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several methods, for different series of returns. In the fourth part there are presented the results 
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Introduction 

 

The actuarial work in the insurance companies and in the pension funds, and in extension in the 

government controllers of these entities, is the developing of models to estimate adequate 

mathematical and technical reserves to attend the demands by the sinister produced. These 

models estimate the probability that an event will occur and in other words is the risk covered by 

an insurance policy.  

 

These reserves may be invested in several portfolios but these investments have three principal 

risks, the market value risk, the credit risk, and the operational risk. The Basel Committee on 

Banking Supervision in several documents concluding with the QIS-3 (Quantitative Impact 

Study) Technical Guidance document and the QIS-3 Instructions, both on October 2002, treats 

these risks. 

 

In a brief commentary I try to develop the idea under each type of risk. 

 

1) The Operational risk 

 

The operational risk includes the risk of fraud, trading errors, legal end regulatory risk and so on. 

This risk is one of the risks more injurious, given that affects indirectly to the financial results. 

There isn’t a concrete definition on this risk. It is more useful use the approach given in the 

documents issued by the Committee of Banks of Basel. 

  

2) The Credit risk 

 

Credit Risk is viewed as one component of market risk, but nevertheless focus here in the market 

risk associated with changes in the prices or rates of underlying traded documents over short 

times horizons. The credit risk includes the risk of default of a counterpart on a long-term 

contract. When we think in Credit Risk we think in how much money we will loss next year 
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3) The market risk 

 

The market risk, in the business mentioned in the first part, is the most important risk. Market 

risk meaning the risk of unexpected changes in prices or rates. When we think in Market Risk we 

think in how much money we will loss tomorrow or the next week. 

 

When we compute the portfolio position, we have the value of the investments that covers the 

mathematical and technical reserves, but the question is: how is the value of the investments 

tomorrow, the next week or the next month? 

 

After 1995, the Financial Risk or the Value at Risk has introduced several models to estimate 

these values. The components of these models are the assets returns, the volatility, the time 

horizon to predict the worst loss possible, the probability desired, and the liquidity risk1. 

 

The behavior of assets returns was developed in a previous work “The Garch model and their 

application to the VaR” where I was demonstrated that the returns following these conditions: 

 

1) Don’t have normal probability distribution, due the results of goodness of fit test, using 

the Kolmogorov Smirnov statistic. 

 

2) Are correlated, because the tested for the Q Statistic presented by Ljung Box, determine 

the presence of black noise in the autocorrelation function and in the partial 

autocorrelation function. 

 

3) The hypotheses that nH no 1: σσ = against nH n 11 : σσ ≠ , studied by Young in 1971, 

was applied a several assets and conclude that not accept the null hypothesis.     

 

                                                 
1 The liquidity risk is known as a relationship between the market and the risk produced to liquidate a position. This 
is produced when the position in an assets is greater than the quantity that trades the market  
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In base on these concepts it is very difficult to model an interval of confidence, to calculate de 

worst loss possible, or in other form to estimate the roof of the “x percent” of the minimum 

returns. 

 

The series returns present values of skew ness and kurtosis that permit to reject the presence of 

normal distribution, but introduce what type of distribution covers the presence of extreme 

values, specially the negative returns. 

 

A plain vanilla of value at risk is the following case:  

 

1) The asset has a daily mean return of 0.5% and unconditional daily volatility is 2.5%  

 

2) The time horizon is 10 days and the probability of a maximum loss is 1% 

 

3) Supposed that the daily returns have normal probability distribution 

 

 

 
 

In the case exposed, it is obvious that the maximum loss possible is the extreme of the negative 

values as a result of 0.5 – (2.33 * 2.5). In consequence if we have 1.000.000 ∈, the maximum 

loss for one day is 53.250 ∈, for that reason the portfolio only covers reserves for 946.750 ∈ 
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What happen if for liquidity market reasons or for comply with Basle regulations, we need 

estimate an horizon to predict of 10 days, in consequence if the volatility follows the law of t 0.5 

then the maximum loss is (0.5 * 10) – [2.33 * (2.5 * 10 0.5)] = 13.4203%. Now the maximum loss 

possible in 10 days is 134.203 ∈ and the portfolio value is 865.797 ∈. 

 

Really the company doesn’t have 1.000.000 ∈, probably only will have a 946.750 ∈ tomorrow 

or 865.797 ∈ in the next 10 days. 

 

In view of these results, and taking in account that the reserve for VaR is necessary to compute 

in the balance, we have many problems to solve 

 

1) If we apply the considerations done about the autocorrelation of daily volatility, we need 

to apply a model to predict the same. 

 

2) Considering that the returns aren’t nid and with strong presence of skew-ness and 

kurtosis, we need to think in a heavy tails distribution.  

 

3) By the presence of liquidity risk it is important to determine how much time we need to 

liquidate the position. Basel Committee recommends a 10 days forecast, in consequence 

is appropriate to think how estimate the speed of increase the daily volatility. 

 

I. Modeling the volatility – The Arch family models 

 

The first part to estimate VaR is the volatility forecast. As it has been explain in previous paper 

the volatility is a predictable process. If we regress the series returns on a constant the model is: 

tt cR ε+=  

This constant is de mean of the series and the εt is the error or the difference between the real 

value and the constant or mean. If we analyze these squared differences we are in presence of 

variance series or εt
2. If the autocorrelation and the partial autocorrelation function of the 

variance series present a black noise is a signal that the variance is a predictable process. 
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The presence of Arch 

There are two steps to determine the presence of arch in the model selected that may be a 

Regression Model or an Arima model. Once we select the right model we must go trough the 

following steps 

First step 

The analysis if the squared residuals are correlated with the intervention of the lags between time 

t and t-k, for that we use the ACF (autocorrelation function), and without the intervention of the 

lags between t and t-k, for that we use the PACF (partial autocorrelation function).  

It is useful the Q-Statistic coefficient to make the following test of hypothesis for the 

autocorrelation function: 

H0 : ρ1 =  ρ2 = ρ3 = . . . . . = ρκ  = 0  

H1 : some ρκ ≠ 0 

The statistic to be used is the Q-Statistic presented by Ljung Box represented by:  
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Where k is the quantity of lags included in the analysis 

When the Q-Statistic value is large, the area under the Chi Square distribution that exceeds this 

value is less than 0.05; in consequences we reject the null hypothesis. 

The same test we use for the partial autocorrelation function to test if some of the parameters 

φ11,  φ22, φ33, ...., φκκ are distinct of zero. 

Second step 

If we pass the first step, we can advance with the second step to detect the presence of Arch. 

Engel in his seminal paper (1982) suggest the use of the Lagrange multiplier or the Arch LM 

Test. The methodology involves to fit εt
2 by the regression of these squared residuals founded in 

the right model on a constant and on the k lagged values, that is: 

22
22
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If there are no Arch effects, the estimated values of α1 through αk should be zero. Hence, this 

regression will have little explanatory power so that the coefficient of determination, R2, will be 
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quite low. With a sample of T residuals, under the null hypothesis of no Arch errors, the test 

statistic TR2 converges to a 2
kχ   

If TR2 is sufficiently large, we reject the null hypothesis. It is to say that the coefficients α1 

through αk are jointly equal to zero and is equivalent to rejecting the null hypothesis of no Arch 

errors, or is to say there are Arch effects. In the same sense if TR2 is sufficiently low, it is 

possible to conclude that there are not Arch effects. 

A simple Arch model to forecast the conditional variance 

After we detect the presence of Arch effects in the model proposed (regress the series on a 

constant) we could forecast the volatility for the next period using the conditional variance as 

follows: 
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This is an Arch (k) model and forecasts the variance for to morrow conditioned to its past 

realizations. 

Bollerslev presents the Garch model adding the concept that the volatility for tomorrow depends 

not only on the past realizations but it depends too on the errors of the volatility predicted. In 

consequence the model is the following: 
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Where ε2
t is the impact realization or the difference between the variance forecasted by the 

model and the real variance produced, σ2
t is the variance forecasted by the model and vt is a 

white noise process with mean zero and variance equals to 1 

The market uses with successful in the middle of 90’ the Garch (1,1) that is the traders do to take 

decisions on the behavior of different assets. The question: What will happen tomorrow? Is 

answered by the traders with this concept “a little of the error of my prediction of today plus a 

little of the prediction for today” and this is a Garch (1,1) model. 

Everything seems to indicate until here that we have arrived to the most precise values for this 

estimate, and the obtained results help to predict the variance or the volatility for the period t+1. 

Analyzing the coefficients of the equation of the estimate of the variance α and β can we 
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calculate the non-conditional variance or the traditional variance considering that 22
1

2 σσσ == −tt . 

Solving for σ we obtain 
βα

ω
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=
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2  

 
So that the pattern is stationary the sum of the parameters α and β should it be smaller to the 

unit. This sum of α + β  knows as persistence of the model and on this base this Garch (1,1) 

model can predict the variance for an horizon of τ days. We don’t forget that when we estimate 

the VaR for an asset, the presence of liquidity risk obliged to forecast the variance not only for 

one day, we need to forecast for τ days. 

If the volatilities of financial series of the capital market are analyzed we can observe that the 

persistence of the model Garch (1,1) used it comes closer to the unit, but is what is noticed that 

the values of α and β are different to each other.  

Two alternatives are presented for the representation of the equation of the variance of the 

model:  

1) The equation of the conditioned variance estimated by a Garch (1,1) we can write it starting 

from considering that in the following way:  
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Then the square error of an heteroscedasticity process seems an ARMA (1,1). The 

autoregressive root that governs the persistence of the shocks of volatility is the sum of  

(α + β)  

2) It is possible in recursive form to substitute the variance of the previous periods in the right 

part of the equation and to express the variance like the sum of a pondered average from all 

the residuals to the last square.  
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We can appreciate that in the Garch (1,1) model the variance decays in exponential form 

pondering the last residuals, giving him most importance to the residuals nearer and less 

importance to the residuals more distant. If ∞→k  (k is the lagged value) then (1 - β k) = 1 

because β k = 0  also affecting to the last one adding of the right. In consequence the variance for 

the period t in recursive form is in the following way:  

 

As the expressed, with a model Garch, it is assumed that the variance of the returns can be a 

predictable process. In a long term prediction horizon, using a Garch (1,1), the variance can be 

calculated for one period to τ periods in the following way, taking as τ the quantity of periods 

that there are between the horizon to be predict and t+1  
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If it is calculated with a model Garch (1,1) the prediction for period number 2 using the 
conditional variance calculated for the first period, considering one has:  
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Substituting τ period for the future one has the following formula that ensures the variance for 
the day τ  if the series have a behavior of a Garch (1,1) 
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In the previous formula if ω trends to zero the decay factor is (α+β) k for that reason an impact in 

the predicted variance decays following an exponential function. The shock disappears in a some 

days and trends to the non-conditional variance. The quantity of days is a function of the sum of 

(α+β) or the persistence of the model. 

In consequence the total sum of the variance for the τ periods is the following  
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The extrapolation of the next day variance to a longer horizon is a complicated function of the 

variance process and the initial conditions. Thus the consideration of the volatility follows the 

law of t 0.5 fails due to the fact that the returns are not identically distributed. 

Some results applying these equations are the following: 

If we analyze a Garch (1,1) with the following coefficients: 

2
1

2
1

2 90.003.0001.0 −− ++= ttt σεσ  

If the values of σ2
τ−1 =1.45% and ε2

τ−1 = 2.4025% the variance predicted for time t is 1.3781%. If 

we apply this result and estimate de total variance for a period of 10 days de value is 10,1963% 

very different of the result of the two ways proposed. 

1) Considering the non-conditional variance 
βα

ω
σ

−−
=

1
2 then σ 2 = 0.01428%, then de 

variance for 10 days is 0.01428 * 10 = 0.1428 

2) Considering the variance estimated with a Garch (1,1), the last prediction for one day is 

1.3781%, and applying the rule used in one we have that the variance for 10 days is 

1.3781 * 10 = 13.781% 

Both results are so far from the Garch (1,1) recursive form that estimates a variance for 10 days 

of 10.1963%. 

At this time we don’t arrive to the heaven but we are in the right way. 

If we analyze the behavior of this model we can observe that the sign of the impact is not 

considered because to forecast the variance for tomorrow the model consider the impact of today 

as a squared value, then is not important the behavior of the market in the prediction model, for 

that reason the Garch model is call symmetric model. 
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In Engle and Ng (1993) the news impact curve analyzes how the asymmetry Garch models 

predicts the volatility for tomorrow based on today’s impact. Nelson (1990) develop the idea of 

modify the Garch model due to the simple structure of Garch models. We have found evidence 

of negative correlations between the stocks returns and the changes in return volatility. In other 

words volatility tends to rise in response to “bad news” and tends to fall in response to good 

news”. The analysts have fruitfully applied the Garch methodology in assets pricing models and 

in the volatility forecast. Risk Metrics 2 use a special Garch model when use the decay factor 

λ = 0.94. The behavior of this model is similar to a Garch (1,1) with α = (1−λ), β = λ and ω = 0 

It is easy verify that the coefficients of a Garch (1,1) process are nonnegative due to the 

conditional variance is captured by a constant plus a weighted average (positive weights) of past 

squared residuals. These models elegantly capture the volatility clustering in assets returns, first 

noted by Mandelbroot (1963): “ … large changes tend to be followed by large changes – of 

either sign -  and small changes by small changes  “. The Garch models has important limitations 

for example:  

1) Researchers have found evidence that stocks returns that stock returns are negatively 

correlated with changes in returns volatility. As it was explained before in response to the 

type of excess of returns, positive or negative, the Garch models only are sensitive to the 

magnitude of the excess of returns and not to the sign of this excess of return. 

2) An other limitation of Garch models results from the non negative constraints on 

ω, α, and β which are imposed to ensure that σ2
t remains positive, and if εt increases the 

values of σ2
t+m for m ≥ 1 

3) This third drawback in the Garch modeling is the concept of persistence of shocks to 

conditional variance. The problem is to estimate how long shocks persists on conditional 

variance. In Garch (1,1) models, shocks may persist in one norm and die out in another, 

so the conditional moments, may explode when the process itself is strictly stationary and 

ergodic. 

To solve the restrictions of Garch models Nelson and Glosten Jaganathan and Runkle presents 

the asymmetric Garch models named Exponential arch (Egarch) and Threshold  arch (Tarch) 

respectively. 

                                                 
2 Risk Metrics is a trade mark of J. P. Morgan 
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The asymmetric models 

The Exponential Arch (EGARCH) 

Nelson (1990) was proposed an Exponential Garch model known as EGARCH, with the purpose 

to solve the restriction that presents the Garch (1,1) model, discussed previously. 

The presentation for the conditional variance for an Egarch (1,1) is: 
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In the left hand side is the ln of of the conditional variance. This implies that the leverage effect 

is exponential, rather than quadratic, and that forecasts of the conditional variance are guaranteed 

to be nonnegative. The presence of leverage effects is due to that γ < 0. The impact is 

asymmetric if γ ≠ 0 

If we generalize the model we obtain: 
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In Exponential Garch ln (σ2
t) is a linear process and its stationarity3 and ergodicity4 are easily 

checked. If the shocks to {ln(σ2
t)} die out quickly, and remove the time varying component α 

then {ln(σ2
t)} is strictly stationarity and ergodic 

The Threshold Arch (TARCH) 

Glosten, Jaganathan and Runkle  (1993) presents the Tarch model and independently Zakoian 

presents the same model (1990) to forecast the variance. The conditional variance is specified as 

follows: 
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y 
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y, and γs are constants 
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second moments when: 

 ( )( ) jjt

T

ji
t yyjT γµµ →−−− −

+=
∑

1

)]/(1[  



 13

In this model, good news are represented by ετ > 0 , and bas news by ετ < 0 , and have 

differential effects on the conditional variance equation. The good news only has an impact of α 

and bad news has impact in the sum of α + γ .The leverage effect of bad news exists only when 

γ ≠ 0 in this case the news impact is asymmetric. 

For a higher order of Tarch model the specification is the following: 
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As synthesis of it was exposed we are in the presence of symmetric Garch (p,q) model and 

asymmetric models as Egarch (p,q) and Tarch (p,q) models. Engle and Ng (1993) presents a 

resume of several models that they try to explain the volatility structure. 

Using the convenient software we can select the appropriate model to analyze the behavior of the 

volatility. The first step after accepts the presence of heteroscedasticity is test the significance of 

the type of model select between the asymmetric and symmetric Garch model. 

The asymmetry test 

To check if the model is correctly specified, we have two forms to detect the right model. One 

form is comparing the coefficients of the model. The log likelihood, the Akaike info criteria and 

the Schwarz Criteria aids to take a good model selection. The value of the log likelihood 

estimates when the model converges, and then is calculated by the following equation: 

( )[ ]T
T

/'log)2log(1
2

εεπ ++−=l  

Where ε’ε is the sum of the squared residuals of the model.  

The AIC and SC ensures that the model complies with the condition established for an ARIMA 

model that balances the goodness of fit and parsimonious specification. The formulas to calculate 

these coefficients are the following: 

Akaike info criterion (AIC)    nkn /2/2 +− l  

Schwarz criterion (SC) nnkn /)]log([/2 +− l  

Where k is the number of estimated parameters, n is the number of observations, and l is the 

value of the lo g likelihood function using the k estimated parameters 

 



 14

The other form is making an asymmetry test, where we must do a cross correlation between the 

squared residuals of the Garch model and the standardized residuals of the same. The result of 

this cross correlation will be a white noise if the model is symmetric or in other words the Garch 

model is correctly specified, and a black noise is the model is asymmetric. 

Now we have identified a model to forecast the volatility and we know a part of the problem, 

because the interval of confidence has two parts the volatility and the coefficient of the 

probability distribution that covers the limits of the interval of confidence due to a certain 

probability established previously. 

 

II. The probability distribution of the returns 

 

In previous papers it was demonstrated that the returns not follows a normal distribution, and we 

reject the test of goodness of fit in the same sense. The behaviors of these time series have 

probability distribution with heavy tails. These distributions are treated in detail in the Annex 1 

of this paper, and complete the forecast of VaR considering jointly the volatility and the 

probability distribution.  

These heavy tails distributions have incidence in the estimation of VaR especially when we 

analyze the extreme limits of the distribution. Remember that VaR treats to estimate the possible 

maximum loss at certain level of confidence established previously. Normally this maximum 

probability is determined at 99% of confidence, and then we are analyzing the lower percentile 

of the distribution.  

If we are in presence of a Garch model to predict de volatility, this is a symmetric model and in 

consequence the model does not detect the incidence of bad news. For example estimate the risk 

for the 5 years treasury bond.   

Using the appropriate software, the models to forecast the volatility are shown in table I, in 

consequence of this results, we accept that the best model is an Egarch (1,1) model due to the 

values of the log likelihood and the Akaike Info Criterion and Schwarz Criterion.  
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If we apply the results and estimate the VaR for the first percentile, using the normal distribution 

and make a back testing using the last 755 observations, ended on 31st January 2003, we obtain 

the results exhibit on table II, for the different Arch models 

Table I 

Coefficient Garch(1,1) Tarch (1.1) Egarch(1,1) 

Mean 
-0.100235 
(0.041346) 

-0.145484 
(0.043854) 

-0.181462 
(0.045529) 

ωω   0.019106 
(0.009783) 

0.009516 
(0.007824) 

-0.002929 
(0.010497) 

αα   0.129244 
(0.017804) 

0.030235 
(0.028565) 

0.013904 
(0.011090) 

ββ   0.879834 
(0.016776) 

0.909609 
(0.015203) 

0.998601 
(0.001713) 

γγ   - 
 

0.150783 
(0.031201) 

-0.110551 
(0.008830) 

Log Likelihood -1359.123 -1351.342 -1343.758 
AIC 3.610922 3.592959 3.572869 
SC 3.635434 3.623599 3.603509 

             
                       (The numbers into the brackets are the standard deviation of the coefficients) 
 

Table II 

Number of returns that exceed the VaR Forecasted  
Garch (1,1) Tarch (1,1) Egarch (1,1) 

6 6 4 
 

Backtesting Garch(1,1) and Egarch(1,1) for  5 years Treasury 
Bond

 



 16

As a result of the back testing exhibit in the graph, we can observe the behavior of a Garch (1,1) 

with bold line and the behavior of the Egarch (1,1) with fine line. Both models comply with the 

objective, using the normal distribution, that there are 1% of observations at left of the maximum 

loss forecasted, 6 over 755 observations for Garch (1,1) and 4 over the same number of 

observations for Egarch (1,1). 

The model selection accepts that the Egarch (1,1) model because it improves lightly the log 

likelihood and the Akaike and Schwarz Criterion.  

To estimate the amount of VaR or the maximum loss possible, the normal distribution of 

probabilities jointly with the volatility forecasted by Garch family models produce good results 

because the number of observations over the limit in the low limit complies with de amount 

estimated. 

The probability distributions of returns don’t follow the normal distribution as I had 

demonstrated in a previous work. The distributions found for some time series are shown in table 

III 

Table III 

Test goodness of fit 
K S A D 

Time series Period 
analyzed 

Number 
of obs. 

First 
Distribution 

Fitted 

Second  
Distribution 

Fitted 1st 2nd 1st 2nd 

5 yr. T 
bond 

02/01/00 
30/01/03 755 Logistic Extreme 

value Dist. 0.059 0.140 2.401 32.38 

Bayer 06/06/02 
18/03/02 

 
201 Logistic Extreme 

value Distr. 0.046 0.104 0.409 6.142 

Dow Jones 
04/01/99 
18/03/03 

 
1056 Logistic Weibull 0.013 0.067 0.171 10.87 

Bovespa5 
04/01/99 
18/03/03 

 
1036 

Logistic Weibull 0.019 0.078 0.492 10.56 

Merval 
03/01/01 
18/03/03 

 
773 Logistic Extreme 

value Distr. 0.049 0.127 3.079 30.55 

IDP6 
25/01/01 
30/01/03 445 Logistic Weibull 0.115 0.176 8.257 23.13 

 

The test of goodness of fit used are the Kolmogorov Smirnov test (KS) and the Anderson Darling 

(AD). Both test of goodness of fit, have strong results specially when it is necessary to test 

                                                 
5 See next page 
6 See next page 
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asymmetric and heavy tails distributions of probabilities. The Kolmogorov Smirnov test is a test 

that is independent of any gaussian distribution, and have the benefit that not need a great 

number of observations. The Anderson Darling test is a refinement of KS test, specially studied 

for heavy tails distributions. Once we fit the appropriate distribution based on the sample or the 

time series available we can simulate the values that will take the series using a sampling method 

Monte Carlo or Latin Hypercube. After 20.000 trials the value corresponding to the first 

percentile is presented in the Table IV and these results are compared with the values obtained 

by de interval of confidence using Arch models and normal probability distribution. 

Table IV 

Values for 1st percentile 
using Arch an normal 

distribution Time Series 
Value at 1% 1st 

distribution 
fitted 

Value at 1% 
2nd distribution 

fitted 
Arch model 

Maximum Minimum 

5 yr. T bond - 1.02 -5.78 Egarch (1,1) -1.534 -9.856 
Bayer -10.03 -21.78 Egarch (1,1) - 3.915 -21.283 

Dow Jones - 3.35 - 3.90 Egarch (1,1) - 1.449 - 6.512 
Bovespa 7 - 5.46 - 6.65 Tarch (1,1) - 3.649 -15.103 
Merval - 6.50 -14.95 Egarch (1,1) - 2.772 -14.462 
IDP8 - 2.34 - 5.86 Egarch(1,1) -3.697 - 7.865 

 

The results of these arch models presented in table IV are detailed in the following part, but 

considering that the number of excess of values founded under the lower limit not exceed the 1% 

of the total observations, the combination of Arch model and normal distribution provides a good 

fit for the VaR forecast.    

 

III. The forecast of Market VaR 

 

As a result of the previous considerations about the volatility forecast and the distribution fitted 

to compute de Market VaR, the conclusion arrived are the following: 

1) The volatility it is presented in clusters and have an strong incidence of heteroscedasticity 

in the model used to forecast the volatility for the period t+1 

                                                 
7  Bovespa is the Brazilian index of the stock exchange of San Pablo 
8  IDP is the index of the bonds that represent the public debt of Colombian Republic 
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2) The prices of stocks and the corresponding index market are agitated by bad news 

product of, terrorism, war, economic depression, adulterated balance sheet, etc, and in 

consequence the asymmetric models are the selected Arch models. 

The use and asymmetric model, that weights the negative results, produce leverage in the 

volatility forecast, and directly the impact of negative returns open the parametric space and 

produces a great value of volatility.  

In the following graphs, we can observe the volatility through the time pass. 
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As an example we can observe in the Merval Index, the index of the Stock Exchange of Buenos 

Aires Argentina, the great volatility in the middle of the graph is a result of the change of 

government at the end of 2001 and principle of 2002. In the other graph, the Dow Jones index 
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has been agitated by September eleven, the crises of bankruptcy of Enron and MCI, the war 

notices in the final. 

Then the asymmetric Garch model and the normal distribution of probabilities produce a best 

approach to forecast how much many we will lose tomorrow, and the distribution fitted for the 

returns only forecast the VaR for a long range of time. Remember that when we think in Market 

risk, we think in the result for tomorrow, not for the next year. 

 

IV. Some results 

The results, to estimate de volatility for the next period, of the time series analyzed are the 

following: 

Table V 

Series 
Coeff.    

5 years T 
bond 

Bayer Dow Jones Bovespa Merval IDP 

Model Egarch 
(1,1) 

Egarch 
(1,1) 

Egarch 
(1,1) 

Tarch  
(1,1) 

Egarch 
(1,1) 

Egarch 
 (1,1) 

Mean 
return 

 -0.233684 
(0.194770) 

-0.036214 
(0.036492) 

0.003047 
(0.063416) 

-0.051153 
(0.081690) 

0.096725 
(0.053694) 

ωω   0.174492 
(0.194770) 

-0.036214 
(0.017712) 

0.397125 
(0.089869) 

-0.121925 
(0.016902) 

0.359076 
(0.031723) 

αα   -0.142854 
(0.028628) 

0.060276 
(0.022571) 

-0.001285 
(0.014372) 

0.198057 
(0.025022) 

0.188690 
(0.028072) 

ββ    0.974717 
(0.006145) 

0.974012 
(0.006254) 

0.833621 
(0.034005) 

0.983886 
(0.006189) 

0.578215 
(0.074028) 

γγ   -0.185586 
(0.035579) 

-0.129700 
(0.014525) 

0.163282 
(0.021862) 

-0.064811 
(0.014907) 

-0.181756 
(0.181756) 

Outliers 9  1 10 10 13 3 
Outliers / 

observations 
 0.5% 1 % 1% 1.1% 0.9% 

 

The importances of these results are that the percentage of outliers over the number of 

observations not exceeds the 1% equivalent to the probability of the first percentile. Only in the 

case of the Merval index, it presents in the back test that the total of outliers are great the 1%. In 

this case is reasonably because at and of 2001 it was produced the end of the convertibility.  

 

                                                 
9  The outliers are the negative returns that exceeds the VaR forecasted using de normal probability distribution for 
the first percentile and the conditioned volatility estimated by the Garch model 
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V. Conclusions 

 

The conclusions arrived are the following: 

1) To estimate the volatility is necessary to develop a model that consider the movements of 

the volatility in the time series, for that reason, the traditional volatility don’t follows the 

market variations, and the forecast of the market VaR have in certain moment excess of 

reserve and in other moments a lack of reserve, as we can observe in table IV and the 

graphs included in part IV when we do the estimation using this traditional volatility with 

a heavy tail distribution.  

2) The asymmetric Garch models, like Tarch an Egarch model, not only fulfill with the 

movements of the volatility, as we can observe with the back testing presented, also it is 

not necessary to use the heavy tails distributions, because the negative impact or the 

negative returns are included by the model form. 

3) The time series history, complies with the requirements of Basel Committee, to make the 

volatility forecast. It is easy to teach this models to the traders but not for the actuaries. 

The traders and the investors only the recent past import them. 

4) The models as we can observe are dynamic, and is very important the revision of these 

models periodically 

The final objective is present a exact reserve which covers the maximum loss possible, and this 

reserves may have a value that corresponds with the reality. When we introduce the VaR 

restrictions for the traders and for the managers, the forecast of the reserve may be a credible 

value at effect that traders and managers use this information for decision-making. Also the 

market VaR jointly with the credit risk and operational risk serves to calibrate the total risk of a 

performance of the company.  
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Annex 1 

The heavy Tails Distributions 

Exponential distribution 
 
This distribution is used in the study of the reliability theory and the PDF y CDF as follows 

respectively: 
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The calculus of the parameter value, will be estimate by the following estimator: 
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Weibull Distribution 

The Sweden Waloodi Weibull presents this distribution in 1939. The financial econometrics pay 

attention to this distributions in the last part of the last century. The PDF y CDF are the 

following in the same order: 
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Where a and b are the 25 y 75 percentiles respectively 

 

The Pareto distribution 

The Pareto distribution is know as the Pareto’s law who determine the income population 

distribution and the PDF y CDF are the following: 
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To estimate the parameters we use the following expressions: 
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The logistic distribution 

This distribution is a symmetric distribution with PDF and CDF estimate as follows: 
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The extreme value distribution EVD 

The question is “How much capital I will lose in a particular event” or “Which is the probability 

that it will produce an other September eleven”  

The answer is in the Extreme Value Distribution. The actuaries and financial specialists are using 

this distribution used by Embretchs in his famous work. 

Let it be, X1, X2, ..... Xn, random variables, observed in a certain period, like returns. This is a 

continuous random variable in the variable domain and discrete in the time domain. If the 

extremes are defined like the maximum and the minimum in the order of the n observations, we 

can define X1,n as the maximum value observed during the period and  X2,n as then second value 

of the series. In consequence the maximum value of the random variable will be Y = X1,n and will 



 25

be standardized by the parameters of location (mode), scale and shape, selected to show an 

appropriate distribution of the standardized extremes.  

Frechet, Gumbel and Weibull define three important extreme distributions. A really 

representation of those distributions is done by the Extreme Value Distribution o Generalized 

Extreme Value. 

The three distribution parameters, Fµ,ε,ψ , arise as a maximum normal limit distribution id 

random variables  

For the random variable Y = X1,n ,we have: 
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Where µ is the mode and ψ is the scale the: 
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Where ε is shape parameter. Due to the values that take ε  the EVD tends this behavior 

ε = 0 Gumbel Distribution  

ε ≥ 0 Frechet Distribution  

ε ≤ 0 Weibull Distribution  

The purpose is to found a practice form to estimate the parameters values for use EVD. The most 

important parameter is ε that describes the weight of the tails distribution. If the shape parameter 

ε is significant then the EVD is significant too. If the shape parameter is not significant then a 

log normal distribution or a logistic distribution is a good distribution to descibe the behavior of 

the random variable. 

One of the form to approximate the calculus of this three parameters, µ, ψ, ε, is the PWM or 

probability weighted moments, that follows this steps. 
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Where U is a plotting position that follows a free distribution and k takes the probability as:  

pk,n = [(n-k)+0.5]/n. 
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The best approach to estimate the parameters µ, ψ, and ε, is presented by Hosking in 1985 

following this formula: 
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The value of ε arise from the iterative estimations suggested too by Hosking 
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The values of the scale and location, ψ  and µ depends on the values that take se shape value ε 

Once we obtain the parameter values it can estimate de maximum values or the minimum values  

of the series. To estimate the quantiles based on a certain level of confidence it is possible to 

estimate the value of the random variable as follows   
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The Normal extended distribution of Kupiec 

This distribution is an application of heavy tails due to a normal distribution. If the problem is to 

cover the probability of extreme events then is important to extend the parametric space that 

cover the extreme values of the random variable. Kupiec demonstrate that on base a normal 

distribution that it is possible to extend the tails of the distribution in form that contemplate the 

probability of a catastrophe. 

The value that takes the abscissa named z of a standardized normal distribution extended by 

Kupiec is:  
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Where  f(x) is the ordered of a normal distribution  
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If we apply the Kupiec considerations for the first percentile, the value of z, is: 

7332.3
02665.0

)01.01(01.0
2

=−=Kupiecz  

 

In consequence for the same probability the parameter space of the random variable is 

3.7332σ  against 2.33σ  of a normal distribution. 
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Notas Varias 

  
  

 


