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Abstract 

In most practical cases, it is impossible to find an explicit, expres- 
sion for the distribution function of the present, value of a sequence 
of cash flows that are discounted using a stochastic return process. 
In this paper, we present an easy computable approximation for this 
distribution function. The approximation is a dist,ribution function 

which is, in the sense of convex order, an upper bound for the origi- 
nal distribution function. Numerical results seem to indicate that. the 
approximation will be rather close in a lot of cases. 

1 Introduction 

In several financial-actuarial problems one is faced with the detjermination of 

the distribution function of random variables of the form 
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where a, (i = 1, . , n) represents the deterministic cash flow at time i and 
e-x (i = 1,. . . ,n), is the stochastic discount factor for a payment, made at, 
time i. Hence, the random variable V can be interpreted as the present, value 
at time 0, of a sequence of default-free payments at times 1, 2, . , n. In a.11 
actuarial context, such random variables are used for describing the present, 
value of the cash flow of an insurance portfolio, see e.g. Dufresne (1990). 
They are also useful for the determination of IBNR reserves, see Goovaert,s 
and Redant. (1998). 

Of course, each cash flow can be modelled as a sequence of incomes or as 
a sequence of payments t,o be made. We will take the lat,ter approa.ch. More 
specifically, each a, has to be interpreted as an amount that has t.o be paid 
at time i. Equivalently, we can say that there is an income equal t,o -QI, at. 
time i. In this sense, the random variable V will be called the loss variable, 
i.e. the present, value of all future (deterministic) payments. 

Let. us now assume tha.t we know the distribution functions of t,he random 
variables X, (z = 1,. . , n,). One could assume e.g. that. t,hey are normally 
distributed. In reality, the random variables X, will certainly not, be mu- 
tually independent. This means that besides the distribut,ion funct,ions of 
the X, also the dependency structure of the multivariate ra.ndom va.riable 
(X1,...,Xn) will h ave t,o be taken into account, in order t,o det,ermine the 
distribution function of the loss variable V. Unfortunately, an expression for 
the distribution function of V is not ava.ilable or hard to obta.in in most. cases. 

In the act.uarial literature it is a common feature to replace a loss variable 
by a “less favorable” loss variable, which has a simpler structure, making it 
easier to determine the distribution function, see e.g. Goovaerts, Kaas, Van 
Heerwaarden, Bauwelinckx (1986). In order to clarify what we mean with a. 
less favorable risk, we will make use of the convex order, see e.g. Shaked and 
Shanthikumar (1994). 
Let, V and W be t,wo ra.ndom va,riables (losses) such t,ha.t 

E [$ (V)] 5 E [@ (W)] for aI1 convex functions $ : R --f R, 

provided the expectat,ions exist. Then V is said to be smaller tha.n W in t,he 
convex order (denoted as V I,, W). 

Roughly speaking, convex functions are functions tha.t ta,ke on t,heir largest 
values in the tails. Therefore, V I,, W means that, W is more likely t,o t,ake 
on extreme values t,han V. Instead of saying that, V is smaller tha.n W in t,he 
convex order. it. is oRen said that -V dominates -W in t,he sense of second 
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degree st,ochastic dominance, see e.g. Huang and Lit,zenberger (19%). In 
terms of utility theory, V 5, IV mea.ns that the loss V is preferred to t.hc 
loss W by all risk averse decision makers. Note that. risk averse individuals 
may have utility functions that are not, monotonically increasing. Remark 
that replacing the (unknown) distribution function of V by the dist,ributJion 
function of W, can be considered as a prudent, st,rat,egy. 

It is straightforward to verify t,hat a convex order can ouly hold bctweeu 
two random variables wit,h equal mean. The function 4, defined by $(Ic) = x2, 
is convex. Therefore, it follows that, V 5, IV implies Var [X] < I/‘ar [Y]. 

In Shaked a.nd Shanthikumar (1994), the following cha,ract,eriza.tion of 
convex order is proven: 
Let V and W be two loss variables such that, E [V] = E [W] Then V 5, W 
if, and only if, 

E [V - d], < E [W - d], for all d. 

Here, we used the notation (z), = max(O, x). 
By using an integrat,ion by parts, it is seen that the condition in the theorem 
can also be written as 

s dm S”(x) dz 5 ./“” d S,(x) dx for all dT 

provided the integrals exist,, and where Sv denotes t,he survival function of 
the random variable V: Sv(z) = Pr [V > x]. 

In this paper, we will consider loss varia.bles V as defined above. fol 
which the distribut,ion function cannot, be det,ermined explicit,ely. We will 
construct8 a new random variable IV which is la.rger in convex order SCM:, 
meaning that that E [V] = E [WI, and that. for each ret,ent,ion d, t,he &p-loss 
premium E [V - d], is smaller than or equal to the corresponding st.op-loss 
premium of IV. Replacement of the loss V by the loss T/I’ is safe in the sense 
that all risk averse decision makers will consider W as a less favorable loss. Of 
course, applying the technique of replacing a. loss by a less favorable loss will 
only have sense if the new loss variable has a simpler dependency st,ructure, 
making it, easier t,o determine it,s dist,ribution fun&on. 

Finally, remark t,hat, V 5, W is equivalent, wit,h -V <CT -IV. This means 
that the convex order is independent, of t,he int,erpret,at,ion of t,he random 
variables as loss or gain variables. 
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2 F’rkhet Spaces 

Let for any (n.-dimensional) random vector X = (Xl, X2, . . . , X,), t,he dist,ri- 
bution function and the survival or ta,il function be denoted by Fx and Sx 
respectively, i.e. 

Fx(x) = Pr(X1 5 z1, X2 5 52;.., xl I &I] I 

Sx (x) = Pr [X1 > z1, X2 > z2,. . . i X, > zn] , x E R”. 

In general, the distribution function of a univariate random variable X is 
not one-to-one so that the inverse functions Fi’ and S,’ have t,o be defined 
cautiously. As usual, we define the inverse of the dist,ribution fun&on as 
follows: 

F;‘(p)=inf{z~R(&(z)>p}, P f 10, 11 
We also define t,he inverse S,’ of the survival function Sx as 

S,‘(p)=inf{z~RISx(z)<p}, P t [O, 11 

In bot.h definitions, we adopt, t,he convent,ion that inf 0 = 00. It is easily seen 
that 

F,-‘(P) = S,‘(l -PI, P 82 10, 11 

For all z t R and p t [0, 11, the following equivalences hold: 

A Fr&het. spa.ce is defined as a, class of (distribut,ion functions of) random 
vectors with fixed marginal dist,ribution functions. Let, &( Fl, Fz, , F,,) 
denote the Fr6chet class of all random vectors X = (X1, X2,. , X,,) wit.11 
marginal dist,ribution funct,ions Fl, F2, . . . , F,, respectively, i.e. 

Pr[X, 5x1 = Fi(x), i = l;..,n. for allX E R,(F~,F~;..,F,) 

We will repeat some well-known results related to Fr6chet. spa,ces, which 
will be needed for deriving our results. Since Hoeffding (1940) and Frechet 
(1951), it is well-know t,hat, the upper bound of R,(Fl, Fz, . . . , F,,) is t,he 
distribution function W, (x) given by 

M/:,(x) = min(Fl(zq, Fz(Q),..., F,(G)} 
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in the sense that, the joint distribution function FX of any X in R,( Fl) Fl, . . . 1 F,) 
is constrained from above by 

Fx (x) < W,, (x) for all x E R”. 

M,, is usually known as the Frkchet, upperbound in & ( Fl , Fz, . . . , F,). Re- 
mark that the Fr6chet upperbound is reachable wit,hin &,( Fl, F2,. . . , F,). Indeed, 
for any uniformly distributed random variable U on the interval [0, I.], we have 
that 

and 

(J’;‘(U), F,-‘(U),-, F,-‘(U)) c R,(h F2,9.., Fn) 

Pr [F;‘(U) 5 ~1, F;‘(u) L: 22;‘. , F;‘(U) 2 x,] = W,,(x) , x E Rn. 

Random variables (X,, X2,. . . , Xn) with the Frkchet, upperbound M,, 
as distribution function are said to be comonotonic. Comonotonic random 
variables possess a very strong positive dependency. Indeed, all the X, a.re 
non-decreasing functions of the same random variable, so t,ha.t t,hey a.re indeed 
“common monotonic”. Increasing one of the Xi will lead t,o an increase of 
all the other random variables X, involved. This means tha.t these ra.ndom 
variables cannot compensate each other. They cannot. be used as hedges 
against each other. 
Other characterizations of comonotonicity can be found e.g. in Denneberg 
(1994). The concept of comonotonicity was introduced by Schmeidler (1986) 
and Yaari (1987), see also Roe11 (1987). It has since then played an import,ant 
role in economic theories of choice under risk and uncert,a.int,y. Applicat,ions 
of the concept, of comonotonicity in the actuarial litera.ture can be found in 
Dhaene and Goovaerts (1996), Dhaene, Wang, Young and Goovaerts (1997), 
Wang and Dhaene (1998) and Wang and Young (1998), amongst, others. 

3 Bounds on Sums of Dependent Risks 

Consider a random sum V = X1 t . . . t X,, such tha.t (Xl, . . . , XJ belongs 
to the Fr6chet space &( Fl, F2, . . . , F,,). From now on, we will always 
silently assume that. the marginal distribution functions Fl, F2,. . . , F, are 
strictly increasing a.nd continuous. We will consider t,he problem of deriving a. 
stochastic upper bound W for V such t,hat) W = Yl t. * . t Y, wit,h (Yl , . . . , Y,,) 
belonging to the same FHchet space and such that the upper bound W is 
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larger in t,he sense of convex order than the original loss V. A rela.ted problem 
(for non-negative random variables) is considered in Mtiller (1997), a,nd also 
in Goovaerts and Dhaene (1999). 

For a. strictly increasing and continuous function $ a,nd Fx, we have 

that F$(x)(~ = ( FX 0 41-l) (4 f rom which it follows by inversion t,hat, 

F;:,(P) = @(F,-‘(P)). A s a special case, consider t,he st,rict,ly increasing 

and continuous function q5 defined by 4(p) = I:‘“=, F?,-‘(p), (p 6 [0, 11) and 
the random variable U, which is uniformly distributed on t,he interval [O; 11. 
In t,his case, we ha.ve t,hat, J$$,)(p) = 4(p). H ence, we have proven t,hat, t,he 
inverse distribution function of a. sum of comonot,onic risks behaves a.ddi- 
tively. More specifically, let, W = F,-‘(U) t F;‘(U) t . t F,;‘(U) wit.11 U 
uniformly dist,ributed on [0, l], t,hen 

Remark that this result can be generalized to the case t,hat. t,he dist,ribut,ion 
functions involved are not, one-to-one, see e.g. Denneberg (1994). 

In t.he following theorem, we show that the Frechet upperbound of a 
given Frechet, spa.ce gives rise to a. sum which is larger, in t,he sense of convex 
order, than any other random variable which can be writ,ten as a sum of the 
components of an element, of the Frechet. space under consideration. 

Theorem 1 For any X in R, ( Fl, F2, . , F,,) and any uniformly distributed 

random uariable U on [0, 11, ZDP have that 

X1 + X2-t...+ X, <,, F;‘(U)+E;‘(U)+... t F,;‘(U). 

Proof. Let, V a,nd W be defined by V = Xl t X2 t . . . + X, a.nd W = 

F,-‘(U) t F;‘(U) t ... t F,-‘(U) respectively. 
Remark t,hat, (xi t 22 t .. t z,)+ 2 (xi)+ t (q)+ t ... t (z,,)+ holds t,rue 
for all x c R”. Hence, for any d we have 

E[V - d], = E [V - F$ (Fi,+,(d))]+ 5 2 E [Xi - F,-’ (Ful(d))]+ 
cl 

On t,he ot,her hand. 

E[W-d], = 
.I( 0 

’ &i’ (14 - d), d?, 
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1 
Z-Z .I ( sl,(d) FIG (I4 - G ( W!) & 

= $/; .(d) (,-’ (14 - F,-’ (Fdd))) dl, 
W 

= 2 E 1x7 - F;’ j&(d))] + , 
i=l 

which proves the theorem. 
From the theorem above, we see that, knowledge of t,he marginal dist,ri- 

bution functions of a sum of random variables suffices to find a new loss 
variable which is larger in convex order sense than the original loss variable. 
This holds in general, by which we mean that, t,he sa.me bound holds for all 
elements of a, given Fr6chet space. Hence, the bound does not, depend on the 
dependency structure between the random varia.bles involved. The special 
dependency struct,ure giving rise t,o t,he t,he great,est, sum (in t,erms of convex 
order) in t,he given Fr&het, space, is comonot,onicitjy. 

Using the fact, t,ha,t t,he inverse dist,ribution fun&ion of a sum of comonotonit 
risks behaves additively, we can deduce an algorithm for computing t,he tlis- 
tribution function of such a. sum. Indeed, for W = Flm’(U) + FF1(U) +. + 
F;‘(V) with U uniformly distributed on [O, 11, we find 

?F,-’ [F+)] = :c, z 6 R. 
i=l 

which implicitely det,ermines the distribution function For. 

As we have that. (X1, . . ,Xn) and (F;‘(c’), F;l(U), ... , F,;‘(U)) have 

the same ma.rginals, we have that, X1 +. . . +X, and F,-‘(U) t. t F,;‘(U) 
have the same mea.n. As these random variables are ordered iu convex ortlcl 
sense, we also find t,hat, the variance of X1 t. . . t X, is smaller than or ey11ti.l 
tothevarianceofF;‘(U)t...tF,;‘(U), see e.g. Shaked a.nd Shant~hikumal 
(1994). 

Assume that, we have to determine E [W - d], for a cert,ain ret,ent’ion d; 
we can first determine Fw(d) from Cyzl FtM’ [FbJ(d)] = d. From t,he proof of 
Theorem 1, we find that: the stop-loss premium of W is then given by 

E [W - d], = $ E [Xi - F;’ (FL+(~))]+. 

Hence, the stop-loss premium with retention d of a sum of comonot,onic ran- 
dom variables can be writ,ten as a sum of stop-loss premiums of t,he individual 
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random variables involved. The retentions of the individual stop-loss prem- 
urns are such that, t,hey sum to d. 

4 Stochastic Bounds on Discrete Annuities 

In this section, we will consider st,ochastSic bounds for random variables of 
the form 

4,(X1) + 42(X2) + ” + Awn) 

where (X1, . . , X,,) belongs to a given Frkchet space R, ( FI, FJ, . , F,, ) , and 
where the functions 4, are continuous and strictly decreasing or increasing. 
As earlier mentioned, we also assume that the marginal distribution funct,ions 
F, are strictly increasing and continuous. 

From Theorem 1, we immediat,ely find 

~,Vl) + 42(X2) + ‘. + 4,(XrJ Im w 

where W is defined by W = I’J;;,~) (U) t I + F,-‘(,,! (U) wit,11 U ul~iformly 
distributed on [0, 11. The distribut,ion function of “W follows from 

Remark t,hat if 4, is st,rictly increasing, t,hen for aJ1 p E [0, I] we have that 

the other ha.nd, if 4, is strictly decreasing, t,hen 

ret,ention d, follows from 

As a special case, we now consider the following discour&ed cash flow 

v = 2 Qi, e-6i-x, 

i=l 

where the X, are assumed t,o be normally distributed wit,h mea.n 0 and vsri- 
ante rrf. We first, assume that the LY, are positive. 
As F;,‘(p) = ni (a-‘(p) where @ is the distribut,ion function of a st,andard 
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normal distributed random variable, we immcdi&ely find t,hat V 5, II’ with 
W defined by 

W =kcti exp[ -si - 0, a-’ (1 - U) , 1 
a=1 

with U being a uniformly dist,ribut,ed random variable on the ixkrval [O. 11. 
The survival function of IV follows from 

i: a, exp [-W - CT, Q-l (SW(~L))] = Ic, 
t=l 

or equivalently, 

with V, determined by 

n 

C Q, exp [-hi - f17, vz] = z. 
2-l 

The stop-loss premiums can be det,ermined as follows: 

where the Y, are log-normal dist,ribut,ed ra,ndom v;lriables wit,h pa.rameter~s 0 
and c$. 

Let, us now consider the case t,hat, t,he a, are negat,ive. Then we have that 
V L,, W with IV defined by 

W=kct, exp [-ai - (T, Q-‘(u)] 
cl 

The distribut,ion function of W follows from 

or equivalently, 
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wit,h 11, det,ermined by 

The stop-loss premiums can be determined as follows: 

E [W - d]+ = 2 a, e?E [x - e-“’ ur] _ 
2=1 

where the Y, are lognormal distributed random variables with paramet,ers I) 
and ‘~5 a.nd (x)- = min(z,O). 

More generally, we can consider the case where t,he values of t,he c1’, can 
take on positive and negat,ive v&es. In t,his cast, we find that, V <,,, W’, 
with IV det,ermined by 

M’ = 2 f? ’ [(Cl,), e-O’ @-‘(l-W + (ai)- e-c, V’(u)] 

I=1 

It is left, as an exercise for the rea,der t,o derive expressions for t,he distribution 
function and the stop-loss premiums in this case. 

5 Further Results and Applications 

5.1 Continuous Annuities 

Our previous results can be used for deriving st,ochastic bounds for continuous 
annuities. Consider e.g. the continuous t,emporary annuity V defined by 

J 
.t 

V = o a(~) exp [-67 - (T X(T)] d7 

where X(7) represents a. standard Brownian motion, 6 is t,he risk free interest 
intensity and a(~) is a non-negative continuous function of 7. 

We define an appropriaie sequence of discrete annuities VI, VJ, Q, . 
with respective stochastic upper bounds Wl, W,, IV,, .... Taking limits 
(7~ --f CXJ), we find tha,t V <,, W, where the random vasiable W is defined 

by 

w  = -,( a(T) exp [--ST - (T J; F’(U)] d7, 
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where, as usual, U is a random variable which is uniformly distributed on 
the interval [0, l] 
The tail function of W follows from 

where II, is determined by 

5.2 Stochastic Cash Flows 

Consider the random variable 

where X, (i = 1, . , n) represent#s a st,ochast,ic cash flow at, t.ime i and 1: 
(i = 1, . ! n), is the stochastic discount factor for a. payment made at t.imtJ 7. 
Hence, the random varia.ble V ca.n be int,erpreted as the present valuc~ at time 
0, of a sequence of random payments to be made at, times 1, 2, . , n. In ge11- 
era1 , the random paymen& (X1, , Xn) will not be mutSually intlcpcndent. 
even so the discount) factors will not. be mutually independent. Conceruing 
the dependency struct’ure, we only assume t,hat t,he vect,ors X and Y are nn- 
tually independent,. We also assume t,ha.t t,he the X, a.nd x are non-uegativt! 
random variables witch strictly increasing a.nd continuous dist,ribut,ion fun,- 
tions. By conditioning, we immediatey find tha.t V 5, T/I: with I/I/ defined 

by n 
w = 1 F&‘(U) FC’(V) 

i=l 

where U and V a,re mut,ually independent uniformly distribut,ed random vari- 
ables. 

We have that W 1 I’ = II is the sum of n, comonotonic risks. This implies 
z = F-’ WIV=lJ [Fw,v=u(z)] = CL Fi,‘(Fi,qvzv(~)) F<‘(?,). This means t.hi\t 
the conditional distxibution function of W, given that, V = II, follows from 

i?i(Fw,v=,(x)) F,-‘(u) = II:. 
z=l 
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In order to determine the dist,ribution funct,ion of W, the following algorit~hm 
can be used: 
For any z:, t,he value of Frv(z) is given by 

where the funct,ion f,? can be det,ermined from 

Remark that, we can derive upper bounds ( in terms of convex order) for 
C,“=, X, Y, 2, in a similar way. 

5.3 Asian Options 

Consider an arit,hrnet,ic Asia,n call option with price given by 

eCTEQ i n2S(T -i) - K 
[ 

, 
r=O 1 + 

where S(t) is t,he price process of the underlying risky asset, T is t’he expira 
tion dat,e, K is the exercise price, T is t,he risk-free int,erest. rate and n is the 
number of averaging days. 

In general, we a.re not, able t,o evaluate the expectation in t.he above pricing 
formula. Different’ approa.ches have been considered for approxima.ting t,he 
price of t,he opt,ion, see e.g. Kemna. and Vorst, (1990), Turnbull and Wakeman 
(1991), Levy (1992) and Ja.cques (1996). It, is easy t,o see t,hat, t,hc a.pproxi- 
mation method we present.ed here also enables us to find a,n upper bound foi 
the price of the opt,ion. For more det,ails, we refer to Simon, Goova,ert,s aud 
Dhaene (1999). 

6 Numerical Examples 

In the previous sections, we derived a stochastic bound for the sum of random 
variables with given marginals. We have seen that this upper bound has 
an easy comput,able dist,ribut,ion funct,ion, whereas t,he exa.ct, distribut,ion 
function is oft,en not comput,able. It, remains t,o compare t,he goodness-of-fit 
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of our proposed approximation. In order to be able t,o do t,his, we will have to 
consider a case where the exact, distribut,ion function call be det,ermined. We 
will then compa,re t,he exa,ct, distribut,ion with our approximation. Therefor,e, 
we will consider t’he continuous (t,emporary) annuit,y wit,h constant, payments 

V = ((t exp [--ST - IT X(r)] dr 
I 

where as before X(r) represents a st!andard Brownian motion process and 
6 is the risk free interest, int,ensit,y. For this annuit,y, an analytic result for 
the distribution function is known (see e.g. De Schepper et. al. (1994)), such 
that we can compare the distribution of V with the dist,ribut,ion funct,ion of 
the st,ochast,ic upper bound W defined by 

w = i,i cxp [-ST- - IT J; V’(U)] dr. 

In figures I to IV, we present t,he graphs of bot,h dist,ribut,ion funct,ions 
for different, choices of t,he vola,tilit*y , t,he int,erest int,ensit,v ( and the time 
horizon t ~ so as t,o see t,he a.ppropria.teness of t,he upper bound in various 
situa.tions. 

[ Figure I ] 
[ Figure II ] 
[ Figure III ] 
[ Figure IV ] 
Figure V shows the graph of the distribution functions (exact. and Frechet 

bound) for a perpetuit,y. When t,he time horizon t reaches infinity, 1’ is 
known to have an inverted Gamma distribution, see e.g. Dufresnc (1990) 
and Milevsky (1997). 

[ Figure V ] 
From t,he figures l-5, it. seems t,ha.t. t,he dist,ribut,ion fuuction of the ;11)- 

proxima.tion we propose is rather close to the original distribution function. 
This result was more or less t,o be expected, beca.use the dependency struc- 
ture between X(t) and X( ) s resembles comonotonicity, at least if t and s arc 
close enough tjo each ot,her. 
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Distribution of a Continuous Annuity [ delta=log(l.O&I) ; sigma*=1 ; t=lO ] 
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