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ABSTRACT 

The paper starts by developing the algebra for calculating moments of the 
returns from European option positions, with numerical examples. The author 
then discusses the search for the Holy Grail of a framework for truly modern 
portfolio selection and puts forward an investigation of percentile returns as an 
alternative to mean variance optimisation, the latter being shown to be totally 
inadequate in the presence of options. Finally, the author compares protected 
put positions with cash/equity portfolios of equivalent expected return, both 
from the point of view of distribution of returns and from an exponential utility 
point of view. 

1. THE ALGEBRA FOR MOMENTS OF FINANCIAL OPTIONS 

Under the commonly used geometric Brownian model of equity mar- 
ket behaviour, given an initial price S, the equity index price ST at time 
T is lognormally distributed with the underlying normal distribution be- 
ing: 

In ST = N(ln S + (II- 1/2/3’)T, ,3T”“) 

where (p - 1/2p2) and j?’ are the mean and standard deviation of the 
continuously compounded equity return per unit time, and N() is the 
normal distribution. 

Given a price level X (typically an option exercise price), define two 
series of integrals C, and P, (C and P relating to call and put options, 
n taking integer values from 0 to infinity) as follows: 

Put y = ST to simplify the notation. 
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X 

P, = 
J (Y” * dY))dY 
0 

c, = 
1 (Y” * dY))dY (integral from X to infinity) 

X 

where g(y) is the probability density function of the lognormal distribu- 
tion. 

Thus P, and C,, are parts of the n-th moment of the (lognormal) 
distrubution of ST and indeed the n-th moment is simply the sum of 
P,, and C,. 

Then, by substituting w = In y, after some manipulation, the fol- 
lowing equations can be obtained (details are available on request - some 
of the algebra involved can be seen in Wilkie 1992): 

P, = S” exp { (np + n(n - 1)P2/2)T} * N(4) 

and 

C, = S” exp { (np + n(n - 1)p2/2)T} * N(d,) 

where d, = { ln(S/X) + (p + (27~ - 1)p2/2)T}/(/3T1/2) 

and N() here refers to the cumulative normal distribution function. 

The reader conversant with the Black-Scholes option pricing formula 
will already be partly familiar with such expressions, indeed the Black- 
Scholes formulae for the prices of European put and call options on 
a non dividend paying stock can be expressed in the above notation 
(providing one substitutes r, the risb free force of interest, for p): 

p = exp(-rT){XPo - PI} 
p = X exp( -rT)N( -do) - SN( 41) 

and 
c = exp( -rT){Cl - XCo} 

c = SN(dl) - X exp( -rT)N(&) . 

Throughout the remainder of this paper I will confine the analysis to 
European options on a non dividend paying stock. This could be re- 
garded in practice as akin to European options on an index, such as 
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the Euro-FTSE 100 options (although this index is affected from time 
to time by major stocks going ex dividend) or indeed European options 
on the Japanese equity indices, where dividend effects are quite small. 

2. MEANS AND STANDARD DEVIATIONS OF OPTION RETURNS 

Put Options 

The expected value of a put option at expiry can be calculated as 
follows: ., n 

Jw) = J (X - Y)s?(Y)dY = XPO - Pl 
0 

where now the formulae use ,u rather than T (which is only used in the 
calculation of the prices of the options, not their moments). 

Similarly, the expected value of P” is: 

X 

E(P2) = J (X - y)2g(y)dy = X2Po - 2XPl + 4 

0 

and 

X 

E(P3) = J (X - y)3g(y)dy = X3Po - 3X2Pl + 3XP2 - P3 

0 

Call Options 

Similarly for call options: 

E(C) = J (y - X)g(y)dy = Cl - xc, 

X 

WC21 = /(Y - x)2g(y)dy = c, - 2xc1 + x2c, 
J 
X 

E(c3> = J (Y - x)3g(y)& = c3 - 3xc2 + 3x2c1 - x3co 
X 

where s denotes an integral from X to infinity. 
X 
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Expected Returns, Standard Deviations and Skewness 

Remembering that prices of p and c must be paid at the beginning 
of the term for put and call options respectively, the expected returns, 
standard deviations of return, and skewness of return can be calculated 
using the following formulae: 

Expected Return on Put Option = E(P)/p 

Expected Return on Call Option = E(C)/c 

Standard Deviation of Return on Put Option 

= {E(P) - E(P)2}1’2/p 
Standard Deviation of Return on Call Option 

= { E(C2) - E(C)2}1’2/C 
Skewness of Return on Put Option 

= {E(P) - 3E(P2) * E(P) + 2E(P)3}/1-‘3 

Skewness of Return on Call Option 

= (E(C3) - 3E(@) * E(C) + 2E(C)3}/c3 

Protected Put Positions 

Expected Return on Protected Put position (where 1 unit by value 
of the index is held and a premium of p is paid to purchase a put option 
on this unit value): 

E(Sh + P)/(l +p) = 

= (Xftl + G)/(l + PI 

Standard Deviation of Protected Put position: 

= {E(Sh+P)“- (~(Sh+P))2}1’2/(1+~~). 
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Covariances and Correlations of Options With The Underlying 
Security 

X 

E(Sh * P) = [(X - y)yg(y)dy = XP, - P2 
.I 
b 

Covariance Between Share and Put Returns: 

Covar (Sh, P)/p = {(XPl - P2) - E(Sh) * E(P)} /p 

= {(XPl - P2) - (Cl + f-3) * E(P)} /P. 

Correlation Between Share and Put Returns 

Corr (Sh, P) returns = Covar (Sh, P)/(p * scl(Slz) * d(P)) 

where sd(Sh) = (Pz + C2 - (PI t CI)~)I/~ 

and d(P) is the standard deviation of the return on a put option 
calculated above. 

E(Sh * C) = J (y - X)yg(y)dy = c, - xc1 . 
X 

Covariance Between Share and Call Returns: 

Covar (Sh, C)/c = { (Cz - XC*) - E(Sh) * E(C)}/c 

= {(Cz - XCl) - (Cl + PI) * E(C)}/c 

Correlation Between Share and Call Returns 

Corr (Sh, C) returns = Covar (Sh, C)/(c * sd(Sh) * sd(C)) 

where sd(Slb) = (P2 + C2 - (PI + CI)~)~/~ 

and sd(C) is the standard deviation of the return on a call option 
calculated above. 

Covariance Between Put and Call with the same term and exercise 
price = 0, hence: 

Correlation Between Put and Call with the same term and exercise 
price = 0. 

Similarly, any higher moments can be calculated and indeed, in 
the numerical examples that follow, I have used similar formulae to 
calculate the fourth centralised moments (or kurtosis coefficients) for 
various assets. 
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3. PRACTICAL EXAMPLES 

Consider the situation where r, the risk free force of interest is 8% 
per annum (pa), ,u, the expected force of return on the equity index is 
11% pa and /3, the standard deviation of the underlying normal equity 
return is 20% pa. 

Then, using the formulae set out above, the following can be calcu- 
lated for options with a one year term: 

(Take the starting price of the equity index, S, to be one without 
loss of generality) 

Example 1: At The Money Options 

X=S=T=1.000 
r = 0.08 
p = 0.11 
p = 0.20 

” dn N(dn) N(-dn) Cn Pn d;; N(G) N-49 

0 0.45 0.6736 0.3264 0.6736 0.3264 0.3 0.6179 0.3821 
1 0.65 0.7422 0.2578 0.8284 0.2878 0.5 0.6915 0.3085 
2 0.85 0.8023 0.1977 1.0406 0.2564 
3 1.05 0.8531 0.1469 1.3380 0.2303 
4 1.25 0.8944 1.1056 1.7653 0.2085 

(NB - the relationship N(-z) = 1 - N(z) comes in useful here.) 

The three final columns are calculated using r rather than p and 
are used to calculate the prices of at the money put and call options 
respectively as: 

p = 0.0442 or 4.42% of the exercise price 

c = 0.1211 or 12.11% of the exercise price 

Using the formulae set out in Section 2, the following calculations can 
be made: 

” W”) E(C”) E( Share”) 

1 0.038528 0.154806 1.116278 
2 0.007047 0.057327 1.296930 
3 0.001594 0.027951 1.568312 
4 0.000389 0.016708 1.973878 
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Expected Returns and Standard Deviations, Skewness and Kurtosis: 

Asset Expected (Mean) Standard Skewness Kurtosis 
Return (% pa) Deviation (% pa) 

Cash 8.33 0.0 0.000 0.000 
Equities 11.63 22.6 0.007 0.010 
At the Money Put (12.78) 168.8 10.370 52.300 
At the Money Call 27.88 150.9 4.930 27.600 
Protected Put 10.60 17.5 0.008 0.005 

Correlation Matrix: 

Asset Cash Equities At the money Put At the money Call 

Cash 1 
Equities 0 1.000 
At the money Put 0 (0.685) 1 - 
At the money Call 0 0.955 0 1 

Comments: 

Note that the expected return on the Protected Put Position is 
slightly lower than the equity expected return, which is to be expected 
given the negative return on put options and the feeling that, without 
defining risk precisely, one has somehow reduced risk by holding the put 
and that this reduction in risk should require a reduction in expected 
return in an efficient market. However, we can already see that this 
principle (as currently understood, with risk and return defined as mean 
and standard deviation of return respectively) requires refinement in the 
presence of derivatives, otherwise a very high positive return would be 
required on put options. In fact, we see from the above that investors 
are happy to hold such put options with a negative mean return! 

I have not included the Protected Put in the correlation matrix, 
since it is simply a linear combination of the equity and put assets and 
as such is not a fundamental asset in its own right. 

Example 2: Out of the Money Put Option / In the Money Call 
Option (S = 1.05X): 

Here, X = l/1.05 = 0.9524 and other parameters are as for exam- 
ple 1. 

As for example 1, calculations can be made using the formulae set 
out in Section 2 to produce the following: 
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” 4, N(b) N-4,) Cn Pn d,, N(G) W-W 

0 0.694 0.7561 0.2439 0.7561 0.2439 0.544 0.7068 0.2932 
1 0.894 0.8143 0.1857 0.9090 0.2073 0.744 0.7715 0.2285 
2 1.094 0.8630 0.1370 1.1193 0.1777 
3 1.294 0.9021 0.0978 1.4149 0.1535 
4 1.494 0.9324 0.0676 1.8405 0.1334 

p = 0.0294 or 2.94% of th e initial share price (or 3.09% of the 
exercise price) 
c = 0.1502 or 15.02% of the initial share price. 

” EU’“) WC”) E(Share”) 

1 0.024982 0.188880 1.116278 
2 0.004070 0.073636 1.296930 
3 0.000851 0.037302 1.568312 
4 0.000217 0.022832 1.973878 

Expected Returns and Standard Deviations, Skewness and Kurtosis: 

Asset Expected (Mean) Standard Skewness Kurtosis 
Return (% pa) Deviation (% pa) 

Cash 8.33 0.00 0.000 0.00 
Equities 11.63 22.60 0.007 0.010 
Out of the Money Put (14.88) 200.00 22.820 197.000 
In the Mouey Call 25.76 129.74 2.670 12.960 
Protected Put 10.87 18.93 0.008 0.006 

Correlation Matrix: 

Asset Cash Equities At the money Put At the money Call 

Cash 1 
Equities 0 
Out of the money Put 0 (0.617) 1 
In the money Call 0 0.972 0 1 

Comments: 

Relative to the figures from Example 1, the expected return on the 
put option has reduced, while the standard deviation has increased. 
This is because in the case of asymmetric assets which are positively 
skewed, a high standard deviation is a good thing (because the higher 
standard deviation means that there is a higher “risk” of a better than 
expected return and the downside is limited). Indeed, the skewness 
coefficient has also increased. 
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The expected return and standard deviation of the call option have 
reduced, and this is simply because the more a call option is in the 
money, the more it behaves like the underlying share. Since the at the 
money call option has an expected return and standard deviation which 
are both higher than the underlying equities, both will reduce as the 
option becomes in the money. 

4. PORTFOLIO SELECTION IN THE 1990s: IS MEAN/VARIANCE OBSO- 
LETE? 

Let us assume that we are trying to select portfolios that are optimal 
in some sense, for a risk averse client with a single period time horizon, 
with the following choice of possible asset sectors: 

l Cash 
l Equities 
l At the Money Put 
l At the Money Call 

each asset having the characteristics calculated in Example 1 of Sec- 
tion 3. 

Now, it is well known that the original Markowitz mean variance 
portfolio selection criterion only produces optimal portfolios if either: 

l portfolio returns are normally distributed (which is patently untrue 
over periods much longer than one year) 

or: 
l investors have quadratic utility functions (which is again unlikely and 

has the undesirable feature that risk tolerance reduces with increasing 
wealth). 

In addition, as pointed out in the comments to Section 3, the standard 
deviation is particularly inappropriate as a risk measure when consider- 
ing highly asymmetric assets, such as options. The very high positive 
skewness coefficients shown in Section 3 indicate that a high standard 
deviation of return is not necessarily undesirable for such assets. 

Nevertheless, the number of possible portfolios that could be selected 
is infinitely large, and mean variance optimisation is widely used as 
a sifting process to help narrow the field and produce a shortlist of 
suitable candidate portfolios for consideration. However, the weaknesses 
of mean variance optimisation (as mentioned above, together with the 
ever present one of sensitivity of the results to the input assumptions) 
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should not be forgotten and in my own work with my colleagues in the 
field of asset liability modelling, I have found that: 

l it is quite often necessary to refine the inputs to the mean variance 
optimisation process in order to take account of the skewness and non 
normality of unadjusted asset values/returns over periods of typically 
10 years or more (for example, by analysing annualised returns or the 
rate of growth of surplus relative to the liabilities) 

l the outputs should not be taken as carved in tablets of stone and 
indeed it is often the case that portfolios that lie slightly off the 
“efficient frontier” may be the best practical solution for the client. 

This last point is particularly valid of course in the present context: 
because of the way that mean variance optimisers assume that asset 
returns are distributed symmetrically, it is quite likely that such op 
timisers will be biased against options because of their high standard 
deviations. 

However, let us look at the results of running a conventional mean 
variance optimiser (where I show below five portfolios chosen to have 
minimum standard deviation for a given mean return) for the above 
problem. 

Traditional “Efficient Frontier” (Assets as in Example 1) 

Portfolio: A B C D E 

Cash 100 31.3 0 0 0 
Equities 0 68.7 100 52 0 
At the money Put 0 0 0 0 0 
At the money Call 0 0 0 48 100 

Total 100% 100% 100% 100% 100% 

Expected (mean) 
return (% pa) 
Standard 
Deviation (% pa) 

8.33 10.59 11.63 19.16 27.88 

0 15.5 22.6 + 83.7 150.9 

Note that from A to C, the optimiser simply ignores the existence of 
the options and chooses the same range of portfolios that it would have 
selected had there been only two assets available, cash and equities. The 
maximum return portfolio is of course that which is invested entirely in 
the call option and portfolios from C to E consist of mixtures of equities 
and call option positions. 

I selected portfolio B to have an expected (mean) return close to 
that of the Protected Put portfolio from Section 3. B has a lower 
standard deviation (15.5% as opposed to 17.5%- see Section 3) and so 
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the optimiser ignores the Protected Put portfolio, even though 
once the downside risk has been limited, the higher the standard 
deviation the better! 

To encapsulate all information about risk into a single figure, the 
standard deviation, is obviously throwing away the baby with the bath- 
water in the case of derivatives and for many clients where more weight 
is attached to avoiding adverse performance than to achieving outperfor- 
mance, ie the attitude to risk is almost invariably asymmetrical. Thus, 
I show below the kind of analysis that we find more helpful in making 
comparisons between portfolios for a range of portfolios, including B and 
the Protected Put: 

Portfolio Analysis (Assets as in Example 1) (X = 1.000): 

Portfolio: 
100% Protected 100% 100% 

Equity B Put Put CalkE 

Cash 
Equities 
At the money 
Put 
At the money 
Call 

0 31.3 0 0 0 
100 68.7 95.8 0 0 

0 0 4.2 100 0 

0 0 0 0 100 

Total 100% 100% 100% 100% 100% 

Absolute Worst 
Case Return 
(% pa) 
Worst Case 
(5th percentile) 
Lower Quartile 
40th percentile 
Most Likely 
Return (Median) 
60th percentile 
Upper Quartile 
Best Case 
(95th percentile) 
Probability of 
Total Loss 
Probability of a 
negative return 

(100) 

(21.3) (12) -4.2 

(4.4) (0.4) (4.2) 
4 5.4 (0.4) 

9.4 9.1 4.8 

15.1 13 10.2 
25.2 19.9 19.9 

52 38.4 45.6 

<l% 

33% 

zero zero 

41% 

(66.1) (4.2) (100) 

67% 

(100) 

(100) 

(100) 
(67) 

(22.2) 

24.9 
108.2 
329.9 

A comparison of the protected put portfolio with portfolio B (which 
was chosen to have the same mean return as the protected put portfolio) 
shows that the protected put portfolio does better when large equity 
price movements (either positive or negative) are experienced, but in 
the event of small price moves, B does better. In fact, the probability 
of B outperforming the protected put is more than 50%. 
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Nevertheless, given the fact that the downside of the protected put 
is limited to -4.2%, it is possible that some investors (pension fund 
trustees, for example) may prefer the protected put to B. (B is not very 
much removed from the typical asset distribution of UK pension funds 
over the last five years or so). 

I show in the following pages similar tables for options with different 
exercise prices (again with B chosen to have the same mean return as 
the protected put portfolio), ranging from X = 0.8 to X = 1.2. Different 
investors may prefer different exercise prices for a protected put portfolio, 
depending on their own risk return preferences. For example, using a 
put option that is slightly out of the money provides only slightly worse 
downside protection while reducing the cost in the event of a small 
equity price move, whereas choosing a put option that is slightly in the 
money can remove the possibility of capital loss altogether (this is the 
basis of some unit trust and personal pension products currently on the 
market) at the expense of increased underperformance in the event of 
small equity price movements. 

Portfolio Analysis (Assets as in Example 2) (X = 0.95238): 

Portfolio: 
100% Protected 100% 100% 

Equity B Put Put CalkE 

Cash 0 22.9 0 0 0 
Equities 100 77.1 97.1 0 0 
Put 0 0 2.9 100 0 
Call 0 0 0 0 100 

Total 100% 100% 100% 100% 100% 

Absolute Worst 
Case Return 

izz$Ahe 
(5th percentile) 
Lower Quartile 
40th percentile 
Most Likely 
Return (Median) 
60th percentile 
Upper Quartile 
Best Case 
(95th percentile) 
Probability of 
Total Loss 
Probability of a 
negative return 

( 100) (75.2) (7.5) (loor (100) 

(21.3) 

(4.4) 
4 

9.4 

15.1 13.6 11.8 
25.2 21.3 21.6 

52 42 47.7 

<l% 

33% 

zero zero 76% 24% 

28% 38% 80% 52% 

(14.5) 

(1.5) 
5 

9.2 

-7.5 

(7.1) 
1.0 
6.3 

(100) 
(100) 
I::; 

;:ky 
462.1 

(100) 

(97.5) 

‘$:L; 

32.4 
99.5 

278.2 
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Portfolio Analysis (X = 0.800): 

100% 
Portfolio: Equity 

Protected 100% 100% 
B Put Put CalkE 

Cash 0 5.0 0 0 0 
Equities 100 95 99,5 0 0 
Put 0 0 0.5 100 0 
Call 0 0 0 0 100 

Total 100% 100% 100% 100% 100% 

Absolute Worst 
Case Return (% pa) 
Worst Case 
(5th percentile) 
Lower Quartile 
40th percentile 
Most Likely 
Return (Median) 
60th percentile 
Upper Quartile 
Best Case 
(95th percentile) 
Probability of 
Total Loss 
Probability of a 
negative return 

(100) (94.6) (20.4) 

(21.3) (19.8) (20.4) 

(4.4) (3.7) (4.8) 
4 4.2 3.5 

9.4 9.4 8.9 

15.1 14.8 14.6 
25.2 24.4 24.6 

52 49.9 51.3 

<l% zero zero 

33% 32% 

94% 

94% 

(100) 
(100) 

31.9 
69.7 

170.5 

6% 

45% 

Portfolio Analysis (X = 0.900): 

100% 
Portfolio: Equity 

Protected 100% 100% 
B Put Put CalkE 

Cash 0 15 0 0 0 
Equities 100 85 98,3 0 0 
Put 0 0 1.7 100 0 
Call 0 0 0 0 100 

Total 100% 100% 100% 100% 100% 

Absolute Worst 
Case Return (% pa) 
Worst Case 
(5th percentile) 
Lower Quartile 
40th percentile 
Most Likely 
Return (Median) 
60th percentile 
Upper Quartile 
Best Case 
(95th percentile) 
Probability of 
Total Loss 
Probability of a 
negative return 

(100) (83.7) (11.5) (100) (100) 
(21.3) (16.8) (11.5) (100) (100) 

(4.4) (2.5) (‘3) 
4 4.6 2.2 

9.4 9.3 7.5 

(69.9) 
(25) 

(4.1) 

15.1 14.1 13.2 (100) 34.6 
25.2 22.7 23.1 (100) 88.7 

52 45.5 49.4 547.9 232.5 

<l% 

33% 

zero 84% 16% 

30% 36% 86% 49% 
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Portfolio Analysis (X = 1.100): 

100% Protected 100% 100% 
Portfolio: Equity B Put Put CalbE 

Cash 0 50.4 0 0 0 
Equities 100 49.6 91.2 0 0 
Put 0 0 8.8 100 0 
Call 0 0 0 0 100 

Total 100% 100% 100% 100% 100% 

Absolute Worst 
Case Return (% pa) 
Worst Case 
(5th percentile) 
Lower Quartile 
40th percentile 
Most Likely 
Return (Median) 
60th percentile 
Upper Quartile 
Best Case 
(95th percentile) 
Probability of 
Total Loss 
Probability of a 
negative return 

(l@J) (45.4) 

(21.3) (6.3) 

(4.4) 2 
4 6.2 

9.4 8.9 

15.1 11.7 5.8 (32) (29.7) 
25.2 16.7 15.1 63 108.9 

52 30 39.7 254.3 477.6 

<l% zero zero 49% 51% 

19% 

1.1 

1.1 

1.1 
1.1 
1.1 

zero 

(100) 

(100) 

(W 
(100) 

(93.3) 

65% 

(100) 

000) 

Portfolio Analysis (X = 1.200): 

100% 
Portfolio: Equity 

Protected 100% 100% 
B Put Put CalkE 

Cash 
Equities 
Put 
Call 

Total 

Absolute Worst 
Case Return (% pa) 
Worst Case 
(5th percentile) 
Lower Quartile 
40th percentile 
Most Likely 
Return (Median) 
60th percentile 
Upper Quartile 
Best Case 
(95th percentile) 
Probability of 
Total Loss 
Probability of a 
negative return 

0 67.9 0 0 0 
100 32.1 85.1 0 0 

0 0 14.9 100 0 
0 0 0 0 100 

100% 100% 100% 100% 100% 

(100) (26.4) 4.5 (100) 000) 

(21.3) -1.2 +4.5 (100) (100) 

(4.4) 4.3 4.5 (100) 
4 6.9 4.5 g:, 

9.4 8.8 4.5 

[Zj 

000) 

15.1 10.5 4.5 7.7 (100) 
25.2 13.7 9 64.2 27.7 

52 22.4 32.4 177.8 685.8 

<l% zero zero 32% 68% 

33% 8% zero 58% 74% 
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5. INVESTORS PREFERENCES: UTILITY FUNCTIONS 

The mention of investors’ risk return preferences in Section 4 leads 
naturally on to the use of utility functions. According to utility theory, 
investors solve the portfolio selection problem simply by choosing the 
(probably but not necessarily unique) portfolio that maximises their 
expected utility. The remarkable fact about utility functions is that 
the first moment of the utility function encapsulates the totality of the 
investor’s views about risk and return and one therefore does not need 
to consider higher moments. 

Of course, this is a theoretical ideal, because human beings probably 
do not behave logically or consistently enough to have a consistent util- 
ity function, even if they did, it may not fall within t&e types described 
below, and finally it does not appear to be possible to combine indi- 
vidual members’ utility functions (in the case of a group decision 
making body such as the trustees of a UK pension fund) to form a 
group utility function. 

Nevertheless, this paper provides a framework for calculating the 
expected utility of a portfolio containing options, and hence to rank 
such portfolios against more traditional ones in the scale of investors’ 
preferences. 

For risk averse investors, utility functions are usually convex, and 
include the following types: 

l exponential utility functions (for which I shall show some results 
below) 

l quadratic utility functions (which I discussed briefly at the start of 
Section 4 and which are unrealistic in my view) 

l power utility functions (of the form U(Z) = ~9 where 0 < a < 1) 

l they may even be discontinuous (Clarkson in the UK has referred to 
“kinked utility functions”) 

Examples: Exponential Utility Functions 

If an investor has a utility function of the form u(z) = - exp( --ax), 
where a > 0, then expected utility Z&&(X) = E( - exp( -uX)) uses the 
moment generating function of the distribution of X. (X is a random 
variable representing the amount of wealth at the end of the period 
arising from an investment of 1 at the beginning of the period in the 
investment policy under consideration). 
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In fact, providing that the distribution of .X is suficiently stable to 
make this expansion converge, 

Eu(X) = -1f aEX - a2EX2/2! + a3EX3/3! + . . . etc 

and thus, for a portfolio containing options, uses the moments of such 
portfolios developed in Section 1. 

For numerical examples, it would have been possible (but unfortu- 
nately quite tedious due to the binomial expansion of C,, and P, terms 
involved!) to use a spreadsheet or mainframe computer program to 
calculate the above expansion to thirty of forty terms say, and check 
whether convergence was occurring and thus calculate exact theoretical 
values of Eu(X). 

Thankfully, it is also possible to obtain these values to a high degree of 
accuracy by simulation. (Indeed, this may be the only practical method 
in the case of some of the other types of utility functions mentioned 
above.) 

Numerical Examples Using Exponential Utility Functions 

In the examples which follow, I show the results of 10,000 random 
simulations for a 1 year time horizon (using the parameters for cash 
and equities under the geometric Brownian motion model as set out in 
Sections 1 and 3), which should provide a sufficiently large sample to 
give accurate estimates of expected utility. 

An interesting first question is: 

l what value of the parameter a is consistent with an investor being 
sufficiently risk averse to prefer a 70% equity/30% cash policy (which 
I shall take as a slightly simplistic representation of the sort of invest- 
ment policy favoured by UK pension fund trustees) to a 100% equity 
policy, but not to the extent that a 100% cash policy is preferred to 
a 70130 policy? 

(To be precise, one should really be answering the question as to 
what value of a is such as to lead to the 70/30 policy as having maxi- 
mum expected utility amongst all portfolios containing just equities and 
cash, but the above will suffice for illustration purposes). The values 
of expected utility for each of the three policies are given below under 
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different values of a: 

Value of 
parameter a 

Eu(X) for 
100% Cash 

h(X) for 
100% equity 

Eu(X) for 
70/30 policy 

1 (0.3385) (0.3355) (0.3347) 
2 (0.114569) (0.1177) (0.114612) 
3 (0.03878) (0.04207) (0.04007) 
5 (0.004443) (0.006349) (0.005182) 

It can be seen from t,lle above (bearing in mind that the exponential 
utility function produces negative values, so policies are preferred the 
closer their expected utility gets to zero) that the higher the value of 
a, the more risk averse the investor is. Certainly for values of a greater 
or equal to 2, the investor would prefer 100% cash to either of the two 
alternatives. The table shows that a = 1 is a suitable value for the type 
of investor who prefers the 70/30 policy to either 100% cash or 100% 
equities. 

A natural question that then arises is: 
l would such an investor (with a = 1) find any protected put portfolio 

(with a suitable exercise price X) preferable to the 70/30 portfolio? 
ie can one find an exercise price X such that the expected utility of 
the protected put portfolio is higher than -0.3347? 
The expected utilities (with a = 1) are shown on the next page for 

various values of the exercise price X: 

Exercise Price of Put Option Expected Utility of Protcctcd Put Portfolio 
(Share Price = 1) 

0.8 (0.3355) 
0.9 (0.3354) 
0.952 (0.3355) 
1 (0.3356) 
1.05 (0.3357) 
1.1 (0.3359) 
1.2 (0.3365) 
1.5 (0.3381) 

I must admit to finding the above results disappointing: my intuitive 
feeling is that a risk averse investor would find a protected put portfolio 
(with exercise price in the range 0.95 to 1.05) more appealing, on the 
basis of the percentile return figures given in Section 4, than a 70/30 
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equity/ cash portfolio. However, the above results do not lend support 
to this view if investors have exponential utility functions. 

Further research needs to be carried out to investigate: 
l whether the results change with a more accurate value for a than 

a=1 

l what the results would be under different utility functions or a differ- 
ent investment model (perhaps the Wilkie model or else a geometric 
Brownian model extended to incorporate Poisson jumps) 

l what the results would be for a ten year time horizon (although the 
only long term options likely to be available for the foreseeable future 
will be over the counter options). 

In addition, because of the theoretical limitations of utility functions, 
perhaps we also need simply to ask investors (such as those in insurance 
companies responsible for investment or pension fund trustees) what 
their preferences are, given the sort of percentile information given in 
Section 4. 
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