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ABSTRACT 

General expressions are given for first and second moments of present val- 
ues of stochastic payment streams evaluated by a stochastic discounting func- 
tion. The results are applied to an authentic portfolio of term life insurance 
policies assuming mortality of Gompertz-Makeham type and accumulation of 
interest governed by an Ornstein-Uhlenbeck process. A proposed solvency cri- 
terion specifies that the insurer must provide a reserve equal to the mean plus 
a multiple of the standard deviation. 

1. SOLVENCY CONTROL ON BREAK-UP BASIS 

A. The break-up scenan’o. 

We consider a life insurance business which is subject to solvency 
control on a so-called break-up basis, by which only those policies cur- 
rently in force are considered relevant and the outstanding net liability 
(benefits less premiums) in respect of those are the object of the control. 
The solvency requirement specifies that the current reserve must cover, 
with high probability, the present value of the net liability. 

B. Special issues in life insurance. 

In assessing the financial strength of an insurance business special 
problems arise from the uncertainty associated with the future payments. 
In the life insurance context, where contract terms may extend over sev- 
eral decades, uncertainty emerges at two levels. In the first place there 
is an element of pure randomness in the development of the individual 
life histories and, consequently, in the events upon which payments are 
contingent. In the second place, there is uncertainty associated with the 
future development of the very laws that govern the individual life his- 
tories (intensities of mortality, sickness, recovery, etc.) and also with the 
future development of the economic enviromnent (administration costs 
and yields on investments). In short, there is a superimposed risk due 
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to possible adverse development of the technical basis. 

2. GENERAL DESCRIPTION OF THE SOLVENCY ASSESSMENT 

A. Basic model entities - payments and interest. 

We adopt the set-up of Norberg (1990). A stream of payments 
is defined by a finite-valued payment function A, which for each time 
t specifies the total amount A(t) paid in (-co, t]. Negative payments 
are allowed for; it is only required that A be of bounded variation 
in finite intervals and, by convention, right-continuous. This means 
that A = B - C, where B and C are non-negative, non-decreasing, 
finite-valued, and right-continuous functions representing the outgoes 
and incomes, respectively, of some business. 

In the present context A represents the total payments in respect of 
a life insurance business; B represents benefits (including administration 
expenses) and C represents contributed premiums. The total amounts 
paid are made up by the payments on the individual policies in the 
portfolio, 

P.11 A=CAi, 

Ai being payments in respect of policy No. i 

The amount paid in a small interval of extension dt around t is 
denoted A(dt). We shall be concerned with first and second order mo- 
ments of discounted values and shall need expressions for E A(dt) and 
E {A(ds In the present study we assume that the Ai are stochas 
tically independent. General formulas for E Ai and E {Ai(ds)Ai(dt)} 
are given in Norberg (1991) for the case where each Ai is generated by 
a continuous time Markov process. Formulas for the present context of 
term insurance are simple and will be displayed in Section 4. 

The surplus created by the payments is currently invested and yields 
interest with spot rate (intensity) b(t) at any time t. The corresponding 
discount function is 

P.21 

where 

w(t) = e-*(Q ) 

P.31 J 
t 

A(t) = S(r) dr 
0 



A solvency study in life insurance 823 

is the accumulated intensity (interpreted as J” 6(r) if t < 0). 

To account for financial risk, A is assumed to be a stochastic pro- 
cess. We shall need the first and second moments of the discount func- 
tion and introduce 

12.41 41(t) = EV(T) = Ee-*(y 

P.51 4*(t) = Ev(t)2 = E c2*@) ) 

P.61 42(s, t) = E {v(s)v(t)} = E e- *(s)-*(t) 7 

thus abbreviating &(t) = 42(&t). 

It is assumed throughout that the processes Ai and A are stochas- 
tically independent. 

B. Outstanding liabilities - reserves. 

For notational convenience, let time be counted from the moment 
of consideration, that is, the present solvency assessment takes place at 
time 0. The present value of the future net liabilities is 

12.71 V= Jrn 4~) A(dT), 
0 

the sum of all payments in small intervals discounted at time 0. (The 
integral in 12.71 ranges over (0,co)). 

In the present treatment we assume that the discount factor process 
v is stochastically independent of the process Ai. Then the expected 
value of V is 

E V = E J a( 

WI = J 41(7)EA(dT) , 

where E+,V is the expected value by non-stochastic discount function 
equal to the expected, 41. 
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P.91 

The variance of V is 

VarV = E (/v(7-)n(,it))2 - (EV)2 

ZE v(~?)v(r)A(dt?)A(dr) - (EV)” 

=/.I E{TJ(I~)~(T)}E{A(~~~)A(~T)} - (EV)2 

[2.10] + 
s 

~#I~(T)E(A(~T))~ - (EV)2. 

Upon inserting E{v(O)v(7)} = Cov{v(~),v(~)}+$q(~)~~(~) in [2.9] and 
recalling [2.8], it is seen that 

[2.11] Var V = Cov{u(29), ~(T)}E{A(~~)A(~T)} + Var+, V, 

where Var,, V is the variance based on non-stochastic discounting by 
41. 

C. Required reserve. 

By tradition, the reserve provided in life insurance is the expected 
value of the net liabilities. To meet possible claims in excess of the 
expected, an additional fluctuation reserve should be provided. A simple 
rule is to require provision of the reserve 

[2.12] R= EV+2-, 

which, by Tchebycheff’s inequality, is sufficient to cover the discounted 
future liabilities with a probability no less than 0.75. If the distribution 
of V is symmetric, the probability is at least 0.875, and if the distribution 
is approximately normal, the probability is about 0.975. 
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3. TIlE INTEREST PROCESS 

A. A stochastic interest ,model. 

The uncertainty associated with the future yields on investments 
is a major issue in the solvency assessment. This uncertainty can be 
accommodated in the analysis by modelling the discount function as a 
stochastic process. We shall assume that the spot rate 6 is an Ornstein- 
Uhlenbeck given by tile stochastic differential equation 

13.11 &Y(t) = K(60 - S(t))& -t- vmv(t) ) 

where 60 and K > 0 are constants and PI’ is a standard Brownian 
motion. The first term on the right serves to always pull the process 
to the mean level 60, and the second term represents pure noise. The 
process is Markov with continuous (but non-differentiable) paths and 
fluctuates with a certain inertness around its typical value 60. It can be 
shown by discrete approximation that the cumulative spot rate process 
in this model is Gaussian and, more specifically, that 

l3.21 
with 

l3.31 Pt = t60 + k(l - eeKt)(S(0) - 60)) 

P4 

x 
gz = - 

1 
K3 ( 

tr; - 2( 1 - epKt) + --(I - e--2nt) 
) 

= 2 
( 
tK + jj (1 - (2 - eeKt ’ ) 1) . 

It can also be shown that 

L3.51 A(s) + Wlqo) - Nh,tr &, > 

where 

13.61 ps,t = (s + t)& + k (2 - epKs - eCKt) (6(O) - So), 

and for 0 < s 5 t, putting r = t - s, 

2 - x 
Us,t - - 

13.71 

r;3 
[ 
(r + 4s)~ + $1 i- e-GT)2(1 - e-2Ks) + 

-4(1 + epKr)(l - e -KS) + i (1 - (2 - epsr)‘)] . 
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~.TERM INSURANCE - A WORKED EXAMPLE 

A. The term insurance contract. 

As a simple example, we shall carry out the solvency analysis for a 
portfolio of standard term insurance policies. The contract specifies that 
the sum insured falls due immediately upon death within the term of 
the contract and that premiums fall due continuously at level intensity 
as long as the contract is in force. 

For an individual policy we denote, dropping the subscript i for the 
time being, 

2, the age at entry, 
t’, the date (calendar time) of entry, 
n, the term of contract (maximal duration of coverage), 
t” = t’ + n, date of expiry of the contract, 
b, the sum insured, 
c*, the premium per year (an intensity). 

Assume that premiums are calculated on a first order technical basis 
with the following elements: 
&, the mortality intensity at age 2, with corresponding survival func- 

tion zpG, 
6*, the interest intensity, with corresponding discount function v*(t) = 

e-6* t 7 
cy’, commission and other costs per unit sum insured, incurring upon 

issue of the policy, 
,B*, premium encashment costs per unit premium paid, 
y*, general administration costs per unit sum insured, incurring per 

time unit as long as the policy is in force, 
all independent of calendar time. 

First, the following basic quantities are calculated by a numerical 
integration procedure (Laplace or Simpson) and tabulated: 

The premium c* is determined by the principle of equivalence, 

c*i& = bcr* + bii; ~ + cocci&, + y’ba,,, 



A solvency study in life insurance 827 

Ai,, = 1 - 6’ db+n) -d(x) _ 93*(-1:f”) 
9; (x) 93*(x) . 

We find 

c* _ b d(x)(QI’ + 1) -93+(x + n) _ ((j* _ y*) 

1 -p* d(x+n) -d(x) 

B. The first and second order moments of the total liability. 

Considering now the entire portfolio of policies currently in force at 
time 0, we reintroduce the subscript for individual policies. The elements 
of a realistic second order technical basis are denoted by dropping the 
asterisk * from the corresponding symbols of the first order basis. Future 
payments in respect of policy No. i are given by 

where Ii(t) is 1 or 0 according as the insured is alive or dead at time 
t, ATi = 1 - Ii(t) is the number of deaths (0 or 1) of the insured by 
time t, and 

P.21 ci = (1 - p)c; - biy . 

Denote by pi(t) and pi(t), respectively, the (conditional) probability 
of survival to t and the mortality intensity at time t for the insured, 
t E (0, ty). It is convenient to define them as 0 for t 2 t:’ (confer [4.1]), 
hence 

P.31 pi(t) = 91cxi+t -u gl(xi _ f) k:dt) ’ 
L4.41 Pi(t) = P(Xi + t - t:)l(t:,ty)(t) . 

The basic quantities involved in [2.8] - (2.lO]are the moments 41 
and 42 and the following moments of the increments A(dT). First, for 
I- > 0, 

f4.51 E A(d7) = Q(-r)dT, 
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with 

[4.6] Q(T) = xQi(4, Qi(~l = V.W(T) - cih(~), 

and 

w.71 E (A(~T))~ = S(T)&, 

with 

WY S(T) = c S,(T) 1 S,(T) = b;pj(T)pj(T). 
i 

Next, for 0 < ,~9 < T, 

E {A(& = EA(tch9)EA(d~) + Cov {A(thJ), A(h)} 

i4.91 
Q(T~)Q(T)&~T + c Cov{Ai(dti) , Ai( 

= Q(~)Q(T)~Q~T - x(Q<(d) -k cj)Qi(~)ddd~, 
i 

having used 

Cov{Ai(chY), Ai( = E{(6jrVi(dB)-ci~i(~)d~~)(6iN,(t/7)-~~li(7)~~7)} 

- Qi(i9)Qi(~)dSd~ 

= E{-C,diS(biN,(dT) - CjIj(T)dT)}~t 

- QT(tY)Qi(~)dQd~ 

= -ciQi(r)tlQ&r - Q;(Q)Q,(T)~&IT. 

On couGling these reslilts with [2.8]- [2.10], we gather the following 
formulas, which forin a basis for numerical algoril~lims: 

p.101 EV = 
J 

M h (-r)Q(T)dT, 
0 

[4.11) 

Var V = 2 R(T)Q(T)~/T - 2 J’\‘C Ti(~)Qi(~)dr 
0 SW 0 i 

J 
130 -k &(T)S(T)~T - (E V)” , 

n 
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where 

[4.12] R(r) = 

[4.13] 

C. Numerical results SOI- an authentic portfolio. 

Data from a Norwegian portfolio of 7073 term insurance policies 
has been put at our disposal. For a t!rpical policy the age of the insured 
is between 30 and 50, the sum insured is between NOK 100.000 and 
1.000.000 (NOK 1 = $ 0.17), and the remaining contract period is 
between 0 and 10 years. 

In our example the first and second order t,echnical bases are as- 
sumed to be the same and equal to the st,andard Norwegian first order 
technical basis, by which IL* (x) = 0.0009 + 0.0000‘14 10°.0‘12z, 6” = 
111(1.04), a* = 0.03, p* = 0.05, and y* = 0.00275. The results 
turned out as follows: lZ I/ = -53.718.706 (negative clue t,o the substan- 
tial expenses incurring upon issue of policies), dm = 8.375.241, the 
reserve for the entire portfolio by formula [2.12] is -42.968.225, and the 
fluctuation reserve per policy (2&CV/( number of policies)) is 2.368. 

The fluctuation reserve per policy will of course bc roughly pro- 
portional to the inverse sqllare root of the munber of policies. One 
important conclusion that can be drawn from the present. analysis is 
that it is of considerable size even for a fairly large business. This is due 
to the riat,llre of the term insurance: deaths are rare events with serious 
economic conseqllenccs for the iiisurer. 

The numerical results are not subsl,antially affectetl by letting the in- 
terest rate be truly stocllastic and gencratrtl by the Ornsteill-rJlllcnbeck 
process of Paragraph 3 as long as 6(O) = 60 = ln(l.O-1) and X is given re- 
alistic values between 0 and 0.001: the reserve Tunis ollt, to deviate from 
the value above by less thall one per cent. This expcricnct is preslunably 
due to the overall short durations of the contracts ill term insurance and 
may well come out tlilrerc~lll,ly for long term pcansion contracts. 
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5. ISSUES OF FURTHER STUDIES 

The present paper is an excerpt of a preliminary report prepared for 
a working party commissioned by the Norwegian Insurance Association 
to propose a system for solvency control of life insurance companies. A 
comprehensive report is in preparation. It will include further investiga- 
tion of appropriate models for stochastic interest, formulas for moments 
up to third order, computation of approximate upper percentiles based 
on the three first moments, and analyses extended to pension plans and 
more complex forms of insurance. 
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