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Summary 

This paper is related to the possible applications of a stochastic model of 
ALM (J.JANSSEN(1992)) to real life situations. 

To begin with, we recall the model and we give supplementary theoretical 
results. Then, we give the statistical estimators of the five basic parameters 
of the model and we treat a numerical example with data coming from the 
balance sheet of a big belgian insurance company. We also propose a test of 
the validity of the model. 

Finally, we show how to really use the model for the asset liability 
management of an insurance company in relation with the MARKOWITZ 
portfolio theory and with a new concept of duration. 

a77 



Ophationnalitb d’un modhle pour 
la gestion actif-passif 

Pierre ARS 
Universite Catholique de Louvain 

(Institut de Statistique) 
Voie Roman Pays, 34 

1348 Louvain-La-Neuve (Belgique) 
Telephone : 32-l O-47 30 50 
TBlecopie : 32-l o-47-30-32 

Jacques JANSSEN 
Universite Libre de Bruxelles 

(Ecole de Commerce SOLVAY (CADEPS) et Dpt de Mathematiques) 
Av. F. Roosevelt, 50, B.P 194/7, 

B-l 050 Bruxelles (Belgique) 
Telephone : 32-2-650 27 85 
Telecopie : 32-2-650 27 85 

R&urn6 

Le present article envisage les applications possibles d’un modele 

stochastique d’ALM (J.JANSSEN (1992) 8 des situations reelles. 

Nous commencons par rappeler le modele et par donner des rc%ultats 

theoriques supplementaires. Puis, nous donnons les estimateurs statistiques 

des cinq parametres fondamentaux du modele et nous traitons un exemple 

numerique avec des donnees provenant du bilan d’une grande compagnie 

d’assurances belge. Nous proposons Bgalement un test de la validite du 

modele. 

Enfin, nous montrons comment utiliser le modele pour la gestion actif-passif 

d’une compagnie d/assurances en relation avec la theorie de portefeuille de 

Markowitz et avec un nouveau concept de la duration. 
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1. Introduction 

This paper is related to the possible applications of a stochastic model of 
ALM (J.JANSSEN(1992)) to real life situations. 

To begin with, we recall the model and we give supplementary theoretical 
results. Then, we give the statistical estimators of the five basic parameters 
of the model and we treat a numerical example with data coming from the 
balance sheet of a big belgian insurance company. We also propose a test of 
the validity of the model. 

Finally, we show how to really use the model for the asset liability 
management of an insurance company in relation with the MARKOWITZ 

portfolio theory and with a new concept of duration. 

2. JANSSEN’s Model 

2.1. Presentation of the model 

In this section, we will present the model of JANSSEN (1992). This model 
supposes that the assets A(t) and the liabilities B(t) are governed by the 
following stochastic differential equations : 

where 

dA(t)=p* A(t)dt+o, A(t)dZ,(t)+B, A(t) dW(t) 

dB(t) =pB B(t) dt+o, B(t) dZ,(t)+B, B(t) dW(t) (1) 

(i) W = (W(t),t 2 0) is a standard Brownian motion process (or Wiener 
process), 

(ii) Z = (Z(t),t 2 0) ,where Z(t) = (Z*(t), Z,(t)), is a bidimensional 
Brownian motion process independent of W with : 

E(dZ(t)dZ(t)T) = Q dt 
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(iii) A(0) = Ao and B(0) = Bo , Ao 2 Bo, 

These processes are as usual, defined on a complete probability space 

(Q, F, 11’ ) with as filtration (F,), the one defined as 

F, = O(z,(s>, z,(s), w(s), s 5 t )’ 

Let us remind that a continuous process (Z(t), t 2 0) is an unidimensional 
Wiener process if it satisfies : 

(i> Z(0) = 0 with probability one, 
(ii) (Z(t), t 2 0) has stationnary independent increments, 
(iii) Z(t) - Z(s) is normally distributed for every t 2 s (with 

mean zero and variance (t-s)). 

This process is mean-square continuous on (0,m) but nowhere mean-square 
differentiable (see JAZWINSKI (1970 p. 73)). 

We will need the well-known Ito’s lemma (see JAZWINSKI (1970, p. 112)) : 

Lemma (IT01 : Let X(t) be the solution of the following stochastic 
vector differential equation : 

dX = f(X,t) dt + G(X, t) dZ 

where X and f are n-vectors with regular assumptions on f and G to 
assure the existence of solution, 

G is an n x m matrix, 

(Z(t), t 2 0) is an m-vector Brownian motion process with 

E(dZ(t)dZ(t)T} = Q(t) dt 

where Q(t) is for every t an m x m matrix. 
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Let h(X(t), t) be a real fonction continuously differentiable in t with a 
continuous second mixed partial derivatives with respect to the 
elements of X. Then h satisfies the following differential equation: 

dh = h, dt + hi dX + i tr[GQGTh,,] dt (2) 

where ht is the partial derivative of h with respect to t, 

hx is the vector of the partial derivatives of h with respect to 

the elements of X, 

hxx is the hessian matrix, 

GT is the transposed matrix of G and “tr” denotes the trace. 

So, by the use of It&s lemma, we can determine the stochastic evolution of a 
sufficiently regular fonction of the assets A and of the liabilities B. 

Let us consider the process a = (a(t), t 2 0) defined as follows : 

a(t) = WA(t) / B(t)) 
and let a,, = In (A, /B,). 

(3) 

The process a has the same interpretation as the classical surplus in ruin 
theory (see GERBER (1979)). 

Theorem 1 : The stochastic process a is solution of the stochastic differential 
equation : 

where 
da=udt+odw (4) 

p =p* -&+: -o’,+p: -4; )r (5) 

62=6~+02B+P~+P2s-2((PbACTB+PAPe). (5’) 

w = (W(t),t 2 0) d enotes a standard Brownian motion . 
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Proof: The proof is obviously based on Ito’s formula. 

We consider the tridimensional Brownian motion process (ZA, ZB, 

W) and we define h(A, B, t) as follows : 

h(A, B, t) = In (A / B) 

so, we have : 

h, =o, 
hT, =0&-j&o), 

h,, = 

G = =A A 

0 

Then the expression (2) becomes : 

dh= (PA -Ir,)-+(a?, -o;+P: -p:)] dt 

+ (OA dZA - 6, dz, + (0, - 0,) dw). 

Since Z, and Z, are the two elements of a bidimensional Brownian 
motion process, we can find U, independent of Z, so that we have : 

where U, = Z, . 
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Then it follows from (6) that : 

dh= (0, dz, - 0, dz, + (P, - P,) dw), 

=(o,@-i+U,+ (w-g)dUe+(P,-P,) dW) 
The three processes U,,U, and W are independent. Therefore we can 

write dh as : o dm(t) 

where b2=62,+~Zg+P2A+P28-2(~~*oB+PAPB) 

TV= (w(t),t 2 0) re p resents a standard Brownian motion . 

This completes the proof. 

From theorem 1, it easily follows that the process a satisfies the following 
relation : 

a(t) = a, + u t + o m(t). (7) 

Corollary : The assets A(t) and liabilities B(t) follow a lognormal law. 
Accurately : 

(i) A(t) =A, e ( 
plr +~)t + O’A Z<,(1) 

(ii) B(t) = B, e 
(,, +qt + dg z’,(t) (8) 

where : 

Z’, = (Z’, (t), t 2 0) and Z’, = (Z’, (t), t 2 0) are two standard 

Brownian motions, 

0’: = (0: + pi) and o’i = (0’8 + pi). 

Proof : the proof is obvious from theorem 1. 
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Formulas (7) and (8) allow one to construct confidence intervals for the 
variables a(t), A(t) and B(t) (see JANSSEN(1992)). 

In practice, the lognormality of the asset value A(t) is commonly admitted 
(see Merton(1990)). For the liability at time t, B(t), we follow CUMMINS 
(1988 and 1990) who presents the lognormality as rational. 

2.2. Probabilify of ruin 

The ruin occurs if for some t 2 0 the asset value A(t) becomes lower than the 
liability value B(t) or equivalently if a(t) becomes negative (see JANSSEN 
(1992)). Therefore, we define the time of ruin T as : 

T=inf{t:t>O et a(t)s 

=inf(t:t>O et ut+ow(t)<-aa,}. 

So T is the hitting time for the process a(t) by the region 

Let X(t) = u t + o W(t) [X(O) = 0] . Then T is the hitting time for the process X 
= (X(t), tT0) by the region (--, -a,]. So we suppose that there is an 

absorbing barrier at -a. 

For the process X, we define now the probability transition density p(x,, x; t) 

as follows : 

p(x,,x; t) dx = P[xIX(t)lx+dx I X(0)=x,] (9) 

We know that p(xo, x; t) satisfies the two following equations : (see COX and 

MILLER (1965, p 208)) : 

$J2 Pxx-CLP, = Pt [forward equation], 

+c1PX. = pt [backward equation]. 

(104 

(lob) 
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Let g(t I xo, a,,) be the “probability density” of T. 

Remark : The ruin is not necessarily certain. In this case, g(t I x,, a,) is not 

really a density because his integral on (0, -) is not equal to 1. 
Nevertheless, his interpretation is given by the following relation : 

g(tIx, a,)dt = P[tlTIt+dt]. (11) 

Then it is easy to verify that : 

ls(t’% a, ) = -&j;. p(x,, y; t) dy . (12) 

We will need the Laplace Transform g*(s I x0, a,) of the fonction g(t Ix,, a,) 

defined by : 

g+(sk, a~> = ale-“’ g(tlx,, a,) dt. (13) 

For purpose of simplification we will adopt the following notation (see COX 
and MILLER (1965, chapter five)) : 

tixo) = gV 1 x0, ao). (14) 

By performing the Laplace Transform on (lob) we obtain : 

+ cr2 y”+py’ = sy (15) 

where prime denotes differentiation (with respect to x0). The equation (15) 

is a linear differential equation of which solution can be written as : 

y(x,) = c ee4w + D ex.%w 

where w = 
-l.+2+2so2 

CT2 I (16) 

e,(s) = 
-u++2+2soz 

d I 
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C and D are constants to be determined from : 

(i) ?(-a,) = g *(d-a,, a,) = J iernst g(tl-a,, a,,) dt = 1, 07) 

(ii) y(x,) I Jig(tlx,, a,)dt I I. (18) 

The first relation results from a well-known property on the Wiener process 
(see KARLIN and TAYLOR (1975, p.348)) and the second is evident. 

Finally the solution of (15) is : 
‘y(xo) = g”(s I x0, a,) = e(xo+ao)e2(s) (19) 

In our concern, the value of the process X(t) in zero is always zero and 
consequently : 

y(O) = g*(s IO, a,) = eao ‘zcs) (20) 

If u is negative, the ruin is certain ( g*(s IO, aO) = 1 ) and by performing the 
Inverse Laplace Transform on g*(s IO, a,) (using the formulas related in 
table 1) we obtain g(t IO, a,) : 

-(a0 +s t)* 

g(t IO, a,) = 
i&T= 

i 1. 2d t e 3 

Table I : 

(21) 

f(t) F(s) = j:eest f(t) dt 

ecbt) f(t) F(s-b) 
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We see that the random variable T is inverse gaussian. So we can find the 
mean and the variance of T (see JANSSEN (1992)): 

E(T) = s, 
w 

Var(T) = $. 
(22) 

On the other hand if l.t is positive, the ruin is not certain and we get : 

2P% -- 
g*(OIO, a,)= P[T<=]=e o* . 

SO, the probability of ultimate survival is : 
2va, -- 

l-e a* . 

(23) 

(24) 

The expression (23) has a very interessant interpretation. If we consider that 
the process a(t) gives a relevant mesure of the company surplus, we see that 

the factor (2~/02) plays the same role as the adjustment coefficient in 
classical ruin theory (see DUFRESNE (1989) or GERBER (1979)). 
Furthermore, this factor satisfies one of the definitions of the adjustment 
coefficient (see DUFRESNE (1989,~. 140)) : “the adjustment coefficient is the 
value R so that {exp (-R a(t)) ; t2 0) is a martingale”. This is shown in the 
following theorem. 

Theorem 2 : if (Pt, t 20) denotes the stochastic process defined by : 

Pt = exp (-2@r2 a(t)). 

Then (Pt, t 20) is a martingale. 

Proof : 
It is sufficient to prove that for every t 2 s, we have : 

E[P,IP,]=P,. (25) 

We know that a(t) satisfies the following relation : 

a(t)=a(s)+p(t-s)+o(W(t)-w(s)). 
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Conditionally to the knowledge of I?,, a(t) is normally distributed with 

mean ( a(s) + l.t (t-s)) and variance ( 02 (t-s)). His moment generating 
function, denoted by M(x), is : 

M(x) = Et exp 6 W> =exp [ ( a(s) + I.L (t-s)) x +(1/z) ( ~9 (t-s)) ~2 I. 

Setting x = -(2cL/o2) gives then (25). 

2.3. Parameters estimation 

For the remainder of this paper, we will suppose for simplification that the 
coefficients PA and &, are equal to zero. Then the system (1) becomes : 

dA=p*Adtfo* Adz,, 

dB =l+,B dt+o, B dZ,. (26) 

So we have to estimate five parameters : pLA, pLg, oA, oB, cp. Let us recall 

that we suppose these parameters to be constant. Let us note that ideally 
they should be considered as functions of t, A(t) and B(t). But this supposes 
developments that are beyond the scope of this article. 

Let us now investigate the problem of their estimation. The equations (26) 
are similar to those considered by Black-Scholes. This allows us to use the 
classical estimators in option theory (see ROURE and BUTERY(1989, chapter 
4) and ROURE (1992, p. 472)). 

It follows from equations (8) that : 

(i) d[ln(A(t))] = dt + 6, dZ,(t), 

(ii) d[ln(B(t))] = (Pi - i oi) dt + og dZ,(t), 

where Z, and Z, are two standard Brownian motions. 
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If we dispose of daily estimations of the assets A(t) and liabilities B(t), we can 
estimate (p*- (crJ2 /2), oA, (pB- (08)2 /2) and os by the known estimators (in 

option theory ). So we can consider the last thirty observations (or 
estimations) of the assets or liabilities (or more exactly of their logarithms) : 

ln@W WV) ,............, ln(A(30)), 

WW)), WW) ,............, ln(B(30)). 

Then we define X(i) and Y(i), i = 1,...,29 as 

X(i) = ln(A(i+l))-ln(A(i)), 

Y(i) = ln(B(i+l))-ln(B(i)). 

Let us remark that { (X(i), Y(i)), i = 1,...,29 } represents a random sample from 
a bivariate normal population. Therefore we know (see LINDGREN (1976)) 
that the joint maximum likekihood estimator of the parameters is given by 
the minimal sufficient statistic : 

-- 
(X, Y, SZx, S2y, r) 

Then we can estimate : 

(P* - (Q /a by ?X(i)/29 (=X ), 
i=l 

(Q2 by S$W - x)‘/28 (= Si), (28) 

(Q2 by $W) - P)*/zs (= SC). 
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Let us note that : 

57 = In(A(30)/A(l)), 

y = ln(B(30)/8(1)). 

The parameter q will be estimated by the Bravais-Pearson coefficient: 

[l&W-X) (Y(i)-~)]/,(~(X(i)-x)2)(~(Y(i)-P)’) (=r>. 

Remark 1 : we estimate the parameters on a daily basis. So, we obtain the 
yearly variance [respectively the yearly mean] by multiplying the daily 
variance (oA)2 [respectivement u,] by the number of “significant” days in the 

year (one can prove that for the assets (see ROURE (1992, p. 472)) it is more 
relevant to consider a year of 250 days in lieu of 365 (number of working 
days on the market ) ; for the liabilities, this number (N) is also near of 250. 

Remark 2 : considering the rapidity of economical environment evolution, 
the estimations are valid only for a short delay and have thus to be regularly 
reestimated. A delay of a week is conceivable in the framework of the 
dynamical portfolio management. 
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2.4. Example 

We present now an example based on the data of a belgian firm (table II). 

Table II : Annual data from 1980 to 1991 (in millions of Belgian Francs). 

These data contain two inadequacies : first we only dispose of the annual 
data but also these data give us a false face of the reality of the firm. This is 
due to some techniques of management such as for example window 
dressing. 



892 4TH AFIR INTERNATIONAL COLLOQUIUM 

We obtain an estimation of the parameters u,, l.tB, oA, o B and cp by 

applications of formulas (28) to the data of table II. We get also an 
estimation of u and of 02 by adapting these formulas to the process a. 
Finally, we get : 

A 
p* =0.1130 
. 
pB =0.1008 
,. 
6, = 0.0323 
A 
bB =0.0261 

@ =0.8149 
(Ii =0.0103 

i3 =0.0186 

We can now estimate the probability of ruin for this company. Since a, is 

equal to 0.1887 (ln(82567/68370)), this probability can be evaluated to : 
2tao -- 

P[T < -]= e 3’ = 1.32 lo-’ 

2.5. Validity of the model 

Janssen’s model used here can have a lot of applications to the asset-liability 
management. Therefore, before using this model, it is very important to 
verify the conformity of observed data to the model. 

Obviously, we can verify that data satisfy the properties of a Brownian 
motion (see for example MERTON (1990, pp. 51-78) or GILLET (1991)). So 
we have to verify that all the processes (a(t), t>O), (ln(B(t)), t20) and (ln(A(t)), 
t20) are solutions of an It6 stochastic differential equation. Nevertheless, 
knowledge of the values of the processes is needed at every instant t. 

Consequently, we propose a method that could allow us to give some credit 
to the model. This method consists on verifying the application of Ito’s 
lemma. Indeed, we have estimators (see formulas 28) for the parameters of 
the processes (A(t), t>O) , (B(t), t20) and their transformation (a(t), t20). 
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Applying It& lemma, the two following relations have to be verified : 

(i =pA -fi,+e; -&Zg), 

i32=6;+h; -2@tiA &. 

Our method consists then on considering the values of the right member as 
correct ones and on carrying out the two following tests of hypothesis: 

1 

H,: u =fi,-&+5:-d; ), 

Hi: u +$,-8,-;(+~; ), 
(29) 

i 

H,: cT2=i$+i?; -2@,&, 

H,: 02sh;+ti; -2ci,e, &. (30) 

The test about the mean u will be performed by the use of the Student’s law: 

where n denotes the number of 
and the test about the variance 
square law : 

X2- = (n - w2 
” 1 CT2 . 

(31) 

observations, 
o2 will be performed by the use of the Chi- 

(32) 

2.6. Example (continuation) 

The estimations of the different parameters are (n=ll) : 

/Ii, = 0.1130, tiA = 0.0323, i3 =0.0186, @ =0.8149, 

/Ii, = 0.1008, itB = 0.0261, I; =0.0103. 
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We have to carry out the tests : 

H,: j.r = 0.0120 H,: 02= 3.5053 lo4 
H,: j.t #to.0120 

and 
I H,: ts’f 3.5053 lo+ * 

The observed value for the Student is : 

t J-PO= 0.0103 - 0.0120 = -o 3031 
lo ‘m 0.0186/3.3166 ’ ’ 

and the one for the Chi-square is : 

$, - ooy - 10 3.4596 lo4 = 9 8696 

=0 3.5053 lo4 * * 

These values lead us to accept H, (for significance level a = 0.05) for the two 

tests and therefore not to reject the model. 

3. Applications to the asset-liability management. 

3.1. Forecasfing of the company financial position 

Each (strategy) decision at the management level is based on the value of 
some parameters. Among them is surely of great interest the estimation (at 
some future instant) of the equity of the company. The level of the equity 
can be caracterized by the process a. Therefore we have to determine the 
transition probability density ~(0, x; t) of the process (X(t), t 2 0), denoted 
from here by p(x; t). This is the solution of the differential equation (see 

10.a) : 

$02 Pxx-c1Px = Ptr [forward equation], (33) 

that moreover satisfies the two foregoing boundary conditions: 

(i> pkO)=@ 1 h x w ere 6(x) denotes the Dirac function, 
(ii) p(-a,; t)=O. 
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The first condition is evident as X(0) is always 0. The second condition is 
justified by a well-known property of the Brownian motion: it vanishes 
with probability one on every interval (0, t) (see for example KARLIN and 
TAYLOR (1975, p. 348)). So, if, for t’ > 0, X(t) = -a,, we can find with 
probability one 0 c t” < t’ so that X(V) = -a,,. Therefore, it follows from the 

definition of an absorbing barrier that we don’t have to consider the process 
X for t > t” (indeed, the company in state of collapse does not exist any 
more). 

We solve now (33) by applying the method known as “image source ” (see 
COX and MILLER (1965, p 221)). 
Let p,(x,, x; t) be the function defined as follows : 

1 
(x-xo-lrt)’ -~ 

pI(xol x; t) = ~ e 
20’ t 

o&z 
I 

where x0 is a constant. 

It is easy to verify that, for every x,, the function pl(xO, x; t) is solution of 

(33) and moreover satisfies (i). Now we search h so that the following 
function p(x,t) 

satisfies (ii). For this purpose, we perform the value p(-a,,t) : 

We must have ~(-a,, t) = 0. Therefore : 

Finally the solution is : 

I 

(wt)’ -~ -za,r - (x+23,-w t)’ 
p(x,t)=---&&e ‘Ot -e a’ e ‘Ozt 

1 
. 

L J 
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3.2, General objectives for the company 

We deduce now general implications of the model to the company asset- 
liability management. Our analysis follows JANSSEN (1992). First we look 
at financially viable companies (l-t 2 0) and after those for which ruin is 
certain (l.t I 0). 

It follows then from (23) that management is as risky as o is great. So a 
volatility equal to zero will be the best for this company. This is the case if 
and only if : 

cp=l , o,=o, et PA=&. cw 

That is the goal to be achieved by the company. We give in the following 
section some tools or techniques to modify parameters. 

Then it follows from relation (21) that the ruin occurs with probability one. 
This tragic situation impose to the company a global restructuration in 
order to improve firm rentability (CL). So company interest is in the 
realisation of the following relation (see thorem 1) : 

This would be the case by (see JANSSEN (1992)) 

i) increasing ( pA - pB) or by 

ii) reducing asset’s volatility 0: + pi and by increasing 

(35) 

liability’s one (0; + p’,). 
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3.3. Asset-liability management tools 

It follows from the preceding section that the company must reduce 
volatility (o*) or increase rentability (JL). Therefore our goal in this section is 
to present some methods allowing to achieve these objectives. 

a) Volatility reduction 

First we carry out a segmentation of the assets A(t) and the liabilities B(t) : 

A,(t), A*(t) I........., A,(t) iAi(t) = A(t) 
i=l 

(36) 
B,(t), B*(t) ,..................I B,(t) TBi(t) = B(t) 

j=l 

We suppose that the following relations are satisfied : 

where 

dA, =/.L~ Ai dt+oi Ai dZ,,l<iln, 

dBi =&Bjdt+oJ Bj dZj,,lSjlm (37) 

Z = (Z(t),t 2 0) where Z(t)= (Z,(t),..., Z,,(t)), is a standard 

n-dimensional Brownian motion process with : 

E(dZ(t) dZ(t)T} = C dt 

where C is the variance-covariance (n x n) matrix of Z, 

1 Pl,2 **. Pl,n 

I; = PI,2 1 1 1 a-* *** . 

. , . . . . . . . . . . 

PI,” . . . . . . 1 

Z’ = (Z’(t),t 20) where Z’(t) = (Z:(t),..., Zm(t)), is a m-dimensional 

standard Brownian motion process with : 

E{dZ’(t) dZ’(t)T} = I;’ dt 



898 4TH AFIR INTERNATIONAL COLLOQUIUM 

where C’ is the variance-covariance (m x m) matrix of Z’, 

1 lx,2 *.. P:.” 
I%,* 1 . . . . . . 

y = 
. . . . . . . . . . . . 

p;,, . . . . . . 1 

pi , cr[, l.t; and 01 are positive constants {l<iln ; l<j<m). 

i) Assets volatilitv reduction 

We present two approaches. The first one consists on a generalization of 
the MARKOWITZ diversification theory (see MULLER (1988)) and applies 
to the idiosyncratic risk (see CUMMINS (1990)). The second one applies to 
riskiest assets and is derived from option theory (see ROURE and 
BUTERY(1989)). 

For a fixed instant t, the infinitesimal assets return u* is: 

P*=$PiAi 

and the volatility & is : 

&2= 5 Qpii. pi via Ai Ai*) 
i=* i’=l 

where pi,i, denotes the general term of the matrix C and satisfies : 

pii, dt = E[dZi(t) dZ,q(t)]. 

So we have to result the following optimization problem: 

(38) 

(39) 

min dc2 
A, . . . ..A. (40) 

subject to : 

i) A,lO,lliln, 
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ii> gAi = A(t) , 

This produces the asset portfolio (valid on the infinitesimal interval 
It, t+dt)) and we insist here on the necessary periodicity of the so defined 
techniques. 

Nevertheless some assets of which detention may be considered as essential 
for strategic purpose can present a highier risk. In this case hedging can be 
obtained from option theory. There are different strategies ( see ROURE and 
BUTERY (1989)) and here we devellop only the simplest : 

Let us denote by A’ any riskier asset. The strategy to adopt is the 
following : we buy an option PUT with an exercise price equal or just 
lower than the actual value of A’. This assures a minimal value of 

the portfolio composed of the asset A’ and the option. But the return 
is reduced by option price. 

ii) Liabilities volatilitv reduction 

We can obviously follow the same procedure. We adopt the following 
notations for the infinitesimal return and volatility : 

(41) 

&~(p;, o; 01, Bj Bi,) (42) 
j=, j’=1 

where pljX denotes the general term of the matrix C’ and satisfies : 

pii- dt = E[dZ;(t) dZj. (t)]. 

Then we have to solve the following optimization problem : 
min 0” 

B,.....B, 
(43) 
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subject to : 

i) BilO,lljIm, 

ii) cBi = B(t), 

iii) $ l.rI Bj I CL’ . 

Remark 1 : let us note it is more difficult to modify liability “portfolio” than 
the asset one. Moreover this imposes marketing operations of which succes 
and interest depend on the perfect communication between different sectors 
of the firm. 

Remark 2 : the technique we present here allows us to reduce only the 
Gability) idiosyncratic risk and other tools are necessary to eliminate the 
systematic risk. Among them there are traditionnal insurance techniques 
such as Reinsurance or Mutual insurance and also more recent methods 
derived from Insurance futures . This one’s consists on the adaptation of 
strategies based on (Assets) option theory. The definitions, principles and 
interests of insurance futures and options on (insurance) futures are 
presented in COX and SCHWEBACH (1992), D’ARCY and FRANCE (1992) 
or NIEHAUS and MANN (1992). These futures are similar to futures 
written on indices (see ROURE (1992). These new products allow us to 
benefit from any anticipation on the loss ratio (paid claims divided by 
earned premiums) evolution. 

b) Increasing of rentability 

The strategies allowing us to improve rentability (CL) are essentially based on 
new financial products such as options, swaps,... For example, if we can 
anticipate the increasing of an asset A we sell a put with the current asset 
value as exercise price. Actually there is a strategy for any anticipated 
evolution of any asset (see for example ROURE and BUTERY (1989)). 
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For liabilities new instruments such as insurance futures give us the 
possibility to benefit of similar anticipation. 

3.4.A possible new concept of duration 

We try here to generalize the concept of duration. This takes place in the 
framework of immunization against the interest rate risk (see JANSSEN 
(1993)). 

We consider only the immunization on the horizon [0, H] (H is a known 
positive value). So let us evaluate the current value A of the asset flow and 
the current value B of the liability flow. We obtain : 

A = ~oHe-at dA, and B = jO”e-“’ dB, (44) 

where 6 denotes underlying force of interest. 

It is natural to wish that : 

A26 (45) 

and therefore by taking expectations in (44) that : 

dA,] 2 E [Jdle-” dB,]. (46) 

After permutation of expectation and integration (see JAZWINSKI (1970)) 
and with the use of corollary of theorem 1 we get : 

or 

(47) 

(48) 
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Using Taylor’s formula we obtain : 

PA *II 

eh-6P _ 1 [ 1 PA-6 
= PA 4, [H+ (PA - 6, (H2/2)], (49) 

PB BO 

e(wV _ 1 [ 1 PB--6 
=PB 6, [H+(w6)(H2/2)]. (49’) 

Now we can rewrite (49) and (49’) as follows : 

E&A&, and 

where 

EkB, C, (50) 

CA = PA [H+ bA - 6) (H’P)] (51) 

and C, = uB [H+ (uB - 6) (H2/2)]. (52) 

We now reconsider the segmentations of A(t) anb B(t) (see section (3.3)). 
We get then : 

E&A, C’/, and EB nB, Cl, (53) 

where 

Ck =t (&i/*0)( PA,, [H+(pAoi -6) (~~/2)]) 
i=l 

and G =& (Bq/Bo)( pBoi IH+(pBoi -6)(H’/2)]) 

(54) 

(55) 

We suppose all parameters constants except the force of interest 6. Now the 
following question arises (see JANSSEN (1993)) : 

how to measure the influence of the variations of the force of interest ? 
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By the use of Taylor expansion we obtain the variation of E A consecutive to 
an infinitesimal variation A6 of the force of interest : 

A(EJ\) = t(pAo, AOi (H*/2)) 66. 
i=l 

We can rewrite (56) as follows : 

A(El”) z A, D, A6 

where D, = A(PAi (HZ/z)) (A,i/A,). 
i=l 

(56) 

(57) 

(58) 

We obtain a similar formula for liability : 

A(E6) 1 B D, A6 (59) 

where D, =T(PB,(H’/2)) (B,j/B,)* 
j=l 

(60) 

It follows from (57) and (59) that (mean) immunization can be achieved if : 

AD,=BD, (61) 

Thus we obtain a result similar to JANSSEN’s one. 

4. Conclusion 

In conclusion, we can say that the JANSSEN’s model presented and 
developed here is now able to be really used as an operational tool for asset 
liability management for insurance companies or even for banks. 

Its use is simple as it only depends on five parameters and it allows with 
our new concept of duration to improve the immunization of the balance 
sheet of the company. Its help for the use of off balance sheet financial 

products will be presented in another paper. 
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For its optimal use, it is clear that we need at least mensual data for the 
balance sheet of the company so that we can reestimate the five basic 
parameters as soon as necessary. It is also possible to use this model as a 
simulation one as done by the software SIMFIN. 

Finally, we may add that supplementary results concerning among others 
the distribution of dividends will appear in a short future. 
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