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1 Stop-Loss Transforms and Recursion Formula 

The concept of stop-loss transforms and its properties play an important role in 

this paper. At first we generalize the concept of stop-loss transforms in [I] as 

follows. 

Definition 1 Suppose random variable X is nonnegative with its distribution 

function being F(x), its survival function being F(x) = 1 - F(x), and E(X”) < 

03. Let 

l-I(“)(U) = E[{(X - u)+}y, u > 0 n = 1 2 . . . --1. I, 1 (1) 

where 

for 2 < U, 

x-u, forx>u, 

l-I(oyu) = F(u) = 1 - F(v). (2) 

As a function of U, II(“)(u), n = 1,2, . . . will have domain (0, co). We call function 

IIcn)(u) the nth stop-loss transform of X. It is easy to see that the concept of 

stop-loss transform in [l] ( see page 25, definition 3.1.4 in [l] ) is the special case 

of definition 1 when n = 1. 

The following corollary then becomes obvious. 
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Cor01l~~y 2 II(*)(O) = E(X”), n = 1,2,. and l’$O)(O) = 1 

Example 3 Prove that 

l-P(u) = p(z)ds. (3) 

Proof. Let n = 1 in (1) and take integration by parts, we have 

l-I(‘)(u) = E[(X - u)+] 

= l-(x - u)dF(s) = - la(z - u)dF(s) 

= -(z - u)P(z) lZ”=, + Jeo F(z)dz 

= 
/ 

“F(z)& 
u 

Note that in the above proof we used the following equation: 

hn(z - u)F(z) = 0. 

When E(X) < co, the above equation always holds (see proposition 4. Letting 

n = 1 in proposition 4, we get the above equation). For convenience to use later, 

we prove a more general result es follows: 

Proposition 4 If nonnegative random variable X has a finite nth moment, 

then 

hl(Z - u)“F(z) = 0, vu > 0, (4) 

where P(z) is the survival function of X. 
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Proof. Because the nth moment of X is finite, we have 

lim 
J 

O” y”dF(y) = 0. 
z-es z 

Hence 

lim (z - U)*F(z) 5 &%z”F(s) 5 $l z-co I 
m y”dF(y) = 0. 

z 

The proposition is proved. 

Example 5 Suppose E(X*) < co, then 

E(X2) = 2 /om II$‘(U)dU. (5) 

Proof. 

By using integration by parts and then (4) ( let u = 0 in (4)), we have 

E(X2) = 2 J,=- 577X(Z)dZ = 2 /O-[&(z) /D3 dy]dz 

= 2 Jompx(s)dsdy = 2Jo?-i$)(y)dy. 
Y 

In the above proof we interchange the order of integration and use our results 

from Example 3 to complete the proof. 

The following recursion formula for the nth stop-loss transforms is significant 

for some later results. 
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Theorem 6 

II(“)(U) = n lrn I?“-‘)(x)&, n = 1,2,. (6) .?I 

To prove this theorem we need the following lemma which has its own meaning 

and can be used in other occasions. 

Lemma 7 Suppose F(z) is a distribution function. If  function f(z, y) satisfies 

the following conditions: 

(a) aJ(z’ ‘) exists 
dY ’ 

(b) When Au is in some neighborhood of 0, say (--Q, a) , we have 

I f( 
2, u + A) - f(x, 4 

Au I I g(x), 

where the nonnegative function g(z) is Stieltjes integrable on [O,U] with 

respect to the distribution function F(z), i.e. 

J OYg(x)dE(x) < 00. 

Then 

$1” f(x, u)dF(x)] = Joy qg+F(x). 
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That is, we could place the derivative of the left side of (7) into the integration 

of which the upper limit is variable u. 

Proof. According to the definition of derivative we have 

= &no &-%+“‘ f(s, u + Au)dF(z) - [ f(5, u)dF(x)) 

u 
= lim 

J 
f(x, u + Au) - f(x, 4 

Au-+0 0 Au 
U(x) + lilio,u+AU ““‘“n”, A”)dF(x) 

= A+B, 

where A and B express the first and the second limit above, respectively. From 

condition (b) we know that the integrand in A satisfies the condition of Lebesgue’s 

convergence theorem, so the limit can be taken into the integration, that is 

From condition (c) we have 

J 
u+Au 

< lim 
Au-0 (u 

J 
U-AU 

= limo 
- u 

f(x, “at Au) ( dF(x) 

f(x,u + Au) 
u+Au-x II u+;;-x IdF(x) 

Condition (c) assures the final equation is true. This completes the proof. 

Now we prove theorem 6. 
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Because of E(X”) < 00, we know 

pin& /um(x - 7L)ndF(x) 5. &I& lrn x”dF(x) = 0. 

so, 

l-P(oo) = krlJ uw(x - u)“dF(x) = 0. 

I f  the following equation holds, 

y&-P(u)] = -nrI(n-‘)(u), 

(8) 

(9) 

by taking integration from u to co at the both sides of (9), we would then have 

I um -$I(-)(x)dx = -n Jrn l-P’)(x)dx. u 

That is, 

l-P(m) - rI(“)(u) = -7gy II(“-‘yx)dx. 

By (8) we have 

II(“)(u) = n jm II+‘)(x)dx. 
u 

We need only then to prove (9) true. 
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At first we prove (9) for n > 1. We set f(x,y) = (x - y)” in lemma 7. Then 

the condition (a) of lemma 7 holds. Furthermore, 

= ( -&$x - uy AU + C;(x - u)+*)(Au)* +. 

+(-l)kC,(x - u)(“-~)(Au)~ + . + (-l)“(Au)“] ] 

5 ( n(x - IL)“--l , + 2 C,” , x - u ,(n-k), AU ](k-*), 
Lx2 

n! 
where ck = /qn - k)!’ n 

If  x and u both take values in finite intervals, without loss of generality, we 

suppose the interval is [0, A], and ] Au ]I 1, then the right side of above equation 

is bounded. If  we let G denote this bound, then we can take G as g(x) in lemma 

7 and the condition (b) of lemma 7 holds. Furthermore, 

lim I f(x’y) - ] = lim 
Iz-VI--O x - y  

,z--y,-o 1 x - y  In-l= 0 for n > 1. 

So the condition (c) also holds. 

In the following we use lemma 7 to prove formula (9) for n > 1. In lemma 7, 

the interval of integration is 0 to U, but now we need the interval of integration 
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to be u to co. We begin as follows: 

IF(u) = Jrn(Z - u)wqs) 
u 

= jgrn(Z - U)VF(Z) - J(z - U)VF(Z) 

= Jc y k~o(-l)kc$?-kukdF(z) - J,u(z - upF(Z) 

= kco( -l)kC,ukE(X”-k) - l”(z - u)VF(z) 

= I(u) - J(u), 

where 1(u) denotes the sum at the right side above and J(u) denotes the integral. 

Taking derivative of I(u) and J(U) respectively, we have 

$1(u) = ‘&-l)kC;kuk-lE(Xn-k) 
k=l 

n-1 

= -n ~~(-l)‘C~_,u’E(X”-‘-‘) 

= -n J om(Z - u)"-'dF(s). 

And by lemma 7, 

$J(u) = $r/d”(z - u)“dF(z)] = -n Joy@ - uy%F(z). 

(10) 

(11) 

Combine (10) and (11) we have 

$n(-j(U) = -nrJorn(z - uy-‘dF(z) - JoY(z - uy-‘dlqz)] 

= -n J Jz - u)"-ldF(z) = -7lI-Pl)(u). 
That is formula (9) holds for n = 2,3,. . . . So theorem 6 holds for n = 2,3,. ., 

too. In the following we check theorem 6 directly for n = 1. Taking integration 
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by parts, 

l-P(u) = /yz - u)dF(z) = {-(z - u)F(s)} Isp=, +,p(z)dz u 
= I O3 l-e”y5)&. 1‘ 

Thus theorem 6 holds for n = 1. The proof of theorem 6 is complete. 

Corollary 8 A distribution function F(z) ( or survival function F(z)) and its 

nth stop-loss transform (n is an arbitrary nonnegative integer) are determined by 

each other. 

Proof. When n = 0, II!?(z) = F(z) = 1 - F(z). Corollary 8 becomes true. 

When n 2 1, from (6) we know that IIF’ is determined by I@‘)(z). And by 

(9), we have 

l-p’(z) = -$-&(z) 

Then we arrive at our conclusion by induction. 

2 Stop-loss Orders and Their Properties 

Definition 9. We say that X is less than Y in the meaning of the nth stop-loss 

order, denoted by X <+) Y, if 

Jwk)lE(Yk), k=l,2,...,n-1. 

r@(u) I l-$‘(U), vu > 0 - . 
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When n = 0, the formula (12) disappears and formula (13) becomes 

F’x(u) 5 Py(u), vu >_ 0. 

When n = 1, then formula (12) is trivial and formula (13) becomes 

,p&)ds 5 py(s)ds, vu 2 0. 

Now we study a class of functions with certain properites. Suppose function u(z), 

-oo < z < 03 satisfies: u@+l)(z) exists except at a finite number of points, and 

(-1)k-‘U(“)(Z) 10, Vz,k = 1,2,. . . ,n+ 1. (14) 

Let 

U, = {n(z) : U(Z) satisfies (14)},n = 0,1,2,.... 

Obviously, U,+i C U,,, that is, classes of functions decrease with respect to n, n = 

0, 1,2,. . . . 

Inequality (14) implies that 

U(~)(Z) > 0, when k is odd, 

u(‘)(z) 5 0, when k is even. 

Let 

W(Z) = -u(3), u E (I,. 

Then for arbitrary real number z and nonnegative integer k 5 n + 1, we have 

?dk)(“) = (-1) (k+%y-Z) > 0. (15) 
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Let 

W, = {W(Z) : W(Z) satisfies (15)). 

It is easy to see that if we let u(z) = -w(-z), where w(z) E W,,, then 

U(k)(“) = (-l)k+‘W(y-z), 

(-l)(k-‘)u(k)(z) = (-l)W”)(-z) 2 0, 

so u(z) E U,,. Hence we go to a conclusion that there is an one to one correspon- 

dence between the elements of U,, and W,. 

The following theorem and its proof is similar to that of theorem 4.2.1 in 

[l]. But here we add one sufficient and necessary condition, (17), and the proof 

becomes more clear than that in [l]. 

Theorem 10 X +(,,) Y, if and only if 

if and only if 

E[w(WI I E[w(Y)I, VW E Wn. (17) 

Proof. At first we prove the equivalence of (16) and (17). Suppose inequality 

(16) holds, we want to prove (17) holds. Let u(z) = --20(--z), then u(z) E U,,. 

Hence by (16) we have 

-+(-WI 2 EM-Y)]. 
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That is 

Thus 

E[-w(X)] L E[-W)]. 

EMWI I JWY)I. 

Hence inequality (17) holds. It is similar to deduce (16) from (17). 

In the following we prove X <sl(nl Y u (17). 

(e): Suppose (17) holds. Let 

Then Vi < k, -co < x < co, 

“(i)(X) = 
k(k - 1) . . . (k - i + 1)(x - u)@-‘1, for x > U, 

0, for x < u. 

and Vi > k, --co < z < cm, d)(x) = 0. 

Since &l(x) 2 0 for all positive integer k, we have W(Z) E W,,. By the 

assumption of (17) we have 

G-4X)1 I EW’)I. 

That is 

WV - 4+lkl I EKO’ - 4+)“1. 

Let k take value from 1 to n - 1, and let u = 0, we see that the inequalities (12) 

hold; let k = n, we go to (13). So, X <+) Y by definition. 
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(* ) Suppose w @j(z) 2 O,Vlc = 1,2, .. .n + 1, then we have the following 

expansion of w(z) 

J 0 
(18) 

We prove formula (18) at first. Taking integration by parts, we have 

= - 5 "'"'xk + w(x) - w(0). 
kc1 k! 

Removing the terms in the right side except w(z), we go to (18). Now suppose 

x <d(n) Y we want to prove E[w(X)] 5 E[w(Y)l. By formula (18) we have 

q)(X)] = E[F qpxk + LX (x ,U)̂ dw(nyZ1)l 
k=O 

= go TE(X’) + E[p (x ;!y)‘h(“)(u)] 

(In the right side above the upper limit of integration can be expanded from X 

to 00, because (z - IL)+ = 0 when u > x). 
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By X <+) Y, we know that 

E(X”) 5 E(Yk), k = O,l;..n, 

and 

E[{(X - 4+)*1 I E({(Y - ~)+)“l, Vu 2 0. 

so, 

a4WI I 1 ,:, TE(Y’) + lrn E[{(y ,! ~)+QJ”‘(u) 

From the above we see that the right side of the final inequality is just E[w(Y)] 

We then have 

The proof is complete. 

Proposition 11. Suppose E(X) = E(Y). I f  X <sl~l) Y then 

war(X) < war(Y). 

Proof. F’rom (5) we know 

E(X’) = 2 lrn I-I$‘(y)dy 5 2im I-@‘(y)& = E(Y*). 

Hence, by E(X) = E(Y), 

war(X) = E(X*) - [E(X)]* 5 E(Y*) - [E(Y)]* = VW(Y). 

The proof is complete. 

Theorem 12. If  X <sl(n) Y, then 

x -G(m) Y, Vm>n 
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Proof. Because of the decreasing property of U,, with respect to n, when m > n, 

we have U, c U,,. By theorem 10 we arrive at our desired conclusion. 

Proposition 13. If  E(X) 5 E(Y) and 3 c 2: 0 such that 

Fx(z) I FY(~), for z 5 c, 

Fx(z) > f+(z), for z > c. 

Then X <Sl(l) Y. 

Proof. Let 

h(s) = r@(z) - I@(z) = py(u)dU - JrrnFx(u)dzl, 

then we have 

h’(z) = -Fy(z) - [-F&r)] = Fy(z) - F&T). 

And by conditions (19) and (20) we have 

(19) 

(20) 

h’(z)>O, fora:<c, 

h’(z) 5 0, for z > c, 
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We then have 

h(O) = py(u)du - ,px(lL)du = E(Y) - E(X) 2 0, 

and 

h(cx3) = piI h(z) = hlpy(u)du - pix JrnF,y(u)du = 0. 
z z 

We conclude that h(z) 2 0, Vs > 0. Otherwise, if h(z) < 0 for some xi, then 

there must be an intersection point of h(s) with the z-axis, say, at point xc, 

zo < ~1, and h’(z) 5 0 must hold for Vz 2 20, that means h(co) e 0 can not 

hold. Now from h(s) 2 0, Vz 2 0 , we have II;‘(z) 5 I@(z), t/z 2 0. So we 

have X <sl(l) Y by definition. 

We can interpret proposition 13 more simply by diagram. By conditions (19) 

and (20) we know that the curves of TX(Z) = 1 - Fx(s) and Fy(z) = 1 - Fy(z) 

intersect at z = c. We know also that E(X) equals the area under the curve of 

TX(z) and E(Y) equals the area under the curve of FY(u). Hence, for arbitrary 

u 2 0, the area on the right side of z = u and under the curve of TX(Z) must 

be less than that under the curve of Fy(z). That is II!‘(u) 5 IIt”( Vu 2 0, 

which is desired for proposition 13. 

Proposition 14. If  E(X) 5 E(Y), and 3 a, b, 0 2 a 5 b < 00 such that 

dam 2 dFY(z), for a < IC < b. (22) 
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Then X ~(1) Y. 

Proof. Similar to the proof of proposition 13, we need to show 

h(z) = l-$‘(x) - l-q(x) 2 0. 

We have 

h’(z) = -Fy(x) - [-&(x)1 = l+(x) - Fx(x) = p&9 - Cx(~)l. 

By conditions (21) and (22) we know that when z 5 a, h’(z) > 0 and h’(s) 

monotonously increases; when a < z < b, h’(s) monotonously decreases; when 

z 2 b, h’(z) increases again, and 

,l&p’(x) = Jpy(x) - JomdFxw = 1 - 1 = 0, 

There must be a point c, such that a < c < b, and h’(s) 2 0, Vx < c; h’(x) 5 

0 VX > c. Furthermore, as we have seen in the proposition 13, we have 

h(O) = E(Y) - E(X) > 0, 

and 

gnJz(x) = 0. 

The figure of h(z) is the same as that in the proposition 13. Hence we have 

X <sl(l) Y as in the proposition 13. 
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When X and Y are both continuous, denoting the distribution density function 

by fx(z) and fu(z) respectively, then the conditions (21) and (22) are equivalent 

to: 

Jx(z) I h(z), for z 5 a or z L b, 

and 

fx(z) 2 fv(z), for a < z < b. 

When X and Y both are discrete, assuming their domain is {zi, i = 1,2, . .} and 

their probability functions are Px(zi) and Py(rci) respectively, then conditions 

(21) and (22) are equivalent to 

Next we show the maintenance properties of the nth stop-loss order. 

Theorem 15 The nth stop-loss order is maintained under the summation of 

independent random variables. That is, if 

xi <d(n) yi, i= 1,2;..k, 

where k is a positive integer, then 

eXi< din) 5X, n =0,1,2,.... 
i=l i=l 

(23) 
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It was proved in [1] that the 1” stop-loss order is maintained under the summation 

of independent random variables (see page 30 of [l], theorem 3.2.2. ). Theorem 

15 is its generalization and the method used here for proving the theorem is 

completely different from the method in [l]. 

Proof. We first prove theorem 15 for k = 2. 

Suppose Xr and Xz are independent, Yr and Yz are independent and 

Xi <d(n) yi, i = 1,2, n 2 0. 

We now use theorem 10 to prove (23). By theorem 10, V III(Z) E W,, we need 

only to prove 

Eb(X1 + Xz)] I E[w(K + WI. 

Let 

Wl(Ic, t) = w(x + t), (24) 

where t is a real number. Since w(x) E W,,, from the definition of W,, we have 

$wl(x,t)=w@)(x+t)~O, k=l,... ,n+l. 

.Again by the definition of W,, we know that for a fixed t, wl(z, t) is a function 

of z and belongs to W,. Prom X1 <,+) Yr, and by theorem 10, we can conclude 

that 

~mw(xtt)dFx, (x) = E[wl(Xl, t)] I E[wt(K, t)] = lrn w(x+t)d&,(z).(25) 
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Further, let 

w&r) = E[uJl(~,~)l = JornW(Y + z)dFy,(y) (26) 

Since W@)(Z) > 0, we have 

w$yz) = Jam w ‘“‘(y+z)dFy,(s) 20, k= 1,2,...,?2+1. 

Hence ws(z) E W,,. From this and the condition Xz <+) Yz we have 

Taking the integration of the both sides of (25) with the distribution function 

dFx,(t), we have 

~m[~m W(Y + W’xl (y)ldFxz(t) I imIlrn W(Y + W’y, h/)ldFx,(t). (28) 

Combine (28) and (27) to arrive at 

~m[~mw(~ +W?x,b)ldFx,(t) I ~mI~mwb +~W%b)ld%(t). 

This is simply E[w(Xr + X2)] 5 E[w(Yl + Ys)]. Next by mathematical induction 

we can conclude that (23) holds. The proof is complete. 

Theorem 16. The nth stop-loss order is maintained under a compound 

operation. That is, suppose X1, X2,. . ., Yr, Ys, . ., and integer valued, Nr, N2 
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are all independent random variables. In addition, N1 and N2 have identical 

probability distributions. Let 

Sl=~Xi, S2=~~ 
i=l i=l 

I f  

Xi <d(n) I(, i = 1,2;.., 

then 

Sl <d(n) 452. 

Proof. According to theorem 10, it is sufficient to prove that 

V ‘w E wn, E[w(Sd] I E[w(S2)]. 

In fact we have, 

E[w(Sdl = E[EMSd I Nil 

= C,“=o E[w(&) 1 NI = n]l’r(N~ = n) 

= C;f& E[w(Xl + X2 +. . . + X,,) 1 Nl = n]Pr(Nl = n) 

= C,“==, E[w(Xl + X2 + . + X,,)]PT(NI = n). 

The last equation holds because X1, X 2, . , X,, and Nl are independent. Next, 

using theorem 15 we have 

E[XI + X2 + . + X,J I E[Yl + Yz + . + Y,]. 
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Notice Nl and N2 have identical probability distributions, so we have 

E[W(Sl)] I czp,o E[W(Yl + Y2 + ‘. + Y,)]PT(Nl = 72) 

= czp=o E[W(Yl + y2 + ” + Y,)]PT(N2 = n) 

= q4Sz)l. 

The proof is complete. 
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