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ABSTRACT

In this paper a Bayesian approach is utilized to analyzedleeaf the underlying asset and interest rate
model in the market consistent valuation of life insuranokicges. The focus is on a novel application
of advanced theoretical and computational methods. A gteed participating contract embedding an
American-style option is considered. This option is valusthg the regression method. We exploit
the flexibility inborn in Markov Chain Monte Carlo methods ander to deal with a fairly realistic
valuation framework. The Bayesian approach enables usd@ssl model and parameter error issues.
Our empirical results support the use of elaborated instéalylized models for asset dynamics in
practical applications. Furthermore, it appears that Huéoe of model and initial values is essential for
risk management.
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1 INTRODUCTION

Most participating life insurance policies include imiioptions representing a significant
risk to the company issuing these contracts. Concern ovglidinoptions is also reflected in
recent regulatory processes: one of the key objectivesedbtiivency Il project is to encourage
and provide incentive for insurance companies to measuteramage their risks better. Also
financial reporting requires an evaluation of the marketi@aif implicit options at fair value,
c.f. e.g. European Comission (2008), Gatzert and Schm&©&86), and Ronkainen et al.
(2007). Not surprisingly, market consistent valuationite Insurance contracts has become
a popular research area among actuaries and financial maibems; see e.g. Tanskanen
and Lukkarinen (2003), Bernard et al. (2005), Ballotta e{2006), Bauer et al. (2006) and
Grosen and Jorgensen (2000). However, most valuation madlelwing for sophisticated
bonus distribution rules and the inclusion of frequenfligred options assume a simplified set-
up. One of the aims of this paper is to present a more rediiaticework in which participating
life insurance contracts including guarantees and optanse valuated and analyzed.

Assumptions on the price dynamics of underlying assetsteadoartial diferential equa-
tion characterizing the price of the option. Several fezgumay, however, limit the suitability of
calculating option prices directly by solving partiatférential equations. The reason for this is
that apart from "vanilla options”, most calculations inxe®the evaluation of high-dimensional
integrals. For instance, if the asset price dynamics affecently complex (the pay® of an
option depends on the paths of the underlying assets) oeifittmber of underlying assets
required by the replicating strategy is large (greater thaee), a partial dierential equation
characterizing the option price may befdiult to solve. Instead, Monte Carlo methods are
used routinely in pricing this kind of derivatives (Glagsan, 2003). Nonetheless, pricing
American-style options via Monte Carlo simulation stilirains a very challenging task. The
problem lies in the estimation of the early exercise denis@vailable.

Applications of Monte Carlo methods in life insurance are@sxrarce. Zaglauer and Bauer
(2008) present a framework in which participating life irece contracts can be valuated
and analyzed in a stochastic interest rate environmengudionte Carlo and discretization
methods. Bacinello et al. (2008) describe an algorithm dasethe Least Squares Monte
Carlo method to price American options. Their frameworkal e.g. randomness in mortality.
Hardy (2002) uses Bayesian MCMC methods forféedent problem, i.e. the risk management
of equity-linked insurance.

The price of an option depends on the model describing thavi@hof the underlying
instrument. Most approaches specify a particular stoahpeicess to represent the price dy-
namics of the underlying asset and then derive an expliging model. However, neither
the true model, nor its parameter values are known. A commactipe is to assume a rel-
atively simple model, and to use point estimates of the mpdedmeters. Yet many options
in practice require an elaborate time-series specificdtiothe price dynamics of the under-
lying asset, since a too simple model might fail to explaiaphice of its derivative (see, e.g.,
Brigo and Mercurio, 2001). Hence, it becomefidult at best to derive explicit pricing formu-
lae. Furthermore, with the additional complexity of a riche-series specification, estimation
uncertainty becomes a genuine concern.

Participating life insurance contracts are characterlzg@n interest rate guarantee and
some bonus distribution rules. One of the most most commbarggpavailable is the possibility
to exit (surrender) the contract before maturity and rexailump sum reflecting the insurer’s
past contribution to the policy minus some charges. Theser/ian-style options are called
surrender options. In the related research the emphasksleason the mathematics of pricing
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and on Monte Carlo experiments.

In this article we describe in detail how to apply Bayesiatistics to value participating
life insurance contracts including surplus options usirigidy realistic model for assets and
interest rates. However, we ignore the risk from mortatityhis analysis. We follow Bunnin et
al. (2002), who use Bayesian numerical techniques to prieerapean Call option on a share
index. When estimating the option price, they simulate thstgrior predictive distribution of
the underlying asset by averaging over alternative moateldteaeir parameters, thus taking into
account the uncertainty related to them. In order to valueeAcan-style options we use the
Longstdf and Schwartz (2001) regression approach, which approgsrtae value of the op-
tion against a set of basic functions. We address questimng:aa) implementation of MCMC
and regression methods for option pricing, b) statisticadielling and analysis of financial time
series, ¢) model and parameter errors. The two major befrefitsusing Bayesian techniques
are that we can explicitly acknowledge the risks associtdethodel choice and parameter
estimation.

The paper is organized as follows. Section 2 introducesrdmdwork and model, Section
3 presents the estimation and evaluation procedures ariohisdcthe empirical results. The
final Section 5 concludes.

2 THE FRAMEWORK

2.1 Theparticipating life insurance contract

Our goal is to price a participating life insurance, whicmsigts of two parts. The first part is
a guaranteed interest and the second part a bonus depemndimg yield of some equity index.
We denote the amount of savings in the insurance contrachat;tby Y(t). Then its growth
during a time interval of length = t;,; — t; is given by

Y(tii1) X(ti1) q 6)

og Y(t) X(t)

=gd + bmax(O, log (1)
whereX(t) = ?:0 S(ti;)/(g + 1) is the moving average of the equity index total ret8(h).
The guaranteed ratgis set to be less than the riskless interest rate. The bomelb ra the
proportion of the excessive equity index yield that is reédr to the customer. In this study we
use the time interval = 1/255, where 255 is approximately the number of the days in a yea
on which the index is quoted. The model also incorporatesraisder (early exercise) option
and the possibility for a penalty, which occurs if the customeclaims the contract before the
final expiration date.

In the following, we will consider the cases when (i) the ks interest rate is fixed at a
predetermined valueand (i) it is assumed to be stochastic. For the constantasteate the
guaranteed ratg is set atkr throughout the entire contract period for some consgtantl. In
the case of stochastic interest rate the guaranteed rat@dsfor one year at a time. It is set
annually atkr;, wherer, is the short-term interest rate at tineln this framework the penalty
for early exercise and the parametkrg andb are predefined by the insurance company. We
determine the market consistent bonus rate such that tbe pfithe contract will be equal to
the initial savings. This gives the contract a simple stireeand makes its costs and returns
visible and predictable for the insurer and the customer.n@ain interest is to study thefects
of the expiration date, guarantee rate and penalty rate @fathbonus rate in both constant
and stochastic interest rate cases.
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2.2 Modd with constant interest rate

The constant elasticity of variance (CEV) model introdubgdox and Ross (1976) is used to
model the equity index process. It is defined by the stoahdgferential equation

dS; = uSidt + vSH*dw, (2)

wherey, v anda are fixed parameters a is a standard Brownian motion under the real-
world probability measure. I = 0, the model (2) becomes a geometric Brownian motion.
The model may also be written in the form

dS; = rSdt + vS}dz, (3)

wherer is the riskless short-term interest rate afidhe standard Brownian motion under a
risk-neutral probability measure. Parameteasda are unknown and will be estimated.

2.3 Modd with stochastic interest rate

Let Z",i = 1,2, 3 be standard Brownian motions under a risk-neutral prdibabieasureQ,
where the Brownian motion&™ and zZ® are assumed to be independent & and z*
correlated through

2% = pz? + \1+p2Z.
We assume that the riskless short-term interestrgdtdlows the process
dr, = «(& — ro)dt + or7dz®, (4)

wherex, &, oo andy are unknown parameters, which will be estimated. This E®ceas
introduced by Chan et al. (1992), who provide a good summahort-term interest rate
models in their paper. The two most commonly used modelstwhiay be derived from (4) by
parameter restriction are the following:jf= 0, the model becomes the Ornstein-Uhlenbeck
process proposed by Vask (1977) as a model of the short rate, and, # % it becomes the
square-root dfusion referred to as the Cox-Ingersoll-Ross (CIR) modek(€al., 1985).

Similarly to the fixed rate case, we assume that the stockifalkows the CEV process
and that its stochasticftierential equation unde) is

dS; = rSidt + vSiodz®. (5)

Now the discounted pric8; = S; exp(- fot r«ds) is a martingale unde®.

To our knowledge, this system of equations does not havesadlorm solution. Therefore,
we will use its Euler discretization for estimation and slation purposes. In order to obtain
numerical stability in estimation, we reparametrize mddghs

dx; = (8 — kx)dt + 7x'dz?,

wherex, = 100r, (the interest rate given in percentage®)= 100«¢ andt = (100)70.
Assuming that the bivariate process has been observedatyegpaced time points, @, ...Nd,
the likelihood function can be written in the form

N 1 [ (Axis — (B - KX(i—1)5)5)2)
p(yle) = ———————€exp|—
li:—1[ ; /2717'2)(57_1)66 272 iy—l)(sé

N 1-a )2
o 1_[ 1 exp[ (ASM —/,lS(i_1)55 - VS(i—l)épAZicS ) }
— B 2(1-a) (1 _
i=1 \/271'1/285(_11)5)(1 - p3)o 2v2S 24y (1= p?)6

(6)

4



Luoma, Puustelli, Koskinen — Bayesian Analysis of Par#itipg Life Insurance

wherey is datag = (v, @, B, k, 7,7, p), AXis = Xis — Xi-1)s, ASis = Sis — S(i_1)s and
Xis = Xi-16 — (B — KX(i-1)5)0

Y
TXi—1)5

AZD) =

3 ESTIMATION AND EVALUATION PROCEDURES

3.1 TheMetropolisalgorithm

The unknown parameters of the stock index and interest ratkelm are estimated using Bayesian
methods. This makes it possible to take parameter uncirtaito account when evaluating
the fair prices of derivatives. We follow Bunnin et al. (20G#hd simulate the paths of the
underlying asset using their posterior predictive distitm. However, we do not average over
models, since we assume that model uncertainty can be takemaécount by using a fi+
ciently general, continuously parametrized family of dizitions (see Gelman et al., 2004).
In both fixed and stochastic interest rate cases we use theddis algorithm introduced by
Metropolis et al. (1953) to simulate the joint posteriortdimition of the unknown parameters.

The Metropolis algorithm is a Markov Chain Monte Carlo (MCM@ethod and can be
used to simulate Markov chains with given stationary disttions. MCMC methods are es-
pecially useful when direct sampling from a probabilitytdizution is dificult. The Metropo-
lis algorithm is based on an acceptamegction sampling and is thus more flexible than the
Gibbs sampler, which presumes the full conditional distitns of the target distribution to
be known. In order to implement the Metropolis algorithmeamly needs to know the joint
density function of the target distribution up to a constaroportionality.

Suppose that we wish to simulate a (multivariate) distrdsutvith densityp(d). The al-
gorithm works as follows: We first assign an initial valé®esuch thatp(6°) > 0 from the
starting distributiorpg(6). Then, assuming that vecta#$ 6%, ..., 61 have been generated, we
generate a proposéli for 6' from a suitable jumping distributiod(6*|6*-%). In the case of the
Metropolis algorithm it is assumed that the jumping disttibn is symmetric in the sense that
J(6a16p) = J(6p]6,) for all 6, andé,. Finally, iterationt is completed by calculating the ratio

_ ()
p(E*")

and by setting the new value at
o= 6*  with probability ming, 1)
61 otherwise

It can be shown that, under mild conditions, the algorithodpices an ergodic Markov Chain,
whose stationary distribution {%(6). We see that the transition kerrig(¢'|¢'-1) is a mixture of
discrete probability ad* = 6! and the jumping density(6*|6"1).

As mentioned above, we use the Metropolis algorithm to satewthe posterior distribution.
The posterior density is proportional to the product of therdensity and the likelihood,

p(6ly) o< p(6) p(y16).
We use an improper uniform prior distribution
p0) < {

The posterior function is thus proportional to the likelilglo(6) in a feasible region of parame-
ters.

1 whenlp| <1and ming,é&,o,v,a) > 0,
0 otherwise
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3.2 Procedureto evaluatethefair bonusrate
3.2.1 Pricing American options with regression methods

The participating life insurance contract we want to prigeni practice an American option
with a path-dependent moving average feature. An Amerigdio gives the holder the right
to exercise the option at any time up to the expiry datén pricing we adopt the least squares
method introduced by Longdfaand Schwartz (2001). It is a simple but powerful approx-
imation method for American-style options. In the follogibrief introduction we follow
Glasserman (2003).

The pricing of an American option is based on an optimal égeng strategy. Let us assume
that the relevant underlying security prices of the econdotipw a d-dimensional Markov
processX(t) and that the paybvalue of the option at timeis given byh(X(t)). The procesX(t)
may be augmented to include a stochastic interestr(gtand, in the case of path-dependent
options, past values of the underlying processes as well.

Furthermore, let#} denote the natural filtration ok(t) and let7” denote the set of all
stopping times with respect to it. We will assume that thesies whether to stop at time
is a function ofX(t). The goal in optimal exercising is to find a stopping time maxing the
expected discounted payof the option. The price of the option is given by

SupE [exp(— fOT r(s)ds) FI(X(T))] ,

€T
where the expectation is taken with respect to a risk-nepitadability measure.
It is assumed that the option can only be exercised attléscrete times < t; < t, <
- <ty = T. If desirable, one can improve the approximation to corttiusly exercisable
options by increasing. To simplify notation we will writeX(t;) asX;. Leth; denote the pay®
function for exercise at; and\7i(x) the value of the option &t givenX; = x. One can then
represent pricing algorithms recursively as follows:

\7m(x) = F\m(x)
Vi1(%) max{hi_1(x), E[Di_1; (X )Vi(X)Xi_1 = X},
i=1...m,

whereD;_1;(X) is the discount factor from)_; to t;. We thus assume that the discount factor
is a function ofX;, which may be achieved by augmentiKkg if necessary. Typically, it is of
the formD;_1;(X) = exp(— fti“l r(u)du). One can show that equivalent to the procedure de-
scribed above is to deal with time zero valig) = Do (X)hi(X) andVi(x) = Dg;i(X)Vi(x), i =
0,1, ...,m; see Glasserman (2003). Then, at timene compares the immediate exercise value
hi(X) and the continuation valu@ (x) = E[Vi;1(Xi11)IX = X].

In regression methods it is assumed that the continuatiievaay be expressed as the
linear regression

M
E[Vii1(Xii)IXi = X] = Zﬁirkl’r(x),
r=1

for some basis functiong, : R — R and constantg;, r = 1,.., M. In order to estimate
the codficients one first generatd3 independent pathfXyj, ..., Xmj}, ] = 1,...,B, and sets
\7mj = hn(Xmj), ] = 1,..., Bat terminal nodes. Then one proceeds backward in time aimd) us
ordinary least squares, fits at timpehe regression model

M
Vi j(Xisnj) = Z,Birkl’r(xi,j) +6j, ]=1..,B, (7)
r=1

6
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where € are residuals. The estimated value of the option for ga#t timet; is \7ij =
maxhi(Xi;), Ci(Xij)}, whereCi(X;) is the fitted value from equation (7). Finally, the estimate
of the option price is given by = (V11 + ... + Vi5)/B.

3.2.2 Implementation: Choosing the regression variables

In our application, the continuation values of the optiopeted on the path of the underlying
index value in a complicated way. However, we think that therent value of the index,
its moving average and the first index value appearing in tbeimy average may be used
to predict the continuation value reasonably well. The usthe moving average may be
motivated by observing that the growth of savings in the nasae contract depends on the
path of the moving average; see equation (1). The curremxinvdlue and the first value
appearing in the moving average help predict the futureugvni of the moving average. The
current amount of savings also helps predict the contionatalue, but it is not included in
the regression variables. Instead, it is subtracted framrégressed value before fitting the
regression and subsequently added to the fitted value.

To avoid under- and overflows in the computations, the regvasvariables are scaled by
the first index value. Thus, the following state variablesaged:X;(t)) = S(t})/S(0), Xx(t;) =
|29, S(t-)/(a+ 1)| /S(0) andXs(t) = S(ti-g)/S(0). However, multicollinearity problems
would occur, if all the variableX;, X, and X3 were used at all time points. In factz would
be equal for all simulations paths fox g and the moving average§ would be very close
to each other for small values af Therefore, we apply the following rule: The variable
alone is used for < g/2, X; andX; are used fog/2 < i < 3g/2 and all variables are used for
i > 3g/2. In this study the lag length in the moving average was ahtséeq = 125 (that is,
half a year).

We use Laguerre polynomials, suggested by Lorfjatad Schwartz (2001), as basis func-
tions. More specifically, we use the first two polynomials

Lo(X)
L1(X)

expEX/2)
expEX/2)(1- X)

for the variabley, X, andXs. In addition, we use the cross-producgéX;)Lo(Xz), Lo(X1)L1(X5),
L1(X1)Lo(X2), Lo(X1)Lo(X3) andLo(X2)Lo(X3). Thus, we have altogether 11 explanatory vari-
ables in the regression. At time points, where oXlyis used, we have only two explanatory
VariableS,Lo(Xl) and L]_(X]_)

3.2.3 Implementation: Inverse problem

Using the procedure described above we can determine tlomgypice (that is, the price of the
insurance contract) when the bonus tatend the guaranteed ragdnave been given. However,
we are interested to determine the bonus rate such thatitteeqdrthe contract will be equal
to the initial savings. This would give the contract a traargpt structure. The problem of
determiningb is a kind of inverse prediction problem and we need to estrtia option value
for various values db. Since there are several sources of uncertainty involvétsiestimation

of the option price, we also need to repeat it several times$ixed values ofb. We end up
estimating a regression model, where option price estsrate regressed on bonus rates. We
found the third degree polynomial curve to be flexible endlaglthis purpose. After fitting the
curve, we solve the bonus rabdor which the option price is equal to 100, which we assume
to be the initial amount of savings.
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Prior to fitting the polynomial, it is, however, necessargledermine an interval, where the
solution is situated. For this purpose we developed a maldiigection method. In the method,
one first specifies initial upper and lower limits for the bemate; we use the valués- 0 and
u = 1. Then one estimates the option pricelaty)/2. If the price is greater than 100, the lower
limitis set atl + (u—1)/4; if the price is smaller than 100, the upper limitis setaB(u—1)/4.
This procedure is continued until- | = 0.15. Note that the new limit is not set at the middle
of the interval, as is done in the ordinary bisection metlsat;e this might lead to missing the
correct solution due to the randomness of price estimates.

Figure 1 illustrates the estimation procedure. The optiocegds estimated for 25 ferent
bonus rates and the estimation is repeated 10 times for eaurslyate, which produces 250
points to the scatter plot. Each estimation is based on 1000laed paths. The smallest
and largest bonus rate were determined using the modifiedtima method described above.
When producing this figure, the time to maturity was assuroeoet 3 years, the guaranteed
rate 0 and the interest rate constant and equal to 0.04. Weemathat the fair bonus rate is
approximately 0.32.

100.3
|

100.2
|

price

100.1
|

100.0
o
D

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

bonus rate

Figure 1: Option price estimates vs. bonus rates.

As mentioned above, the bonus rate is solved from the equatio f(x), wherey is the
price of the contract and

f(X) = Bo+ Bux+ BoXC + Bax® = X',é, (8)

whereB = (Bo, A1, 52, B3) is the OLS estimate of the regression model and (1, x, X2, x3)’
a regression vector. Using the delta method, one also abésirapproximate variance for the
estimate ofx:
o 1 1 . ~o
Var(X) ~ ﬁVar(f(x)) ~ — - ——X'Var(p)X.
[F(x)] (B1 + 28,3+ 335
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4 EMPIRICAL RESULTS

4.1 Estimation of the parameters

In order to experiment with actual data and to estimate th@ownwn parameters of the models
(3), (4) and (5), we chose the following data sets: As an ggndex we use the Total Return
of Dow Jones EURO STOXX Total Market Index (TMI), which is anlsémark covering ap-
proximately 95 per cent of the free float market capital@aof Europe. The objective of the
index is to provide a broad coverage of companies in the Eame including Austria, Belgium,
Finland, France, Germany, Greece, Ireland, Italy, Luxeundpathe Netherlands, Portugal and
Spain. The index is constructed by aggregating the stoekkett on the major exchanges of
Euro zone. Only common stocks and those with similar charstics are included, and any
stocks that have had more than 10 non-trading days duringa$tethree months are removed.
In estimation, we use daily quotes from March 4th, 2002 @wwitember 6th, 2007.

As a proxy for riskless short-term interest rate, we use mrevhich is the benchmark
rate of the large Euro repo market. Eurepo is the rate at wimehprime bank fiers funds in
euro to another prime bank if in exchange the former recdes the latter Eurepo GC as
collateral. It is a good benchmark for secured money markesactions in the Euro zone. In
the estimation of the interest rate model we use the 3 montéydeurate, since it behaves more
regularly than the rates with shorter maturities. Both titeek and interest series are presented
in Figure 2.

Dow Jones EURO STOXX TMI

200 400
| | | |

2002 2003 2004 2005 2006 2007 2008

Time

Eurepo, 3 months

0.020 0.035
I I I |

2002 2003 2004 2005 2006 2007 2008

Time

Figure 2: The equity index and interest series

We had no remarkable convergence problems when estimagngodel parameters. We
used three chains in MCMC simulation and all chains conwergpidly to their stationary dis-
tributions. The summary of the estimation results, as welbalman and Rubin’s diagnostics
(see Gelman et al., 2004), are given in the Appendix. Thesgabfithe diagnostic are close to 1
and thus indicate good convergence. All computations wexgenand figures produced using
the R computing environment (see hffywww.r-project.org).

The posterior distributions of the parameter@quation (2)) angt (equation (4)) are shown
in Figure 3. As already noted in Section 2.2, the CEV modebbess the geometric Brownian
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0.6 0.7 0.8 0.9 1.0 11 12 0.4 0.6 0.8 1.0

Figure 3: Posterior distributions of the parametefgndex model) and (interest rate model).

motion whene = 0. The figure reveals clearly that the posterior probabdity being around
zero is vanishingly small, which makes the geometric Brannmmotion highly improbable. We
also tested its use in the pricing of the contract and fouatlitiyave considerably lower bonus
rates than the more general alternative. This illustrab@sdur approach to use general models
efficiently prevents the model error resulting from the use afcasimple model. On the other
hand, we see that = 1/2 is not highly improbable in the interest rate model, so tlozleh
error would not be large if the CIR model were used insteati®@iore general model.

4.2 Evaluation of fair bonusrate

There are several parameters which may be varied in thecipating life insurance contract
described by equation (1). These include the duration ottmeractT, the lag length of the
moving average of the index and the guaranteedgakairthermore, the number of simulated
paths needs to be decided when estimating the contract paaeell as the number of estima-
tion repetitions when determining the fair bonus rate. |c¢hse of the constant interest rate
model, the interest rate must be fixed at some level, and indbke of stochastic interest rate,
the starting level of the interest rate must be given. Ourehatso incorporates the possibil-
ity of a penalty rate. ThefBect of the penalty is that the insurance company detainstaicer
percentage of the savings, if the customer reclaims theadriiefore the final expiration date.
When the penalty rate is set at a high level, the price of theraot is determined like that
of a European option, since the customer probably wishegép khe contract until the final
expiration date.

We compared the accuracy of fair bonus rate estimation irid@ving two cases: first,
we simulated 1000 paths to estimate the contract price q@éted the estimation 250 times to
estimate the fair bonus price using the regression modea(®), second, used 500 simulation
paths and repeated it 500 times. We found that the standemdadrthe bonus rate estimate
was in the second case almost twice as large as in the first Tageindicates that it is more
important to increase the number of paths in the option pradeulation than the number of
repetitions in the bonus rate calculation. However, thiEedénces in the bonus rate estimates

10
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were very small; the maximumfiierence was 0.6 percentage units in our simulations.

The estimates of the fair bonus rate in the cases of consttarest rates 0.04 and 0.07
are shown in Tables 1 and 3, respectively. The guarantesvesteset at O, /B and 23 of the
interest rate, that is, 0, 0.013 and 0.027 fo 0.04, and 0, 0.023 and 0.047 for= 0.07.
The corresponding results for the stochastic interestgase with the starting interest rate
levels 0.04 and 0.07 are shown in Tables 2 and 4, respectiVdlg guarantee rate was not
fixed at a constant value throughout the entire contracbfddsut it was fixed for one year at
a time. More specifically, it was set at §3land 23 of the short-term interest rate prediction
at intervals of one year. In all cases, the lag length of theingpaverage was 125 days, the
number of simulated paths 1000 and the number of estima2idds

Table 1: Fair bonus rate and its standard error in the casenstant interest rate= 0.04.
length of the contract guarantee rate penalty rate bones r&E of bonus rate

3 0 0 0.308 0.01
3 13 0 0.218 0.012
3 2/3 0 0.117 0.012
3 0 0.03 0.498 0.006
3 13 0.03 0.368 0.004
3 2/3 0.03 0.205 0.002
10 0 0 0.308 0.017
10 13 0 0.218 0.011
10 23 0 0.133 0.016
10 0 0.03 0.493 0.003
10 13 0.03 0.373 0.002
10 23 0.03 0.212 0.001

Table 2: Fair bonus rate and its standard error in the casedfastic interest rate with= 0.04
as the starting level.

length of the contract guarantee rate penalty rate bones r&E of bonus rate

3 0 0 0.303 0.01
3 13 0 0.216 0.013
3 2/3 0 0.117 0.014
3 0 0.03 0.493 0.006
3 13 0.03 0.365 0.004
3 2/3 0.03 0.202 0.002
10 0 0 0.305 0.013
10 13 0 0.221 0.012
10 23 0 0.125 0.011
10 0 0.03 0.488 0.003
10 13 0.03 0.368 0.002
10 23 0.03 0.211 0.001

When comparing the results in Tables 1 and 2 one can see &fateld and stochastic inter-
est rate models are similar in that the estimated bonusdatast have significant ffierences.
The estimation errors are also similar in these cases. Hawewne can note that the estima-
tion error is smaller in the cases where the penalty is iredud the contract. This is since
the penalty changes the contract to an European-stylemptibich removes the uncertainty
related to optimal stopping.
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We see from Tables 1, 2, 3 and 4 that the duration of the cdrdoss not generallyfBect
the bonus rate. Only in the cases where there is penalty ahgufirantee rate ig2 of the
interest rate, the bonus rate of 10 years seems to be lamethht of 3 years, the flierence
being most obvious when the interest rate is fixed at 7 pescdititis phenomenon is not easy
to explain and might be due to an estimation error relatedg¢aegression method.

Table 3: Fair bonus rate and its standard error with consgtéariest rateg = 0.07.
length of the contract guarantee rate penalty rate bones r&E of bonus rate

3 0 0 0.481 0.014
3 13 0 0.363 0.016
3 2/3 0 0.205 0.017
3 0 0.03 0.72 0.008
3 13 0.03 0.572 0.006
3 2/3 0.03 0.345 0.004
10 0 0 0.484 0.02
10 13 0 0.366 0.017
10 23 0 0.207 0.012
10 0 0.03 0.716 0.005
10 13 0.03 0.584 0.004
10 23 0.03 0.372 0.002

Table 4: Fair bonus rate and its standard error in the cagedfastic interest rate with= 0.07
as the starting level.

length of the contract guarantee rate penalty rate bones r&E of bonus rate

3 0 0 0.476 0.012
3 13 0 0.355 0.012
3 2/3 0 0.204 0.015
3 0 0.03 0.701 0.006
3 13 0.03 0.55 0.006
3 2/3 0.03 0.322 0.003
10 0 0 0.477 0.016
10 13 0 0.36 0.013
10 23 0 0.202 0.012
10 0 0.03 0.678 0.003
10 13 0.03 0.538 0.004
10 23 0.03 0.329 0.002

When the initial interest rate is largar £ 0.07), there seems to be a systematitedence
between the constant and stochastic interest rate modkishws seen from Tables 3 and
4. The estimated bonus rates tend to be smaller in the stich@grest rate model. The
difference is especially large when there is penalty and theidars 10 years. The reason
is probably the mean-reverting property of the interest rabdel, which causes the interest
rate to decrease during the contract period. This propéstyraakes the bonus of the 3 years
contract larger than that of the 10 years contract when ttegast rate is stochastic and the
penalty and guarantee rates are O.

Finally, one should note that the regression methods usdet@mmining the prices of Amer-
ican options are approximative and that there may occur tiogerrors related to the choice
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of regressors. Therefore, the standard errors presentbe iabove tables do not tell the ac-
tual accuracy of the fair bonus rate estimates. It is posgsibldetermine reliable lower and
upper bounds for the prices of American options (see Andexsd Broadie, 2004, Haugh and
Kogan, 2004, or Glasserman, 2003), but we have not calclih&n here.

5 CONCLUSIONS

This paper has attempted to provide a full Bayesian anabfsgarticipating life insurance
contracts in a way which leads to fair valuation. The Bayesipproach enables us to exploit
Markov Chain Monte Carlo methods and analyze estimationnandel errors. A guaranteed
participating contract embedding an American-style aptias valued using the regression
method. Both fixed and stochastic interest rate environsneete studied. In the analysis
we focused on financial risks and ignored the risk from mitytalAs Ballotta et al. (2006)
note, in this type of model one can interpret the policyholdesurvive until the maturity of
the contract. The model thus provides an upper bound foramse liabilities. As a concrete
problem we quantified theffect of the discount rate, guarantee rate and penalty rateedait
bonus rate.

The adopted approach leads to a fairly realistic valuatiaméwork, which accommodates
the main empirical features of the contracts. The equitgxndeld was modelled with the CEV
model and the interest rate with a generalization of thedéksand CIR models. The equity
index and interest rate processes were assumed to be tedrelor the sake of comparison,
we also estimated the equity index yield independently efititerest rate and valuated the
contract assuming a fixed interest rate. When the methogalag applied to financial time
series, we found clear evidence that the CEV model, whichiattyp allows departures from
the geometric Brownian motion, provides a better fit to d@tas is an important feature, since
we can avoid a modelling error by using a more general model.

One important algorithmic feature, which we found, is tmabrder to improve estimation
accuracy it is more important to increase the number of pattise option price calculation
than the number of repetitions in the bonus rate calculatimother interesting finding was
that the duration of the contract did not have a significdfgot on the fair bonus rate when
there was no penalty for reclaiming the savings prior to e d@f maturity. When the penalty
rate was set at 3% there were somi@atiences, but it is not clear if thesdtérences are actual
or if they are due to a possible modelling error related torédggession method. It is possible
to determine reliable lower and upper limits for the pricEAmerican options but we have not
calculated them here.

We also found that there were no significarfteliences in the fair bonus rate between the
stochastic and fixed interest rate models when the initigr@st rate was set at 4%. When
the initial interest rate level was set at a higher level of th&fair bonus rate was estimated
to be lower in the stochastic interest rate case. This résypitobably a consequence of the
mean-reverting property of the interest rate model.

The practical import of the results presented here relatdstextent to which the better fit
and error evaluations associated with the Bayesian asdlygsislate into better risk manage-
ment and more accurate valuation.
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APPENDI X

The posterior simulations were performed using the R comgu@nvironment. The following
output was obtained using the summary function of the addamkage MCMCpack:

Table 5:; Estimation results of the index model with constararest rate

Number of chains = 3
Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
mu 0.08723 0.06768 0.0005526 0.001766
log nu 3.41621 0.32460 0.0026503 0.009327
alpha 0.88321 0.05544 0.0004526 0.001592

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
mu -0.0448 0.04134 0.08835 0.1316 0.2185
log nu 2.7876 3.20125 3.41310 3.6349 4.0524
alpha 0.7766 0.84630 0.88314 0.9205 0.9914

Gelman and Rubin’s diagnostics
(Potential scale reduction factors):

Point est. 97.5% quantile

mu 1.00 1.01
log nu 1.01 1.03
alpha 1.01 1.03
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Table 6: Estimation results of the index model with stocleasterest rate

Number of chains = 3
Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
mu 0.079225 0.067939 5.547e-04 0.0042595
log nu 3.402534 0.327204 2.672e-03 0.0219129
alpha 0.880626 0.055834 4.559e-04 0.0037286
kappa 0.052439 0.045232 3.693e-04 0.0018596
beta 0.221869 0.132709 1.084e-03 0.0060462
tauA2 0.009487 0.001697 1.386e-05 0.0001046
gamma 0.683214 0.087154 7.116e-04 0.0051778
rho 0.091389 0.025618 2.092e-04 0.0016489

2. Quantiles for each variable:

2.5% 25% 50% 75%  97.5%
mu -0.048659 0.026263 0.079805 0.12508 0.21444
log nu 2.769493 3.176798 3.401768 3.61407 4.04341
alpha 0.772006 0.843013 0.881094 0.91714 0.98700
kappa 0.001606 0.018515 0.039505 0.07354 0.16534
beta 0.035210 0.126786 0.200871 0.29001 0.53552
tau’r2 0.006695 0.008333 0.009257 0.01045 0.01355
gamma 0.504586 0.627500 0.687341 0.74042 0.84705
rho 0.041503 0.075450 0.090498 0.10661 0.14419

Gelman and Rubin’s diagnostics
(Potential scale reduction factors):

Point est. 97.5% quantile

mu 1.01 1.04
log nu 1.01 1.02
alpha 1.01 1.02
kappa 1.01 1.03
beta 1.01 1.03
tauAr2 1.02 1.06
gamma 1.04 1.10
rho 1.01 1.03
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