many 
companies are now focusing their energies on developing and applying the mechanics 
of determining the fair value of the liabilities. In addition, companies are gaining an 
understanding of what needs to be done to prepare for the IAS accounting 
requirements before the applicable deadlines. 
To win the chess game, however, one must think one move ahead of one’s 
competition. So while most others are focusing on how to compute values, the best 
companies will also be thinking about how they will mitigate the risk of volatility and 
stabilize earnings results in the new environment. In particular, how should one offset 
the fluctuations in reported profit caused by varying liability values as market 
conditions change? A key approach will be to reduce balance-sheet volatility by an 
appropriate investment strategy, e.g., having asset values move to offset the 
movement in the value of the liabilities. 
Therefore there is a key advantage of the replication approach to valuing the 
liabilities. Not only does it calculate the fair value of the liability, it also provides 
information on how to invest in order to match the liability changes and reduce 
balance-sheet volatility. 
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When it is not possible to match assets and liabilities, or when a company chooses not 
to, the question becomes what is the appropriate amount of risk capital required to 
absorb the unmatched asset/liability fluctuations. To model this, it is necessary to use 
best-estimate scenario distributions combined with a process for estimating path-wise 
future fair values, so that one can examine the probabilities of the net asset position 
falling below threshold levels. In practice, this problem is usually addressed by 
employing an approximate process for estimating the future reserve values. 
Designing new products whose prices properly allow for the value of the guarantees 
will also be important in ultimately achieving satisfactory levels of profitability. 
In summary, and as a general rule, companies should be developing their capabilities 
(around decision-making processes for bonuses, investments, and product pricing) so 
as to optimize the trade-off between risk and reward for shareholders in a fair value 
world. 
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Appendix A 
 
Lemma (Itô’s) Suppose we have a stochastic process x given by the stochastic 
differential equation dWtdttdy ),(),( ωσωµ +=  and a function ),( ytf  of the 
process y, then f satisfies 
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