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Abstract 
 

In this paper we derive a market value for with-profits Guaranteed Annuity Options using 

martingale modelling techniques. Furthermore, we show how to construct a static replicating 

portfolio of vanilla interest rate swaptions that replicates the with-profits Guaranteed Annuity 

Option. Finally, we illustrate with historical UK interest rate data from the period 1980 until 2000 

that the static replicating portfolio would have been extremely effective as a hedge against the 

interest rate risk involved in the GAO, that the static replicating portfolio would have been 

considerably cheaper than up-front reserving and also that the replicating portfolio would have 

provided a much better level of protection than an up-front reserve. 
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1. Introduction 
Recently, considerable publicity is drawn to with-profits life-insurance policies with Guaranteed 

Annuity Options (GAO’s). Equitable, a large British insurance office, had to close for new 

business as a portfolio of old insurance policies with GAO’s became an uncontrollable liability. In 

this paper we want to propose a hedging methodology that can help insurance companies to avoid 

such problems in the future. 

 

During the last few years, many authors have applied no-arbitrage pricing theory from financial 

economics to calculate the value of embedded options in (life-)insurance contracts. Initially, the 

work was focussed on valuing return guarantees embedded in equity-linked insurance policies, see 

for example Brennan and Schwartz (1976), Boyle and Schwartz (1977), Aase and Persson (1994), 

Boyle and Hardy (1997) and Bacinello and Persson (2002). In equity-linked contracts, the 

minimum return guarantee can be identified as an equity put option, and hence the “classical” 

Black-Scholes (1973) option pricing formula can be used to determine the value of the guarantee. 

 

Many life-insurance policies are not explicitly linked to the value of a reference equity fund. 

Traditionally, life-insurance policies promise to pay a nominal amount of money to the 

policyholder at expiration of the contract. In order to compensate the policyholder for the 

relatively low base-rates which are used for premium calculation, various profit-sharing schemes 

have been employed by insurance companies. Through a profit-sharing scheme, part of the excess 

return (i.e. return on investments above the base rate) that the insurance company makes is being 

returned to the policyholders. However, since only the excess return is being shared with the 

policyholders and not the shortfall, having a profit-sharing scheme in place is equivalent to giving 

a minimum return guarantee (at the level of the base rate) to the policyholders. This type of 

embedded return guarantees has only recently been analysed in the literature, see for example 

Aase and Persson (1997), Grosen and Jørgensen (1997), (2000a) and (2002), Miltersen and 

Persson (1999) and (2000) and Bouwknegt and Pelsser (2002).  

 

Guaranteed Annuity Options are another example of minimum return guarantees, but in the case 

of GAO’s the guarantee takes the form of the right to convert an assured sum into a life annuity at 

the better of the market rate prevailing at the time of conversion and a guaranteed rate. Many life-

insurance companies in the UK issued pension-type policies with GAO’s in the 1970’s and 

1980’s. During this time UK interest rates were very high, above 10% between 1975 and 1985. 
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Hence, adding GAO’ s with implicit guaranteed rates around 8% was considered harmless at that 

time due to the fact that these option were so far “out-of-the-money”. Due to the fall of UK 

interest rates far below 8% (currently UK interest rates are at a level of 5%), the GAO’ s have 

become an uncontrollable liability which caused the downfall of Equitable in 2000. The issue of 

determining the value of GAO’ s has been addressed in recent years by Bolton et al. (1997), Lee 

(2001), Cairns (2002), Ballotta and Haberman (2002), Wilkie, Waters and Yang (2003) and Boyle 

and Hardy (2003). 

 

As is evident from the literature overview provided here, the main focus has been given to 

determining the value of embedded options. With the downfall of Equitable it has, in our view, 

become apparent that not only the valuation should be addressed, but also the hedging of 

embedded options. Although the hedging issue seems trivial at first sight: any derivative can be 

replicated by executing a delta-hedging strategy. However, the options written by insurance 

companies have such long maturities and the insured amounts are so high that executing a delta-

hedging strategy can have disastrous consequences.  

 

Typically, an insurance company has sold put options to its policy holders. To create a delta-

neutral position the insurance company has to sell the underlying asset of the put option. If 

markets fall, the insurance company has to sell off more of its asset position to remain delta-

neutral. This will create more downside pressure on the asset prices, especially if the insurance 

company is trying to rebalance a large position. Hence, executing a delta-hedging strategy for a 

short put position can create dangerous “feedback loops” in financial markets which can have 

disastrous consequences. Similar feedback loops were present in Portfolio Insurance strategies 

which used delta-hedging to create synthetic put options and were very popular during the 1980’ s. 

Automated selling orders generated by computers trying to follow blindly the delta-hedging 

strategy have been blamed for triggering the October 1987 crash. After the 1987 crash, Portfolio 

Insurance strategies very quickly lost their appeal. A second complication with executing a delta-

hedging strategy is that delta hedging required frequent rebalancing of the hedging assets in order 

to remain delta-neutral. Especially for long maturity options, this can be quite expensive because 

of the transactions costs involved. 

 

We want to propose the use of static option replication as a viable alternative for insurance 

companies to hedge their embedded options. A static option replication can be set up if a portfolio 

of actively traded options can be found that (approximately) replicates the payoff of the derivative 
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under consideration. Once the payoff of the derivative has been replicated, the no-arbitrage 

condition implies that also for all prior times the value of the derivative is replicated by the static 

portfolio. Static replication hedging techniques for exotic equity options have been introduced by 

Bowie and Carr (1994), Derman, Ergener and Kani (1995) and Carr, Ellis and Gupta (1998). The 

advantages of static replication are obvious: once the initial static hedge has been set up, no 

rebalancing is needed in order to keep the derivative hedged. In practice, it is not always possible 

to find a set of actively traded options that perfectly replicates the payoff of a given derivative. 

However, if the approximation is close enough the static replication portfolio will track the value 

of the derivative under a wide range of market conditions. 

 

In this paper we want to show how Guaranteed Annuity Options can be statically replicated using 

a portfolio of vanilla interest rate swaptions. Interest rate swaptions are actively traded for a wide 

variety of maturities and single trades can be executed for large notional amounts. Using the 

history of UK interest rates, we demonstrate that a judiciously chosen static portfolio of swaptions 

can hedge GAO’ s over a long time horizon and under a wide range of market conditions. Hence, 

we illustrate that static replication offers a realistic possibility for insurance companies to hedge 

their exposure to embedded options in their portfolios. 

 

The remainder of this paper is organised as follows. In Section 2 we describe the payoff of 

Guaranteed Annuity Options and we derive a pricing formula using martingale modelling. In 

Section 3 we construct the static replication portfolio consisting of vanilla swaptions. In Section 4 

we illustrate the effectiveness of the static portfolio with a hypothetical back test using UK interest 

rate data from 1980 until 2000. Finally, we conclude in Section 5. 

 

2. Guaranteed Annuity Options 

Let us consider the market value of annuities at the moment when they are bought. An annuity is 

financed by a single premium, in our case this single premium equals the lump sum payment of 

the capital policy. Suppose the annuity is bought at time T by a person of age x. Conditional on the 

survival probabilities npx from the mortality table we can write the market value of the annuity 

äx(T) with an annual payment of 1 as 

 

  �
−

=
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)()(�� ,       (2.1) 
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where npx denotes the probability that an x year old person survives n years and DT+n(T) denotes 

the market value at time T of a discount factor with maturity T+n. Also note that, the sum is 

truncated at age ω, the maximum age in the mortality table.  

 

In this paper we will make the assumption that the survival probabilities npx evolve 

deterministically over time. This allows for trends in the survival probabilities, which are 

important to take into consideration given the long time horizons for this type of product. 

Although in practice we know that the survival probabilities are stochastic, the “ volatility”  of the 

survival probability process is much smaller than volatility of the discount bond processes. Hence, 

the main risk factor driving the uncertainty in the value of annuities is the market risk, which we 

analyse in this paper. 

 

Given the market value äx(T), the market annuity payout rate rx(T) over an initial single premium 

of 1 is given by 

 

rx(T) = 1/äx(T).        (2.2) 

 

Note, that we assume that the lump sum payment L at time T is a deterministic quantity. This may 

seem inconsistent with the fact that GAO’ s have been issued on unit-linked and with-profits 

contracts, because in these types of contracts the value of the capital policy at time T is unknown. 

The papers by Ballotta and Haberman (2002), Wilkie, Waters and Yang (2003) and Boyle and 

Hardy (2003) explicitly model the uncertainty of the capital policy at time T by treating the 

policies as unit-linked contracts.  In this paper we take a different approach. Our approach exploits 

the fact that most of the policies offered, especially the policies of Equitable, are with-profits 

policies. Bolton et al. (1997, Appendix 2) report that with-profits policies account for 80% of the 

total liabilities for contracts which include GAO’ s.  

 

In the case of with-profits policies, the capital payment L to be paid out at time T depends on the 

bonuses declared. Under a traditional UK with-profits contract profits are assigned using 

reversionary and terminal bonuses. Reversionary bonuses are assigned on a regular basis as 

guaranteed additions to the basic maturity value L and are not distributed until the maturity date T. 

The terminal bonuses are not guaranteed. Via the profit-sharing mechanism, the amount L can 

therefore only increase and never decrease. In each year t the reversionary bonus will add an 
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additional “ layer”  Lt to the contract with an additional GAO. For the remainder of the contract this 

layer Lt is fixed. Hence, the analysis we offer in this paper is valid for with-profits policies, since 

each layer Lt of profit-sharing can be valued and hedged at time t when the reversionary bonus is 

declared.  

 

Suppose that an x year old policyholder has an amount of money L at his disposal at time T which 

is the payout of his capital policy. The GAO option gives the policyholder the right to choose 

either an annual payment of Lrx(T) based on the current market rates (see formula (2.2)) or an 

annual payment Lrx
G using the Guaranteed Annuity rx

G. A rational policyholder will select the 

highest annuity payout given the current term structure of interest rates. Therefore, we can rewrite 

the value of the GAO at the exercise date T as 

 

  L max(rx
G , rx(T)) Σ npx DT+n(T) = 

L ( rx(T) Σ npx DT+n(T) ) + L max(rx
G – rx(T) , 0) Σ npx DT+n(T) = 

L + L max(rx
G – rx(T) , 0) äx(T)        (2.3) 

 

Hence, the market value of the GAO policy at the exercise date is equal to the lump sum payment 

L plus L times the value of the GAO put-option.  

 

In the remainder of this paper we will focus only on the value VG of the GAO put-option 

 

  VG(T) = max(rx
G – rx(T) , 0) äx(T)      (2.4) 

 

To calculate the market value VG(0) of the GAO put-option today at time 0, we can proceed along 

several paths. The uncertainty about the value of the option is due to the fact that the discount 

factors DS(T) at time T are unknown quantities at time 0. One possible approach therefore, is to 

model the complete term-structure of interest rates with a term-structure model, like the Heath-

Jarrow-Morton (1992) model (HJM model), to obtain an option value. The disadvantage of such 

an approach is that the option price cannot be determined analytically. Results have to be obtained 

through numerical approximations which provide us with relatively little insight in the behaviour 

of the GAO. 
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To obtain a better handle on the behaviour of the GAO, we draw an analogy between the GAO 

and a swaption. A swaption gives the holder of the option the right, but not the obligation, to enter 

into the underlying swap contract for a given fixed rate. As the value of the swap depends on the 

term-structure of interest rates, we could use a term-structure model to determine the value of the 

bond option. In the case of a swap, all uncertainty about the term-structure of interest rates is 

reflected in a single quantity: the par swap rate. Hence, the value of a swaption can be determined 

more direct by modelling the bond-price itself as a stochastic process. This is exactly the approach 

that financial markets adopt to calculate the prices of swaptions with the Black (1976) formula. 

 

In the case of the GAO put-option, all the uncertainty about the term-structure of interest rates is 

reflected in the market annuity payout rate rx(T). Hence, if we model the market annuity payout rx 

directly as a stochastic process, we have sufficient information to price the GAO option. The 

approach of using market rates, such as LIBOR rates and swap rates, has been applied in recent 

years with great success to term-structure models. This type of models, which have become 

known as market models, was introduced independently by Miltersen, Sandmann and Sondermann 

(1997), Brace, Gatarek and Musiela (1997) and Jamshidian (1998). 

  

The main mathematical result on which this modelling technique is based is the martingale 

pricing theorem which states that, given a numeraire (i.e. a reference asset that is used as a new 

basis to express all prices in the economy in terms of this asset), an economy is arbitrage-free and 

complete if and only if there exists a unique equivalent probability measure such that all numeraire 

rebased price processes are martingales under this measure. For a proof of the martingale pricing 

theorem we refer to the original paper by Geman et al. (1995). For a general introduction into the 

mathematics involved and the application of martingale methods to financial modelling we refer to 

Musiela and Rutkowski (1997). The books by Hunt and Kennedy (2000) and Pelsser (2000) focus 

more explicitly on interest rate derivatives. 

  

In the economy we are considering, the traded assets are the discount bonds DS for the different 

maturities S. Any arbitrage-free interest model can be embedded in the HJM framework. Under 

the risk-neutral measure Q* (which is the probability measure associated with the money-market 

account as the numeraire) the process for DS in the HMJ framework is given by 

 

  ( ))()()()()( * tdWtbdttrtDtdD SSS += ,     (2.5) 
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where r(t) denotes the spot interest rate, W*(t) denotes Brownian Motion under the measure Q* 

and bS(t) denotes the volatility of the discount bond. Note that in the HJM framework bS(t) is 

allowed to be stochastic. Different specifications of bS(t) lead to different interest rate models. For 

example, the choice bS(t) = ( ))(1/ tSe −−− κκσ  leads to the well-known Vasicek-Hull-White model 

that is used in the papers by Ballotta and Haberman (2002), Wilkie, Waters and Yang (2003) and 

Boyle and Hardy (2003) to determine prices of GAO’ s. 

 

To illustrate the change of numeraire approach, we will also consider the processes of discount 

bond process under the T-forward measure QT. This is the probability measure associated with the 

maturity T discount bond DT as the numeraire, see Geman et al. (1995). For a proof of the results 

we derive below, we refer to Musiela and Rutkowski (1997, Section 13.2.2). The Radon-Nikodym 

derivative Tρ  for the change of measure is given by the ratio of numeraires 
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Hence, the Radon-Nikodym kernel )()( tbt TT =κ  and we have that under the T-forward measure 

the process dWT(t)=dW*(t)-bT(t)dt is a standard Brownian Motion. This implies that under the T-

forward measure the process for a discount bond DS with maturity S>T is given by 
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An application of Itô’ s Lemma confirms that the T-forward discount bond price DS(t)/DT(t) is 

indeed a martingale under the T-forward measure: 
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A particular convenient choice of the numeraire for the GAO put-option is the annuity äx(t) = Σ npx 

DT+n(t). Note, that under the assumption that the survival probabilities npx are deterministic, this is 

a portfolio of traded assets (the discount bonds) and hence a permissible choice as numeraire.2 

 

The annuity payout rx(T) rate for time T was defined in (2.2). At times t prior to T we can consider 

the value of the portfolio of discount bonds that replicates the cash flows of an annuity starting 

from T. A person that will be x years old at time T, has at time t an age of x-(T-t). Hence, the 

market value at time t of a forward annuity starting at T is given by 

 

  )()()( )()(
0

)()(
0

)()( taptDpptDp xtTxtT

x

n
nTxntTxtT

x

n
nTtTxtTn ��−−−

−

=
+−−−

−

=
+−−−+ == ��

ωω

, (2.9) 

 

where we have used the actuarial identity n+mpx = mpx npx+m (see, e.g., Bowers et al. (1997), 

Chapter 3). 

 

At time t, an insurance company can finance the forward annuity by borrowing money from time t 

until time T. Only in the cases the insured survives until time T, will the insurance company have 

to repay the loan. Hence, the market value at time t of this loan is given by 

 

  )()()( tDp TtTxtT −−− .        (2.10) 

 

Combining equations (2.5) and (2.6), we can define the forward annuity rate as 

 

  rx(t) = DT(t) / äx(t),        (2.11) 

 

where we see that the survival probability factor (T-t)px-(T-t) in the numerator and the denominator 

has cancelled. Note, that if t=T this definition coincides with (2.2) since DT(T)≡1. Also note that 

the forward annuity rate rx(t) is the numeraire rebased price of the discount bond DT(t) using the 

numeraire äx(t).  

 

                                                 
2 Although this is a dividend paying numeraire, no dividends are paid before the maturity date T of 
the GAO, and this is therefore a valid choice of numeraire to analyse the price of the GAO. Note, 
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The change of numeraire theorem states that under the martingale probability measure QA 

associated with the numeraire äx(t), all äx-rebased price processes are martingales. Hence, also the 

price process for the forward annuity rx(t) is a martingale under the measure QA.  

 

The Radon-Nikodym derivative )(tAρ  for the change of measure to QA is given by the ratio of 

numeraires: 
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By an application of Itô’ s Lemma we obtain that )(tAρ  follows the process 
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The Radon-Nikodym kernel )(tAκ  is the volatility of )(tAρ . Hence, we can identify )(tAκ from 

(2.13) as 
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and we have that under QA the process dWA(t)=dW*(t)- Aκ (t)dt is a standard Brownian Motion. 

We can now derive that the forward annuity rate is a martingale under the measure QA and follows 

the process 
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that similar numeraires are used in Swap Market Models to analyse the price of swaptions. See, 
e.g., Jamshidian (1998). 
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From this expression we see that the forward annuity rate volatility )(trσ  is a weighted average of 

the forward discount bond volatilities (2.8). 

 

Furthermore, the numeraire rebased market value VG/äx of the GAO put-option is also a martingale 

process under the probability measure QA. Using equation (2.4) which gives the value of the GAO 

put-option at time T, the value of the GAO option for any time t ≤ T can be expressed as 
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where EA[] denotes an expectation under the probability measure QA. Multiplying both sides of 

equation (2.16) by äx(t) leads to the following expression for the market price of the GAO: 
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Given the process (2.15) for rx(t) under the measure QA, we can use expression (2.17) to calculate 

the value of the GAO option explicitly. However, since the weights wn(t) are stochastic, it is quite 

complicated to evaluate (2.17) analytically. 

 

An alternative approach is to approximate the process (2.15) as )()()( tdWtrtdr A
rxx σ−=  with 

deterministic volatility rσ . This implies that we approximate the probability distribution of rx(T) 

by a lognormal distribution. Given such an approximation, we can infer rσ  from (2.15) by 

“ freezing”  the stochastic weights at their current values wn(t). If the discount bond volatilities bS(t) 

are deterministic functions (like in the Vasicek-Hull-White model), we can then approximate 

)(2 tTr −σ by the quadratic variation of ln rx(T) as 
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Instead of presuming a particular functional form for the discount bond volatilities bS(t), we can 

also estimate rσ  directly from historical observations of the forward annuity rate. Given a value 

for rσ , we can approximate the price for the GAO put-option via the Black (1976) formula as: 
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We have adopted the latter approach in Section 4 of this paper. 

 

3. Static Replicating Portfolio 

The GAO put-option we have discussed in the previous section, is not a standard interest rate 

option. To hedge the risk of such a non-standard option, an insurance company can execute a 

dynamic replication strategy (delta hedging). This replication strategy requires continuous 

rebalancing of a portfolio of discount bonds. Discussions on how to set up delta hedging strategies 

can be found in Boyle and Hardy (2003) and Wilkie, Waters and Yang (2003). Executing such a 

trading strategy in practice can be costly due to transaction costs or even unsuccessful due to 

inconsistencies in the model assumptions and the actual behaviour of the market. Especially the 

long time horizons that are typically involved in life-insurance products make the implementation 

of a delta hedging strategy a challenging task. 

 

We therefore want to propose a static options replication strategy that can be used to hedge the 

risk of GAO’ s. In a static options replication strategy one sets up a portfolio of actively traded 

options such that the payoff of the GAO at maturity is exactly replicated. Due to the fact that this 

portfolio matches the payoff of the GAO at maturity, the portfolio will also accurately track at all 

previous times the value of the GAO. Were this not the case, an arbitrage opportunity would arise. 

Hence, once the initial portfolio of options is bought, its composition never needs to be adjusted 

until the time that the GAO expires. Even when the actual behaviour of the market is inconsistent 

with the model assumptions of the underlying options, this has still no impact on the hedge 

effectiveness of the static replicating portfolio. In other words, not only the market risk but also 

the “ model risk”  is eliminated by a static hedge portfolio. 
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In the remainder of this section we show how a static replication portfolio of vanilla interest rate 

swaptions can be set up for with-profits GAO’ s. In interest rate markets, interest rate swaptions are 

the most actively traded options contracts and can be traded in large quantities for a wide variety 

of maturities and exercise prices. The construction we propose for GAO’ s is inspired by the static 

replication strategy proposed by Hunt and Kennedy (2000, Ch. 15) for irregular swaptions. 

 

Note that the use of swaptions as a hedging strategy has been proposed previously by Bolton et al. 

(1997), Lee (2001) and Wilkie, Waters and Yang (2003). However, none of the mentioned 

contributions uses the idea of static hedging. Bolton at al. (1997) propose a particular simple 

approach, where they buy receiver swaptions with a strike equal to the rate of interest underlying 

the GAO. However since the stream of cash flows associated with an interest rate swap has a 

radically different structure from the cash flows of an annuity, such a hedging strategy will not be 

very effective in practice. 

 

At the exercise date T, the GAO put-option gives the holder the right, but not the obligation, to 

enter into an annuity at the guaranteed rate rG: 
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where we have substituted the definition äx given in equation (2.1). Hence, the GAO gives the 

right to obtain a series of cash payments npx rx
G at the different dates T+n for the price of 1 at time 

T. Note that, due to the fact that the annuity payments are made at the beginning of each year, at 

time T one has to pay 1 but one receives rx
G immediately so that the net cash flow at time T is 

equal to 1- rx
G. 

 

A vanilla interest rate swaption gives the right, but not the obligation, to enter at time T into an 

interest rate swap in which during N years the floating LIBOR interest rate is exchanged for a 

fixed interest rate KN. It is well known that the market value SN of a receiver swap in which the 

fixed rate is received annually is given by (see, e.g. Hull (2000, Ch. 5)) 
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Hence, the market value VN of a receiver swaption that gives the right to enter into an N-year 

receiver swap at time T can be expressed as 

 

( ) .0,1)()1()(max0,)(max)(
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From expression (3.3) we see that, similar to the GAO, a swaption also gives the right to obtain a 

series of cash payments for a price of 1. However, the pattern of the cash payments is very 

different in the two options. The cash flows npx rx
G associated with the guaranteed annuity are 

gradually decreasing over time due to the gradually decreasing survival probabilities npx. The cash 

flows associated with an N-year swap follow a very different pattern: the first N-1 years one 

receives an amount of KN, whereas in the Nth year, a cash amount of (1+KN) is received. 

 

By combining positions in receiver swap contracts all starting at date T with different maturities N, 

it is possible to replicate the cash flow pattern npx rx
G of the guaranteed annuity for all dates T+n. 

To find the right amounts that has to be invested in each swap, we proceed backwards from time 

T+(ω-x) to time T+1. To replicate the cash flow ω-xpx rx
G we have to enter into the (ω-x)-year 

receiver swap Sω-x with fixed rate Kω-x. At time T+(ω-x) this swap has a cash flow of (1+Kω-x). 

Hence, if we invest an amount Lω-x = ω-xpx rx
G / (1+Kω-x) in swap Sω-x we replicate the cash flow of 

the guaranteed annuity at time T+(ω-x). 

 

One year earlier, at time T+(ω-x-1), the guaranteed annuity pays out a cash flow of ω-x-1px rx
G. 

From the position Lω-x in swap Sω-x we already receive a cash flow of Kω-x Lω-x = ω-xpx rx
G - Lω-x. 

Hence, if we invest an amount Lω-x-1 = (Lω-x + rx
G (ω-x-1px - ω-xpx)) / (1+Kω-x-1) in swap Sω-x-1 we 

replicate the cash flow of the guaranteed annuity at time T+(ω-x-1). 

 

Continuing this backward construction, we find that we can replicate the cash flow of the 

guaranteed annuity at a general date T+n by investing an amount Ln = (Ln+1 + rx
G (npx – n+1px)) / 

(1+Kn) in swap Sn. Proceeding backwards in this fashion, we continue to match all the cash 

payments of the guaranteed annuity up until time T+1. 
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However, there is a catch. From equation (3.2) we see that at the start date T of the swap contract 

we require an initial cash payment of 1. Hence, the total portfolio of receiver swaps constructed 

above to replicate the cash flows of the guaranteed annuity requires an initial cash payment of 

�
−

=

x

n
nL

ω

1

. But in equation (3.1) we derived that the GAO put-option gives the right to enter the 

guaranteed annuity for an initial net cash payment of 1-rx
G. Fortunately, we can adjust the amounts 

Ln by considering receiver swaps with different fixed rates Kn. This implies that we have to choose 

a set of fixed rates Kn* for all the swaps Sn such that the invested amounts Ln* satisfy 

G
x

x

n
n rL −=�

−

=

1
1

*
ω

. 

 

With the portfolio of swaps Σ Ln* Sn we have replicated all the cash flows of the guaranteed 

annuity with rate rx
G. Hence, the GAO which gives the right, but not the obligation, at time T to 

enter into the guaranteed annuity is equivalent to the option to enter into the portfolio Σ Ln* Sn. 

This implies that the value VG(T) at time T of the GAO can be expressed in terms of swaptions Vn 

as: 
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where the inequality stems from the fact that the value an option on a portfolio of swaps is less 

than or equal to the value of the portfolio of the corresponding swaptions. An intuitive explanation 

for this fact is that in the option on the portfolio you have only an “ all-or-nothing”  choice to obtain 

all underlying swaps at once or none at all, whereas in the portfolio of swaptions you can “ cherry 

pick”  the individual swaps that have positive market values at time T. 

 

If all the interest rates in the economy are perfectly correlated, i.e. all interest rates move all the 

time in perfect lockstep, then there exists only one single set of market swap rates Kn* for which 

the swaps Sn exactly replicate the cash flow stream of the guaranteed annuity. Due to the perfect 

correlation of the interest rates, all market swap rates will either be simultaneously above the rates 
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Kn* or simultaneously below. Hence, in the case of perfectly correlated interest rates, the 

inequality in equation (3.4) becomes an equality for the set of swaptions with strikes Kn*.3 But this  

implies that in the case of perfectly correlated interest rates, we have replicated the payoff of the 

GAO via a portfolio of vanilla interest rate swaptions and, a fortiori, that we have identified a 

static options replication for the GAO. 

 

In practice we know that the interest rates in the economy are not perfectly correlated, and 

therefore that the portfolio of swaptions has a higher price than the GAO due to the inequality in 

equation (3.4). However, GAO’ s typically are products with a very long maturity. Therefore, their 

value depends mainly on the behaviour of interest rates with long maturities and these interest 

rates are very highly correlated. We therefore conjecture that the price of the static hedge 

replication will be very close to the true price of the GAO.  

 

4. Historical Test 

To test the performance of the static replication strategy we have proposed in Section 3, we have 

conducted a hypothetical historical test using UK interest rate data. This is only a hypothetical test, 

because in 1980 the swap market in the UK was not as far developed as it is today. This means 

that the swaps and swaptions needed to execute the static hedge were not available in 1980. 

However, since the historical period from 1980 until 2000 does provide a very interesting stress-

test for our static hedge approach, we resort to a hypothetical test were we impute swap and 

swaption prices on the basis of UK Government Bond yield data. 

 

We downloaded from Datastream UK Government Bond yields with maturities 2, 3, 5, 7, 10, 15, 

20 and 30 years. We used the data at the last trading day of each year from 1980 until 2000. On 

the basis of the UK Government Bond yields we constructed hypothetical swap rates by taking the 

bond yields as proxies for the par swap rates with the same maturities. In each year we used a 

Nelson-Siegel (1987) parameterisation to obtain a complete term structure of zero-rates. In each 

year the Nelson-Siegel parameters were obtained by a least squares fit of the swap rates implied 

by the zero-curve to the observed Government Bond yields. The results of the parameter fits are 

                                                 
3 This remarkable result was derived for the first time by Jamshidian (1989) where he showed that 
in a one-factor interest rate model an option on a coupon bearing bond can be expressed as a 
portfolio of options on zero coupon bonds. Note also, that in the case of perfectly correlated rates 
the apparent ambiguity in choosing the rates Kn* is resolved. 
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reported in Table 1. (Table can be found at the end of this paper.) Note that, in order to stress-test 

our static hedge, we have also allowed the “ time-scale”  parameter tau to vary over time, to obtain 

as much as possible variation in the interest rates with long maturities. Practitioners usually keep 

the value of tau constant to stabilise the long end of the yield curve.  

 

Given the Nelson-Siegel parameterisation, we have zero-rates available for all possible maturities. 

Using the PMA92 mortality table4, we determined the forward annuity rates using formula (2.11). 

In Figure 1 below, we have plotted the forward annuity rates for a male that was 45 years old in 

1980 and that would retire at age 65 in 2000. Initially, the forward annuity rate was above the 

guaranteed level of 11.1%. However, due to the falling interest rates we see that the forward 

annuity rate dropped below the guaranteed level very quickly after 1980.  

 

Forward Annuity (annual payoff per 1£ capital) 
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Figure 1: Forward annuity rate for UK data and PMA92 mortality table 

 

From the mortality table, we calculated that the minimum annuity rate r65* is equal to 4.56%. 

From the time-series of the forward annuity rates, we estimated the volatility of the forward 

annuity rate process at 11.3%. To account for the fact that implied volatilities are higher than 

historical volatilities, we multiplied the historical volatility with a factor of 1.25. On the basis of a 

volatility of 14.2% in formula (2.19), we calculated the market value of the GAO put-option. 

                                                 
4 The author would like to thank Andrew Cairns for supplying the PMA92 tables. 
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GAO put-option (value per 1£ capital)
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Figure 2: Market value of GAO put-option. 

 

The calculated market values of the GAO put-option have been plotted in Figure 2. Again, we see 

that the value of the GAO put-option increased dramatically in value with the falling interest rates 

during the late 1990’ s. In fact, the value of the GAO increased almost a factor 30: from 1.56% in 

1980 to 51.24% in December 2000.  

 

This already indicates what the disadvantages are of “ only”  reserving for maturity guarantees 

instead of replication: reserving is very expensive and does not give complete protection. See, for 

example, the results reported by Wilkie, Waters and Yang (2003, Table 2.5.1). They calculate, on 

the basis of the 1984 Wilkie model, that the reserve at a 99% level that would have to be set aside 

in 1980 for the policy with term 20 was equal to 15,36%. As we see here, the actual value of the 

GAO at the end of the 20-year period (51.24%) was much higher than this 99% reserve. Hence, 

even reserving at a 99% probability-level would not have provided sufficient protection against 

the explosive growth in value of the GAO put-option during the 20 year period from 1980 until 

2000. 
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Figure 3a: Forward swap rates and static hedge fixed rates in Dec-1980 

 

Setting up the static replication portfolio of vanilla swaptions would have been considerably 

cheaper than “ only”  reserving, and would have provided superior protection. In 1980, the 

insurance company should have forecasted the annuity payments for a then 45 year old person 

which would reach the retirement age 65 in the year 2000. In Figure 3a we have plotted the 

(hypothetical) forward swap rates of Dec-1980. All swap rates are 20 year forward rates, with 

various swap maturities. We see that the forward swap rates slowly decreased from 12.79% for the 

20-year forward 1-year swap rate, until 10.25% for the 20-year forward 45-year swap rate. 

 

As was explained in Section 3, to set up the static replicating portfolio, we have to select a set of 

fixed rates Kn*. If all the interest rates are correlated perfectly, this will be the swap rates for 

which the GAO will be exactly “ at-the-money” . To construct the static hedge portfolio, we have 

made the assumption that all interest rates are perfectly correlated and also that all interest rates 

move exactly parallel.5 Hence, we have shifted all the rates by the same amount until the invested 

amounts Ln* satisfied 889.0111.01
65

1

* =−=�
−

=

ω

n
nL . We found that this was achieved for a downward 

shift of 1.13%-point. The set of fixed rates Kn* obtained by this parallel shift of the  swap rates has 

also been depicted in Figure 3a. 
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Figure 3b: Static Replication Portfolio of Annuity cash flows 

 

In Figure 3b, we have plotted the projected cash flows for the annuity for the years 2001 until 

2045. Also, we have plotted the weights Ln* that would have to be invested in all the swaps with 

fixed rates Kn* for n=1 to 45. Hence, with the weights Ln* the insurance company could have 

bought the portfolio of vanilla swaptions Σn Ln* Vn. This portfolio of swaptions would have 

costed6 0.0187 per 1£ capital in 1980, which is only 0.0031 per 1£ capital more expensive than the 

true market value of the GAO put-option. Once this portfolio of swaptions would have been 

attained, no further buying or selling would have been necessary until December 2000, when the 

portfolio would have been unwound to cover the cost of the GAO put-option. 

 

                                                                                                                                                                
5 A more sophisticated approach would be to select a one-factor interest rate model to model the 
possible changes in the term structure more accurately. Such an approach would lead to an even 
lower price for the static hedge. However, for ease of exposition we are using just a parallel shift. 
6 We have calculated the historical volatility of each forward swap-rate. To calculate the price of 
each swaption we used an implied volatility which was 1.25 times higher than the historical 
volatility. 
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Figure 4: Performance of Static Hedge Portfolio vs. GAO put option 

 

In Figure 4 we have plotted the value of the static replicating portfolio against the market value of 

the GAO put option for the period Dec-1980 until Dec-2000. The lines with diamonds and squares 

depict the market value per 1£ capital of the static replicating portfolio and the market value of the 

GAO put-option respectively. We see that the value of the static replicating portfolio tracks the 

market value of the GAO extremely closely during the whole period of 20 years. 

 

5. Summary and Conclusion 

In this paper we have derived a market value for with-profits Guaranteed Annuity Options using 

martingale modelling techniques. Furthermore, we have shown how to construct a static 

replicating portfolio of vanilla swaptions that replicates the with-profits Guaranteed Annuity 

Option. Finally, we have shown in a hypothetical back test using historical UK interest rate data 

from 1980 until 2000 that the static replicating portfolio would have been extremely effective as a 

hedge against the interest rate risk involved in the GAO, and that the static replicating portfolio 

would have been considerably cheaper than up-front reserving and also that the replicating 

portfolio would have provided a much better level of protection than a fixed reserve. 
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Table 1: Nelson-Siegel zero-curves 
 beta0 beta1 beta2 Tau 

12/31/80 0.0000 0.1255 0.2242 20.2

12/31/81 0.0000 0.1412 0.2675 12.0

12/31/82 0.0374 0.0622 0.1396 10.0

12/30/83 0.0649 0.0269 0.1068 5.0

12/31/84 0.0291 0.0669 0.1696 7.0

12/31/85 0.0873 0.0295 0.0275 3.0

12/31/86 0.0566 0.0524 0.0582 10.0

12/31/87 0.0417 0.0452 0.0993 12.7

12/30/88 0.0531 0.0628 0.0243 10.0

12/29/89 0.1059 0.0252 -0.0852 10.0

12/31/90 0.0845 0.0324 0.0095 10.0

12/31/91 0.0878 0.0100 0.0238 3.0

12/31/92 0.1005 -0.0139 -0.0867 1.6

12/31/93 0.0657 -0.0256 0.0252 4.1

12/30/94 0.0806 -0.0123 0.0430 3.0

12/29/95 0.0644 -0.0087 0.0643 10.0

12/31/96 0.0778 -0.0195 0.0157 3.0

12/31/97 0.0616 0.0106 -0.0064 3.0

12/31/98 0.0440 0.0224 -0.0252 1.5

12/31/99 0.0367 0.0201 0.0552 2.3

12/29/00 0.0241 0.0293 0.0233 10.0
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