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ABSTRACT

In this paper a Bayesian approach is utilized to analyze the role of the underlying asset and interest rate
model in the market consistent valuation of life insurance policies. The focus is on a novel application
of advanced theoretical and computational methods. A guaranteed participating contract embedding an
American-style option is considered. This option is valuedusing the regression method. We exploit
the flexibility inborn in Markov Chain Monte Carlo methods inorder to deal with a fairly realistic
valuation framework. The Bayesian approach enables us to address model and parameter error issues.
Our empirical results support the use of elaborated insteadof stylized models for asset dynamics in
practical applications. Furthermore, it appears that the choice of model and initial values is essential for
risk management.
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1 INTRODUCTION

Most participating life insurance policies include implicit options representing a significant
risk to the company issuing these contracts. Concern over implicit options is also reflected in
recent regulatory processes: one of the key objectives of the Solvency II project is to encourage
and provide incentive for insurance companies to measure and manage their risks better. Also
financial reporting requires an evaluation of the market value of implicit options at fair value,
c.f. e.g. European Comission (2008), Gatzert and Schmeiser(2006), and Ronkainen et al.
(2007). Not surprisingly, market consistent valuation of life insurance contracts has become
a popular research area among actuaries and financial mathematicians; see e.g. Tanskanen
and Lukkarinen (2003), Bernard et al. (2005), Ballotta et al. (2006), Bauer et al. (2006) and
Grosen and Jorgensen (2000). However, most valuation models allowing for sophisticated
bonus distribution rules and the inclusion of frequently offered options assume a simplified set-
up. One of the aims of this paper is to present a more realisticframework in which participating
life insurance contracts including guarantees and optionscan be valuated and analyzed.

Assumptions on the price dynamics of underlying assets leadto a partial differential equa-
tion characterizing the price of the option. Several features may, however, limit the suitability of
calculating option prices directly by solving partial differential equations. The reason for this is
that apart from "vanilla options", most calculations involve the evaluation of high-dimensional
integrals. For instance, if the asset price dynamics are sufficiently complex (the payoff of an
option depends on the paths of the underlying assets) or if the number of underlying assets
required by the replicating strategy is large (greater thanthree), a partial differential equation
characterizing the option price may be difficult to solve. Instead, Monte Carlo methods are
used routinely in pricing this kind of derivatives (Glasserman, 2003). Nonetheless, pricing
American-style options via Monte Carlo simulation still remains a very challenging task. The
problem lies in the estimation of the early exercise decisions available.

Applications of Monte Carlo methods in life insurance are more scarce. Zaglauer and Bauer
(2008) present a framework in which participating life insurance contracts can be valuated
and analyzed in a stochastic interest rate environment using Monte Carlo and discretization
methods. Bacinello et al. (2008) describe an algorithm based on the Least Squares Monte
Carlo method to price American options. Their framework allows e.g. randomness in mortality.
Hardy (2002) uses Bayesian MCMC methods for a different problem, i.e. the risk management
of equity-linked insurance.

The price of an option depends on the model describing the behavior of the underlying
instrument. Most approaches specify a particular stochastic process to represent the price dy-
namics of the underlying asset and then derive an explicit pricing model. However, neither
the true model, nor its parameter values are known. A common practice is to assume a rel-
atively simple model, and to use point estimates of the modelparameters. Yet many options
in practice require an elaborate time-series specificationfor the price dynamics of the under-
lying asset, since a too simple model might fail to explain the price of its derivative (see, e.g.,
Brigo and Mercurio, 2001). Hence, it becomes difficult at best to derive explicit pricing formu-
lae. Furthermore, with the additional complexity of a rich time-series specification, estimation
uncertainty becomes a genuine concern.

Participating life insurance contracts are characterizedby an interest rate guarantee and
some bonus distribution rules. One of the most most common options available is the possibility
to exit (surrender) the contract before maturity and receive a lump sum reflecting the insurer’s
past contribution to the policy minus some charges. These American-style options are called
surrender options. In the related research the emphasis hasbeen on the mathematics of pricing

2



Luoma, Puustelli, Koskinen – Bayesian Analysis of Participating Life Insurance

and on Monte Carlo experiments.
In this article we describe in detail how to apply Bayesian statistics to value participating

life insurance contracts including surplus options using afairly realistic model for assets and
interest rates. However, we ignore the risk from mortality in this analysis. We follow Bunnin et
al. (2002), who use Bayesian numerical techniques to price aEuropean Call option on a share
index. When estimating the option price, they simulate the posterior predictive distribution of
the underlying asset by averaging over alternative models and their parameters, thus taking into
account the uncertainty related to them. In order to value American-style options we use the
Longstaff and Schwartz (2001) regression approach, which approximates the value of the op-
tion against a set of basic functions. We address questions about: a) implementation of MCMC
and regression methods for option pricing, b) statistical modelling and analysis of financial time
series, c) model and parameter errors. The two major benefitsfrom using Bayesian techniques
are that we can explicitly acknowledge the risks associatedto model choice and parameter
estimation.

The paper is organized as follows. Section 2 introduces the framework and model, Section
3 presents the estimation and evaluation procedures and Section 4 the empirical results. The
final Section 5 concludes.

2 THE FRAMEWORK

2.1 The participating life insurance contract

Our goal is to price a participating life insurance, which consists of two parts. The first part is
a guaranteed interest and the second part a bonus depending on the yield of some equity index.
We denote the amount of savings in the insurance contract at time ti by Y(ti). Then its growth
during a time interval of lengthδ = ti+1 − ti is given by

log
Y(ti+1)
Y(ti)

= gδ + bmax

(

0, log
X(ti+1)
X(ti)

− gδ

)

, (1)

whereX(ti) =
∑q

j=0 S(ti− j)/(q+ 1) is the moving average of the equity index total returnS(ti).
The guaranteed rateg is set to be less than the riskless interest rate. The bonus rate b is the
proportion of the excessive equity index yield that is returned to the customer. In this study we
use the time intervalδ = 1/255, where 255 is approximately the number of the days in a year
on which the index is quoted. The model also incorporates a surrender (early exercise) option
and the possibility for a penalty, which occurs if the customer reclaims the contract before the
final expiration date.

In the following, we will consider the cases when (i) the riskless interest rate is fixed at a
predetermined valuer and (ii) it is assumed to be stochastic. For the constant interest rater the
guaranteed rateg is set atkr throughout the entire contract period for some constantk < 1. In
the case of stochastic interest rate the guaranteed rate is fixed for one year at a time. It is set
annually atkrt, wherer t is the short-term interest rate at timet. In this framework the penalty
for early exercise and the parametersk, g andb are predefined by the insurance company. We
determine the market consistent bonus rate such that the price of the contract will be equal to
the initial savings. This gives the contract a simple structure and makes its costs and returns
visible and predictable for the insurer and the customer. Our main interest is to study the effects
of the expiration date, guarantee rate and penalty rate on the fair bonus rate in both constant
and stochastic interest rate cases.
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2.2 Model with constant interest rate

The constant elasticity of variance (CEV) model introducedby Cox and Ross (1976) is used to
model the equity index process. It is defined by the stochastic differential equation

dSt = µStdt + νS1−α
t dWt, (2)

whereµ, ν andα are fixed parameters andWt is a standard Brownian motion under the real-
world probability measure. Ifα = 0, the model (2) becomes a geometric Brownian motion.
The model may also be written in the form

dSt = rStdt + νS1−α
t dZt, (3)

wherer is the riskless short-term interest rate andZt the standard Brownian motion under a
risk-neutral probability measure. Parametersν andα are unknown and will be estimated.

2.3 Model with stochastic interest rate

Let Z(i)
t , i = 1, 2, 3 be standard Brownian motions under a risk-neutral probability measureQ,

where the Brownian motionsZ(1)
t and Z(3)

t are assumed to be independent andZ(1)
t and Z(2)

t

correlated through

Z(2)
t = ρZ(1)

t +
√

1+ ρ2Z(3)
t .

We assume that the riskless short-term interest rater t follows the process

dr t = κ(ξ − r t)dt + σrγt dZ(1)
t , (4)

whereκ, ξ, σ and γ are unknown parameters, which will be estimated. This process was
introduced by Chan et al. (1992), who provide a good summary of short-term interest rate
models in their paper. The two most commonly used models which may be derived from (4) by
parameter restriction are the following: Ifγ = 0, the model becomes the Ornstein-Uhlenbeck
process proposed by Vasiček (1977) as a model of the short rate, and, ifγ = 1

2, it becomes the
square-root diffusion referred to as the Cox-Ingersoll-Ross (CIR) model (Cox et al., 1985).

Similarly to the fixed rate case, we assume that the stock index follows the CEV process
and that its stochastic differential equation underQ is

dSt = r tStdt + νS1−α
t dZ(2)

t . (5)

Now the discounted pricẽSt = St exp(−
∫ t

0
rsds) is a martingale underQ.

To our knowledge, this system of equations does not have a closed form solution. Therefore,
we will use its Euler discretization for estimation and simulation purposes. In order to obtain
numerical stability in estimation, we reparametrize model(4) as

dxt = (β − κxt)dt + τxγt dZ(1)
t ,

wherext = 100 r t (the interest rate given in percentages),β = 100 κξ andτ = (100)1−γσ.
Assuming that the bivariate process has been observed at equally-spaced time points 0, δ, ...Nδ,
the likelihood function can be written in the form

p(y|θ) =
N

∏

i=1

1
√

2πτ2x2γ
(i−1)δδ

exp

















−

(

∆xiδ − (β − κx(i−1)δ)δ
)2

2τ2x2γ
(i−1)δδ

















(6)

×

N
∏

i=1

1
√

2πν2S2(1−α)
(i−1)δ (1− ρ2)δ

exp





















−

(

∆Siδ − µS(i−1)δδ − νS1−α
(i−1)δρ∆Z(1)

iδ

)2

2ν2S2(1−α)
(i−1)δ (1− ρ2)δ





















,
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wherey is data,θ = (ν, α, β, κ, τ, γ, ρ), ∆xiδ = xiδ − x(i−1)δ, ∆Siδ = Siδ − S(i−1)δ and

∆Z(1)
iδ =

xiδ − x(i−1)δ − (β − κx(i−1)δ)δ

τxγ(i−1)δ

.

3 ESTIMATION AND EVALUATION PROCEDURES

3.1 The Metropolis algorithm

The unknown parameters of the stock index and interest rate models are estimated using Bayesian
methods. This makes it possible to take parameter uncertainty into account when evaluating
the fair prices of derivatives. We follow Bunnin et al. (2002) and simulate the paths of the
underlying asset using their posterior predictive distribution. However, we do not average over
models, since we assume that model uncertainty can be taken into account by using a suffi-
ciently general, continuously parametrized family of distributions (see Gelman et al., 2004).
In both fixed and stochastic interest rate cases we use the Metropolis algorithm introduced by
Metropolis et al. (1953) to simulate the joint posterior distribution of the unknown parameters.

The Metropolis algorithm is a Markov Chain Monte Carlo (MCMC) method and can be
used to simulate Markov chains with given stationary distributions. MCMC methods are es-
pecially useful when direct sampling from a probability distribution is difficult. The Metropo-
lis algorithm is based on an acceptance/rejection sampling and is thus more flexible than the
Gibbs sampler, which presumes the full conditional distributions of the target distribution to
be known. In order to implement the Metropolis algorithm, one only needs to know the joint
density function of the target distribution up to a constantof proportionality.

Suppose that we wish to simulate a (multivariate) distribution with densityp(θ). The al-
gorithm works as follows: We first assign an initial valueθ0 such thatp(θ0) > 0 from the
starting distributionp0(θ). Then, assuming that vectorsθ0, θ1, ..., θt−1 have been generated, we
generate a proposalθ∗ for θt from a suitable jumping distributionJ(θ∗|θt−1). In the case of the
Metropolis algorithm it is assumed that the jumping distribution is symmetric in the sense that
J(θa|θb) = J(θb|θa) for all θa andθb. Finally, iterationt is completed by calculating the ratio

r =
p(θ∗)
p(θt−i)

and by setting the new value at

θt =

{

θ∗ with probability min(r, 1)
θt−1 otherwise.

It can be shown that, under mild conditions, the algorithm produces an ergodic Markov Chain,
whose stationary distribution isp(θ). We see that the transition kernelT(θt|θt−1) is a mixture of
discrete probability atθt = θt−1 and the jumping densityJ(θ∗|θt−1).

As mentioned above, we use the Metropolis algorithm to simulate the posterior distribution.
The posterior density is proportional to the product of the prior density and the likelihood,

p(θ|y) ∝ p(θ)p(y|θ).

We use an improper uniform prior distribution

p(θ) ∝

{

1 when|ρ| < 1 and min(κ, ξ, σ, ν, α) > 0,
0 otherwise.

The posterior function is thus proportional to the likelihood (6) in a feasible region of parame-
ters.
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3.2 Procedure to evaluate the fair bonus rate

3.2.1 Pricing American options with regression methods

The participating life insurance contract we want to price is in practice an American option
with a path-dependent moving average feature. An American option gives the holder the right
to exercise the option at any time up to the expiry dateT. In pricing we adopt the least squares
method introduced by Longstaff and Schwartz (2001). It is a simple but powerful approx-
imation method for American-style options. In the following brief introduction we follow
Glasserman (2003).

The pricing of an American option is based on an optimal exercising strategy. Let us assume
that the relevant underlying security prices of the economyfollow a d-dimensional Markov
processX(t) and that the payoff value of the option at timet is given byh̃(X(t)). The processX(t)
may be augmented to include a stochastic interest rater(t) and, in the case of path-dependent
options, past values of the underlying processes as well.

Furthermore, let{Ft} denote the natural filtration ofX(t) and letT denote the set of all
stopping times with respect to it. We will assume that the decision whether to stop at timet
is a function ofX(t). The goal in optimal exercising is to find a stopping time maximizing the
expected discounted payoff of the option. The price of the option is given by

sup
τ∈T

E

[

exp

(

−

∫ τ

0
r(s)ds

)

h̃(X(τ))

]

,

where the expectation is taken with respect to a risk-neutral probability measure.
It is assumed that the option can only be exercised at them discrete times 0< t1 ≤ t2 ≤

· · · ≤ tm = T. If desirable, one can improve the approximation to continuously exercisable
options by increasingm. To simplify notation we will writeX(ti) asXi. Let h̃i denote the payoff
function for exercise atti and Ṽi(x) the value of the option atti given Xi = x. One can then
represent pricing algorithms recursively as follows:

Ṽm(x) = h̃m(x)

Ṽi−1(x) = max{h̃i−1(x),E[Di−1,i(Xi)Ṽi(Xi)|Xi−1 = x]},

i = 1, ...,m,

whereDi−1,i(Xi) is the discount factor fromti−1 to ti. We thus assume that the discount factor
is a function ofXi, which may be achieved by augmentingXi, if necessary. Typically, it is of
the formDi−1,i(Xi) = exp

(

−
∫ ti

ti−1
r(u)du

)

. One can show that equivalent to the procedure de-

scribed above is to deal with time zero valueshi(x) = D0,i(x)h̃i(x) andVi(x) = D0,i(x)Ṽi(x), i =
0, 1, ...,m; see Glasserman (2003). Then, at timeti, one compares the immediate exercise value
hi(x) and the continuation valueCi(x) = E[Vi+1(Xi+1)|Xi = x].

In regression methods it is assumed that the continuation value may be expressed as the
linear regression

E[Vi+1(Xi+1)|Xi = x] =
M

∑

r=1

βirψr(x),

for some basis functionsψr : Rd → R and constantsβir , r = 1, ...,M. In order to estimate
the coefficients one first generatesB independent paths{X1 j , ...,Xm j}, j = 1, ..., B, and sets
V̂m j = hm(Xm j), j = 1, ..., B at terminal nodes. Then one proceeds backward in time and, using
ordinary least squares, fits at timeti the regression model

V̂i+1, j(Xi+1, j) =
M
∑

r=1

βirψr(Xi, j) + ǫi, j, j = 1, ..., B, (7)
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where ǫi, j are residuals. The estimated value of the option for pathj at time ti is V̂i j =

max{hi(Xi j ), Ĉi(Xi j )}, whereĈi(Xi j ) is the fitted value from equation (7). Finally, the estimate
of the option price is given bŷV0 = (V̂11 + ... + V̂1B)/B.

3.2.2 Implementation: Choosing the regression variables

In our application, the continuation values of the option depend on the path of the underlying
index value in a complicated way. However, we think that the current value of the index,
its moving average and the first index value appearing in the moving average may be used
to predict the continuation value reasonably well. The use of the moving average may be
motivated by observing that the growth of savings in the insurance contract depends on the
path of the moving average; see equation (1). The current index value and the first value
appearing in the moving average help predict the future evolution of the moving average. The
current amount of savings also helps predict the continuation value, but it is not included in
the regression variables. Instead, it is subtracted from the regressed value before fitting the
regression and subsequently added to the fitted value.

To avoid under- and overflows in the computations, the regression variables are scaled by
the first index value. Thus, the following state variables are used:X1(ti) = S(ti)/S(0), X2(ti) =
[

∑q
j=0 S(ti− j)/(q+ 1)

]

/S(0) andX3(ti) = S(ti−q)/S(0). However, multicollinearity problems
would occur, if all the variablesX1, X2 andX3 were used at all time points. In fact,X3 would
be equal for all simulations paths fori ≤ q and the moving averagesX2 would be very close
to each other for small values ofi. Therefore, we apply the following rule: The variableX1

alone is used fori < q/2, X1 andX2 are used forq/2 ≤ i < 3q/2 and all variables are used for
i ≥ 3q/2. In this study the lag length in the moving average was chosen to beq = 125 (that is,
half a year).

We use Laguerre polynomials, suggested by Longstaff and Schwartz (2001), as basis func-
tions. More specifically, we use the first two polynomials

L0(X) = exp(−X/2)

L1(X) = exp(−X/2)(1− X)

for the variablesX1, X2 andX3. In addition, we use the cross-productsL0(X1)L0(X2), L0(X1)L1(X2),
L1(X1)L0(X2), L0(X1)L0(X3) andL0(X2)L0(X3). Thus, we have altogether 11 explanatory vari-
ables in the regression. At time points, where onlyX1 is used, we have only two explanatory
variables,L0(X1) andL1(X1).

3.2.3 Implementation: Inverse problem

Using the procedure described above we can determine the option price (that is, the price of the
insurance contract) when the bonus rateb and the guaranteed rateg have been given. However,
we are interested to determine the bonus rate such that the price of the contract will be equal
to the initial savings. This would give the contract a transparent structure. The problem of
determiningb is a kind of inverse prediction problem and we need to estimate the option value
for various values ofb. Since there are several sources of uncertainty involved inthe estimation
of the option price, we also need to repeat it several times for fixed values ofb. We end up
estimating a regression model, where option price estimates are regressed on bonus rates. We
found the third degree polynomial curve to be flexible enoughfor this purpose. After fitting the
curve, we solve the bonus rateb for which the option price is equal to 100, which we assume
to be the initial amount of savings.

7
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Prior to fitting the polynomial, it is, however, necessary todetermine an interval, where the
solution is situated. For this purpose we developed a modified bisection method. In the method,
one first specifies initial upper and lower limits for the bonus rate; we use the valuesl = 0 and
u = 1. Then one estimates the option price at (l+u)/2. If the price is greater than 100, the lower
limit is set atl + (u− l)/4; if the price is smaller than 100, the upper limit is set atl + 3(u− l)/4.
This procedure is continued untilu− l = 0.15. Note that the new limit is not set at the middle
of the interval, as is done in the ordinary bisection method,since this might lead to missing the
correct solution due to the randomness of price estimates.

Figure 1 illustrates the estimation procedure. The option price is estimated for 25 different
bonus rates and the estimation is repeated 10 times for each bonus rate, which produces 250
points to the scatter plot. Each estimation is based on 1000 simulated paths. The smallest
and largest bonus rate were determined using the modified bisection method described above.
When producing this figure, the time to maturity was assumed to be 3 years, the guaranteed
rate 0 and the interest rate constant and equal to 0.04. We cansee that the fair bonus rate is
approximately 0.32.

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

10
0.

0
10

0.
1

10
0.

2
10

0.
3

bonus rate

pr
ic

e

Figure 1: Option price estimates vs. bonus rates.

As mentioned above, the bonus rate is solved from the equation y = f (x), wherey is the
price of the contract and

f (x) = β̂0 + β̂1x+ β̂2x2 + β̂3x3 = x′β̂, (8)

whereβ̂ = (β̂0, β̂1, β̂2, β̂3)′ is the OLS estimate of the regression model andx = (1, x, x2, x3)′

a regression vector. Using the delta method, one also obtains an approximate variance for the
estimate ofx:

Var(x̂) ≈
1

[ f ′(x)]2
Var( f (x)) ≈

1
(

β̂1 + 2β̂2x̂+ 3β̂3x̂2
)2

x̂′Var(β̂)x̂.
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4 EMPIRICAL RESULTS

4.1 Estimation of the parameters

In order to experiment with actual data and to estimate the unknown parameters of the models
(3), (4) and (5), we chose the following data sets: As an equity index we use the Total Return
of Dow Jones EURO STOXX Total Market Index (TMI), which is a benchmark covering ap-
proximately 95 per cent of the free float market capitalization of Europe. The objective of the
index is to provide a broad coverage of companies in the Euro zone including Austria, Belgium,
Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal and
Spain. The index is constructed by aggregating the stocks traded on the major exchanges of
Euro zone. Only common stocks and those with similar characteristics are included, and any
stocks that have had more than 10 non-trading days during thepast three months are removed.
In estimation, we use daily quotes from March 4th, 2002 untilDecember 6th, 2007.

As a proxy for riskless short-term interest rate, we use Eurepo, which is the benchmark
rate of the large Euro repo market. Eurepo is the rate at whichone prime bank offers funds in
euro to another prime bank if in exchange the former receivesfrom the latter Eurepo GC as
collateral. It is a good benchmark for secured money market transactions in the Euro zone. In
the estimation of the interest rate model we use the 3 month Eurepo rate, since it behaves more
regularly than the rates with shorter maturities. Both the index and interest series are presented
in Figure 2.

Dow Jones EURO STOXX TMI

Time

2002 2003 2004 2005 2006 2007 2008

20
0

40
0

Eurepo, 3 months

Time

2002 2003 2004 2005 2006 2007 2008

0.
02

0
0.

03
5

Figure 2: The equity index and interest series

We had no remarkable convergence problems when estimating the model parameters. We
used three chains in MCMC simulation and all chains converged rapidly to their stationary dis-
tributions. The summary of the estimation results, as well as Gelman and Rubin’s diagnostics
(see Gelman et al., 2004), are given in the Appendix. The values of the diagnostic are close to 1
and thus indicate good convergence. All computations were made and figures produced using
the R computing environment (see http://www.r-project.org).

The posterior distributions of the parametersα (equation (2)) andγ (equation (4)) are shown
in Figure 3. As already noted in Section 2.2, the CEV model becomes the geometric Brownian
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Figure 3: Posterior distributions of the parametersα (index model) andγ (interest rate model).

motion whenα = 0. The figure reveals clearly that the posterior probabilityof α being around
zero is vanishingly small, which makes the geometric Brownian motion highly improbable. We
also tested its use in the pricing of the contract and found that it gave considerably lower bonus
rates than the more general alternative. This illustrates how our approach to use general models
efficiently prevents the model error resulting from the use of a too simple model. On the other
hand, we see thatγ = 1/2 is not highly improbable in the interest rate model, so the model
error would not be large if the CIR model were used instead of the more general model.

4.2 Evaluation of fair bonus rate

There are several parameters which may be varied in the participating life insurance contract
described by equation (1). These include the duration of thecontractT, the lag length of the
moving average of the index and the guaranteed rateg. Furthermore, the number of simulated
paths needs to be decided when estimating the contract price, as well as the number of estima-
tion repetitions when determining the fair bonus rate. In the case of the constant interest rate
model, the interest rate must be fixed at some level, and in thecase of stochastic interest rate,
the starting level of the interest rate must be given. Our model also incorporates the possibil-
ity of a penalty rate. The effect of the penalty is that the insurance company detains a certain
percentage of the savings, if the customer reclaims the contract before the final expiration date.
When the penalty rate is set at a high level, the price of the contract is determined like that
of a European option, since the customer probably wishes to keep the contract until the final
expiration date.

We compared the accuracy of fair bonus rate estimation in thefollowing two cases: first,
we simulated 1000 paths to estimate the contract price and repeated the estimation 250 times to
estimate the fair bonus price using the regression model (8), and, second, used 500 simulation
paths and repeated it 500 times. We found that the standard error of the bonus rate estimate
was in the second case almost twice as large as in the first case. This indicates that it is more
important to increase the number of paths in the option pricecalculation than the number of
repetitions in the bonus rate calculation. However, the differences in the bonus rate estimates

10
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were very small; the maximum difference was 0.6 percentage units in our simulations.
The estimates of the fair bonus rate in the cases of constant interest rates 0.04 and 0.07

are shown in Tables 1 and 3, respectively. The guarantee ratewas set at 0, 1/3 and 2/3 of the
interest rate, that is, 0, 0.013 and 0.027 forr = 0.04, and 0, 0.023 and 0.047 forr = 0.07.
The corresponding results for the stochastic interest ratecase with the starting interest rate
levels 0.04 and 0.07 are shown in Tables 2 and 4, respectively. The guarantee rate was not
fixed at a constant value throughout the entire contract period but it was fixed for one year at
a time. More specifically, it was set at 0, 1/3 and 2/3 of the short-term interest rate prediction
at intervals of one year. In all cases, the lag length of the moving average was 125 days, the
number of simulated paths 1000 and the number of estimations250.

Table 1: Fair bonus rate and its standard error in the case of constant interest rater = 0.04.

length of the contract guarantee rate penalty rate bonus rate SE of bonus rate
3 0 0 0.308 0.01
3 1/3 0 0.218 0.012
3 2/3 0 0.117 0.012
3 0 0.03 0.498 0.006
3 1/3 0.03 0.368 0.004
3 2/3 0.03 0.205 0.002
10 0 0 0.308 0.017
10 1/3 0 0.218 0.011
10 2/3 0 0.133 0.016
10 0 0.03 0.493 0.003
10 1/3 0.03 0.373 0.002
10 2/3 0.03 0.212 0.001

Table 2: Fair bonus rate and its standard error in the case of stochastic interest rate withr = 0.04
as the starting level.

length of the contract guarantee rate penalty rate bonus rate SE of bonus rate
3 0 0 0.303 0.01
3 1/3 0 0.216 0.013
3 2/3 0 0.117 0.014
3 0 0.03 0.493 0.006
3 1/3 0.03 0.365 0.004
3 2/3 0.03 0.202 0.002
10 0 0 0.305 0.013
10 1/3 0 0.221 0.012
10 2/3 0 0.125 0.011
10 0 0.03 0.488 0.003
10 1/3 0.03 0.368 0.002
10 2/3 0.03 0.211 0.001

When comparing the results in Tables 1 and 2 one can see that the fixed and stochastic inter-
est rate models are similar in that the estimated bonus ratesdo not have significant differences.
The estimation errors are also similar in these cases. However, one can note that the estima-
tion error is smaller in the cases where the penalty is included in the contract. This is since
the penalty changes the contract to an European-style option, which removes the uncertainty
related to optimal stopping.
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We see from Tables 1, 2, 3 and 4 that the duration of the contract does not generally affect
the bonus rate. Only in the cases where there is penalty and the guarantee rate is 2/3 of the
interest rate, the bonus rate of 10 years seems to be larger than that of 3 years, the difference
being most obvious when the interest rate is fixed at 7 percents. This phenomenon is not easy
to explain and might be due to an estimation error related to the regression method.

Table 3: Fair bonus rate and its standard error with constantinterest rater = 0.07.

length of the contract guarantee rate penalty rate bonus rate SE of bonus rate
3 0 0 0.481 0.014
3 1/3 0 0.363 0.016
3 2/3 0 0.205 0.017
3 0 0.03 0.72 0.008
3 1/3 0.03 0.572 0.006
3 2/3 0.03 0.345 0.004
10 0 0 0.484 0.02
10 1/3 0 0.366 0.017
10 2/3 0 0.207 0.012
10 0 0.03 0.716 0.005
10 1/3 0.03 0.584 0.004
10 2/3 0.03 0.372 0.002

Table 4: Fair bonus rate and its standard error in the case of stochastic interest rate withr = 0.07
as the starting level.

length of the contract guarantee rate penalty rate bonus rate SE of bonus rate
3 0 0 0.476 0.012
3 1/3 0 0.355 0.012
3 2/3 0 0.204 0.015
3 0 0.03 0.701 0.006
3 1/3 0.03 0.55 0.006
3 2/3 0.03 0.322 0.003
10 0 0 0.477 0.016
10 1/3 0 0.36 0.013
10 2/3 0 0.202 0.012
10 0 0.03 0.678 0.003
10 1/3 0.03 0.538 0.004
10 2/3 0.03 0.329 0.002

When the initial interest rate is larger (r = 0.07), there seems to be a systematic difference
between the constant and stochastic interest rate models, which is seen from Tables 3 and
4. The estimated bonus rates tend to be smaller in the stochastic interest rate model. The
difference is especially large when there is penalty and the duration is 10 years. The reason
is probably the mean-reverting property of the interest rate model, which causes the interest
rate to decrease during the contract period. This property also makes the bonus of the 3 years
contract larger than that of the 10 years contract when the interest rate is stochastic and the
penalty and guarantee rates are 0.

Finally, one should note that the regression methods used indetermining the prices of Amer-
ican options are approximative and that there may occur modelling errors related to the choice
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of regressors. Therefore, the standard errors presented inthe above tables do not tell the ac-
tual accuracy of the fair bonus rate estimates. It is possible to determine reliable lower and
upper bounds for the prices of American options (see Andersen and Broadie, 2004, Haugh and
Kogan, 2004, or Glasserman, 2003), but we have not calculated them here.

5 CONCLUSIONS

This paper has attempted to provide a full Bayesian analysisof participating life insurance
contracts in a way which leads to fair valuation. The Bayesian approach enables us to exploit
Markov Chain Monte Carlo methods and analyze estimation andmodel errors. A guaranteed
participating contract embedding an American-style option was valued using the regression
method. Both fixed and stochastic interest rate environments were studied. In the analysis
we focused on financial risks and ignored the risk from mortality. As Ballotta et al. (2006)
note, in this type of model one can interpret the policyholder to survive until the maturity of
the contract. The model thus provides an upper bound for insurance liabilities. As a concrete
problem we quantified the effect of the discount rate, guarantee rate and penalty rate on the fair
bonus rate.

The adopted approach leads to a fairly realistic valuation framework, which accommodates
the main empirical features of the contracts. The equity index yield was modelled with the CEV
model and the interest rate with a generalization of the Vasiček and CIR models. The equity
index and interest rate processes were assumed to be correlated. For the sake of comparison,
we also estimated the equity index yield independently of the interest rate and valuated the
contract assuming a fixed interest rate. When the methodology was applied to financial time
series, we found clear evidence that the CEV model, which explicitly allows departures from
the geometric Brownian motion, provides a better fit to data.This is an important feature, since
we can avoid a modelling error by using a more general model.

One important algorithmic feature, which we found, is that in order to improve estimation
accuracy it is more important to increase the number of pathsin the option price calculation
than the number of repetitions in the bonus rate calculation. Another interesting finding was
that the duration of the contract did not have a significant effect on the fair bonus rate when
there was no penalty for reclaiming the savings prior to the date of maturity. When the penalty
rate was set at 3% there were some differences, but it is not clear if these differences are actual
or if they are due to a possible modelling error related to theregression method. It is possible
to determine reliable lower and upper limits for the prices of American options but we have not
calculated them here.

We also found that there were no significant differences in the fair bonus rate between the
stochastic and fixed interest rate models when the initial interest rate was set at 4%. When
the initial interest rate level was set at a higher level of 7%the fair bonus rate was estimated
to be lower in the stochastic interest rate case. This resultis probably a consequence of the
mean-reverting property of the interest rate model.

The practical import of the results presented here relates to the extent to which the better fit
and error evaluations associated with the Bayesian analysis translate into better risk manage-
ment and more accurate valuation.
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APPENDIX

The posterior simulations were performed using the R computing environment. The following
output was obtained using the summary function of the add-onpackage MCMCpack:

Table 5: Estimation results of the index model with constantinterest rate

Number of chains = 3

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

mu 0.08723 0.06768 0.0005526 0.001766

log nu 3.41621 0.32460 0.0026503 0.009327

alpha 0.88321 0.05544 0.0004526 0.001592

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

mu -0.0448 0.04134 0.08835 0.1316 0.2185

log nu 2.7876 3.20125 3.41310 3.6349 4.0524

alpha 0.7766 0.84630 0.88314 0.9205 0.9914

Gelman and Rubin’s diagnostics

(Potential scale reduction factors):

Point est. 97.5% quantile

mu 1.00 1.01

log nu 1.01 1.03

alpha 1.01 1.03
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Table 6: Estimation results of the index model with stochastic interest rate

Number of chains = 3

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

mu 0.079225 0.067939 5.547e-04 0.0042595

log nu 3.402534 0.327204 2.672e-03 0.0219129

alpha 0.880626 0.055834 4.559e-04 0.0037286

kappa 0.052439 0.045232 3.693e-04 0.0018596

beta 0.221869 0.132709 1.084e-03 0.0060462

tau^2 0.009487 0.001697 1.386e-05 0.0001046

gamma 0.683214 0.087154 7.116e-04 0.0051778

rho 0.091389 0.025618 2.092e-04 0.0016489

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

mu -0.048659 0.026263 0.079805 0.12508 0.21444

log nu 2.769493 3.176798 3.401768 3.61407 4.04341

alpha 0.772006 0.843013 0.881094 0.91714 0.98700

kappa 0.001606 0.018515 0.039505 0.07354 0.16534

beta 0.035210 0.126786 0.200871 0.29001 0.53552

tau^2 0.006695 0.008333 0.009257 0.01045 0.01355

gamma 0.504586 0.627500 0.687341 0.74042 0.84705

rho 0.041503 0.075450 0.090498 0.10661 0.14419

Gelman and Rubin’s diagnostics

(Potential scale reduction factors):

Point est. 97.5% quantile

mu 1.01 1.04

log nu 1.01 1.02

alpha 1.01 1.02

kappa 1.01 1.03

beta 1.01 1.03

tau^2 1.02 1.06

gamma 1.04 1.10

rho 1.01 1.03
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