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Abstract

In most practical cases, it is impossible to find an explicit expres-
sion for the distribution function of the present value of a sequence
of cash flows that are discounted using a stochastic return process.
In this paper, we present an easy computable approximation for this
distribution function. The approximation is a distribution function
which is, in the sense of convex order, an upper bound for the origi-
nal distribution function. Numerical results seem to indicate that the
approximation will be rather close in a lot of cases.

1 Introduction

In several financial-actuarial problems one is faced with the determination of
the distribution function of random variables of the form

n
V= Z o; e X
i=1
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where o; (1 = 1,---,n) represents the deterministic cash flow at time ¢ and
e~Xi (i =1,---,n), is the stochastic discount factor for a payment made at
time ¢. Hence, the random variable V' can be interpreted as the present value
at time 0, of a sequence of default-free payments at times 1, 2,---, n. In an
actuarial context, such random variables are used for describing the present
value of the cash flow of an insurance portfolio, see e.g. Dufresne (1990).
They are also useful for the determination of IBNR reserves, see Goovaerts
and Redant (1998).

Of course, each cash flow can be modelled as a sequence of incomes or as
a sequence of payments to be made. We will take the latter approach. More
specifically, each ¢; has to be interpreted as an amount that has to be paid
at time i. Equivalently, we can say that there is an income equal to —c; at
time i. In this sense, the random variable V will be called the loss variable,
i.e. the present value of all future (deterministic) payments.

Let us now assume that we know the distribution functions of the random
variables X; (1 = 1,---,n). One could assume e.g. that they are normally
distributed. In reality, the random variables X; will certainly not be mu-
tually independent. This means that besides the distribution functions of
the X; also the dependency structure of the multivariate random variable
(X1,+++, Xn) will have to be taken into account in order to determine the
distribution function of the loss variable V. Unfortunately, an expression for
the distribution function of V' is not available or hard to obtain in most cases.

In the actuarial literature it is a common feature to replace a loss variable
by a "less favorable” loss variable, which has a simpler structure, making it
easier to determine the distribution function, see e.g. Goovaerts, Kaas, Van
Heerwaarden, Bauwelinckx (1986). In order to clarify what we mean with a
less favorable risk, we will make use of the convex order, see e.g. Shaked and
Shanthikumar (1994).

Let V and W be two random variables (losses) such that

E¢p (V)] < E[¢p(W)] for all convex functions ¢ : R — R,

provided the expectations exist. Then V is said to be smaller than W in the
convex order (denoted as V <., W).

Roughly speaking, convex functions are functions that take on their largest
values in the tails. Therefore, V <, W means that W is more likely to take
on extreme values than V. Instead of saying that V' is smaller than W in the
convex order, it is often said that —V dominates —W in the sense of second
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degree stochastic dominance, see e.g. Huang and Litzenberger (1988). In
terms of utility theory, V <. W means that the loss V is preferred to the
loss W by all risk averse decision makers. Note that risk averse individuals
may have utility functions that are not monotonically increasing. Remark
that replacing the (unknown) distribution function of V' by the distribution
function of W, can be considered as a prudent strategy.

It is straightforward to verify that a convex order can only hold between
two random variables with equal mean. The function ¢, defined by ¢(z) = *,
is convex. Therefore, it follows that V' <. W implies Var [X] < Var [Y].

In Shaked and Shanthikumar (1994), the following characterization of
convex order is proven:

Let V and W be two loss variables such that E [V] = E[W]. Then V <, W
if, and only if,

EV-d,<EW-d, forald

Here, we used the notation (), = max(0,x).
By using an integration by parts, it is seen that the condition in the theorem
can also be written as

/Oo Sy(z) dz < /Oo Swiz) dz for all d.
d d

provided the integrals exist, and where Sy denotes the survival function of
the random variable V: Sy(z) = Pr[V > z].

In this paper, we will consider loss variables V' as defined above, for
which the distribution function cannot be determined explicitely. We will
construct a new random variable W which is larger in convex order scuse,
meaning that that £ [V] = E [W], and that for each retention d, the stop-loss
premium E [V — d], is smaller than or equal to the corresponding stop-loss
premium of W. Replacement of the loss V' by the loss W is safe in the sense
that all risk averse decision makers will consider W' as a less favorable loss. Of
course, applying the technique of replacing a loss by a less favorable loss will
only have sense if the new loss variable has a simpler dependency structure,
making it easier to determine its distribution function.

Finally, remark that V <. W is equivalent with =V <, —W. This means
that the convex order is independent of the interpretation of the random
variables as loss or gain variables.
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2 Fréchet Spaces

Let for any (n-dimensional) random vector X = (Xy, X, -+, X,,), the distri-
bution function and the survival or tail function be denoted by Fx and Sx
respectively, i.e.

FX(X) = PI'[XIS.'L'l, X2§$2>"'aXn§mn]v
Sx(x) = Pr[X;>xz, Xo>a9,-, Xp > 1], x € R™.

>

In general, the distribution function of a univariate random variable X 1s
not one-to-one so that the inverse functions Fy' and Sy’ have to be defined
cautiously. As usual, we define the inverse of the distribution function as
follows:

Fy'(p) = inf{z € R| Fx(z) > p}, pe [0,1].

We also define the inverse Sy' of the survival function Sy as
Sx'(p) = inf {z € R| Sx(z) <p}, pe [0,1].

In both definitions, we adopt the convention that inf @ = oco. It is easily seen
that

Bl p)=Sx'(1-p),  pe01].
For all z ¢ R and p € [0, 1], the following equivalences hold:

Fx(z) > p& Fi'(p) < 2 and Sx(z) <pe Sy'(p) < z.

A Fréchet space is defined as a class of (distribution functions of ) random
vectors with fixed marginal distribution functions. Let R,(Fy, Fs,---, F,)
denote the Fréchet class of all random vectors X = (X, Xy, -+, X,,) with
marginal distribution functions Fy, Fy, - -+, F;, respectively, i.e.

Pr(X; <z]=F(z), i=1,---,nfor all X e R(F\, Fy,---, Fy).

We will repeat some well-known results related to Fréchet spaces, which
will be needed for deriving our results. Since Hoeffding (1940) and Fréchet
(1951), it is well-know that the upper bound of R.(Fy, Fy,---, F,) is the
distribution function W, (x) given by

W, (x) = min{Fl(acl), Fy(zq),- -, Fn(xn)}
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in the sense that the joint distribution function Fx of any X in R,(Fy, Fy,--+, F,)
is constrained from above by

Fx (x) < W, (x) for all x e R".

M, is usually known as the Fréchet upperbound in R,(Fy, F,---, Fa). Re-
mark that the Fréchet upperbound is reachable within R, (Fy, F3,- -, F). Indeed,
for any uniformly distributed random variable U on the interval [0, 1], we have
that

(F), B U),, FHU)) € BBy, By o)

and
PrF'(U) <ai, FH(U) S0, FAU) < T =Wa(x),  xeR"

Random variables (X;, Xs,---,X,) with the Fréchet upperbound M,

as distribution function are said to be comonotonic. Comonotonic random
variables possess a very strong positive dependency. Indeed, all the X; are
non-decreasing functions of the same random variable, so that they are indeed
”common monotonic”. Increasing one of the X; will lead to an increase of
all the other random variables X; involved. This means that these random
variables cannot compensate each other. They cannot be used as hedges
against each other.
Other characterizations of comonotonicity can be found e.g. in Denneberg
(1994). The concept of comonotonicity was introduced by Schmeidler (1936)
and Yaari (1987), see also Roéll (1987). It has since then played an important
role in economic theories of choice under risk and uncertainty. Applications
of the concept of comonotonicity in the actuarial literature can be found in
Dhaene and Goovaerts (1996), Dhaene, Wang, Young and Goovaerts (1997),
Wang and Dhaene (1998) and Wang and Young (1998), amongst others.

3 Bounds on Sums of Dependent Risks

Consider a random sum V = Xy + - -- + X, such that (Xj,---, X,) belongs
to the Fréchet space Rn(Fi, F3,---, F.). From now on, we will always
silently assume that the marginal distribution functions Fy, Fy,-- -, F;, are
strictly increasing and continuous. We will consider the problem of deriving a
stochastic upper bound W for V such that W = Y;+---+Y, with (Y;,---,Y;)
belonging to the same Fréchet space and such that the upper bound W is
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larger in the sense of convex order than the original loss V. A related problem
(for non-negative random variables) is considered in Miiller (1997), and also
in Goovaerts and Dhaene (1999).

For a strictly increasing and continuous function ¢ and Fy, we have
that Fyx)(z) = (FX o¢'1> (z), from which it follows by inversion that
F 4)_(3()(]9) =¢ (F X 1(p)) . As a special case, consider the strictly increasing
and continuous function ¢ defined by ¢(p) = S, F.''(p), (p € [0,1]) and
the random variable U, which is uniformly distributed on the interval [0, 1].
In this case, we have that F(;(}J)(p) = ¢(p). Hence, we have proven that the
inverse distribution function of a sum of comonotonic risks behaves addi-
tively. More specifically, let W = F{'(U) + F; {(U) + -+ F;YU) with U
uniformly distributed on [0, 1}, then

Fy'(p) = iF{l(P), pe [0,1].

Remark that this result can be generalized to the case that the distribution
functions involved are not one-to-one, see e.g. Denneberg (1994).

In the following theorem, we show that the Fréchet upperbound of a
given Fréchet space gives rise to a sum which is larger, in the sense of convex
order, than any other random variable which can be written as a sum of the
components of an element of the Fréchet space under consideration.

Theorem 1 For any X in R,(Fy, Fy,- -+, F,) and any uniformly distributed
random variable U on [0,1], we have that

X1+ Xo+ 4+ Xy <o )+ BN U+ -+ ETHU).

T

Proof. Let V and W be defined by V = X; + Xy +--- + X, and W =
FIHU) + FyY(U) + - + E7HU) respectively.

Remark that (z; + 2y + - +x,), < (1), + (22) + - + (2,), holds true
for all x € R". Hence, for any d we have

BV ~d, = [V - F (Fald)], < S B [X- B (Ruld)]

1=1

On the other hand,

BW-d, = [ (R -d), &



1
- -/Fw(d) <Fl;’1 (p) - FL;/l (Fw(d))) dp

3 e (719~ F (@)

If

S B[X - B (Feld)],

which proves the theorem.

From the theorem above, we see that knowledge of the marginal distri-
bution functions of a sum of random variables suffices to find a new loss
variable which is larger in convex order sense than the original loss variable.
This holds in general, by which we mean that the same bound holds for all
elements of a given Fréchet space. Hence, the bound does not depend on the
dependency structure between the random variables involved. The special
dependency structure giving rise to the the greatest sum (in terms of convex
order) in the given Fréchet space, 1s comonotonicity.

Using the fact that the inverse distribution function of a sum of comonotonic
risks behaves additively, we can deduce an algorithm for computing the dis-
tribution function of such a sum. Indeed, for W = F7'(U) + F5 "(U) +-- -+
EYU) with U uniformly distributed on [0, 1}, we find

Zj:Ffl [Fw(z)] = =, zeR.

which implicitely determines the distribution function Fy (x).

As we have that (X, -+, X,,) and (Fl_l(U), YOy, - F,jl(U)> have
the same marginals, we have that X, +---+ X, and F{{(U) +--- + F7Y(U)
have the same mean. As these random variables are ordered in convex order
sense, we also find that the variance of X, + -+ X, is smaller than or equal
to the variance of F; }(U)+-- -+ F7'(U), see e.g. Shaked and Shanthikumar
(1994).

Assume that we have to determine E[W — d], for a certain retention d,
we can first determine Fyy (d) from S, F™' [Fw(d)] = d. From the proof of
Theorem 1, we find that the stop-loss premium of W is then given by

EW-d, = ZE (X F (Fw(d))L .

Hence, the stop-loss premium with retention d of a sum of comonotonic ran-
dom variables can be written as a sum of stop-loss premiums of the individual
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random variables involved. The retentions of the individual stop-loss premi-
ums are such that they sum to d.

4 Stochastic Bounds on Discrete Annuities

In this section, we will consider stochastic bounds for random variables of
the form

S1(X1) + Go(Xa) + - + 0 (Xin)

where (X1, -+, X,,) belongs to a given Fréchet space R, (Fy, Fy,- -+, F,), and
where the functions ¢, are continuous and strictly decreasing or increasing.
As earlier mentioned, we also assume that the marginal distribution functions
F; are strictly increasing and continuous.

From Theorem 1, we immediately find

$1(X1) + dy(Xo) + -+ 4 9n(Xn) <o W

where W is defined by W = F&xl)(U) +- 4+ F(;I(X")(U) with U uniformly
distributed on [0, 1]. The distribution function of W follows from

n

ZFr;ZX FW ZI.

Remark that if ¢, is strictly increasing, then for all p € [0,1] we have that
F *g \(p) = &; [F[l(p)}. On the other hand, if ¢, is strictly decreasing, then
Fylx ) =9, [F'(1=p)].

The stop-loss premium with retention d, follows from

EW —dj, = ZE[ Fytxo (Fu(d))]

4

As a special case, we now consider the following discounted cash flow

n
V= Z a; e~ X
i=1

where the X; are assumed to be normally distributed with mean 0 and vari-
ance 02. We first assume that the o; are positive.
As Fx!(p) = 0; !(p) where  is the distribution function of a standard
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normal distributed random variable, we immediately find that V' <., W with
W defined by

W:iai exp {—572—(7,- o7 (1 —U)],

=1

with U being a uniformly distributed random variable on the interval [0. 1].
The survival function of W follows from

Y o, exp [—5@' — g, 7! (Sw(z))] =,
1=1

or equivalently,

with v, determined by

Zai exp [—6i — 0; v, = 2.

1=1

The stop-loss premiums can be determined as follows:
/ —_ - PR 2 0 vy
EW -d], ;a,e ElY,—e L

where the Y; are log-normal distributed random variables with parameters ()
and o2

Let us now consider the case that the «; are negative. Then we have that
V <, W with W defined by

W= iai exp [—& -0 fD_l(U)] .
i=1

The distribution function of W follows from
Zai exp ['—62 - aJ; (I)vl(Fu/(ﬂ?))] =1,
i=1

or equivalently,
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with v, determined by
Y expl—8i— 0, vg] =z
1=]

The stop-loss premiums can be determined as follows:

Za7 &E[ e u,}_

where the Y; are lognormal distributed random variables with parameters ()
and 0? and (z)_ = min(z,0).

More generally, we can consider the case where the values of the o, can
take on positive and negative values. In this case, we find that V <. W,
with W determined by

It is left as an exercise for the reader to derive expressions for the distribution
function and the stop-loss premiums in this case.

5 Further Results and Applications

5.1 Continuous Annuities

Our previous results can be used for deriving stochastic bounds for confinuous
annuities. Consider e.g. the continuous temporary annuity V defined by

V= / T)exp 67 — o X(7)] dr

where X (7) represents a standard Brownian motion, ¢ is the risk free interest
intensity and «(7) is a non-negative continuous function of 7.

We define an appropriate sequence of discrete annuities Vy, Vs, V4, ---
with respective stochastic upper bounds W), W, Ws,-... Taking limits
(n — 00), we find that V <, W, where the random variable W is defined
by

W= / exp b1~ \JT <I>_1(U)] dr
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where, as usual, U is a random variable which is uniformly distributed o
the interval [0,1].
The tail function of W follows from

Sw(I) = (I)(I/z)

where v, is determined by
-4
/ a(T) exp [—(57 —a T 1/1] dr =
0

5.2 Stochastic Cash Flows

Consider the random variable

where X, (¢ = 1,--- n) represents a stochastic cash flow at time i and Y,
(1=1,---,n), is the stochastic discount factor for a payment made at time 7.
Hence, the random variable V can be interpreted as the prcsent value at time
0, of a sequence of random payments to be made at times 1, 2,---, n. In gen-
eral , the random payments (X, ---, X;,) will not be mutually indepen(lent,
even so the discount factors will not be mutually independent. Concerning
the dependency structure, we only assume that the vectors X and Y are mu-
tually independent. We also assume that the the X; and ¥; are non-negative
random variables with strictly increasing and continuous distribution func-
tions. By conditioning, we immediatey find that V <., W with W defined
by

n

W =3 FU) F (V)

i=1
where U and V' are mutually independent uniformly distributed random vari-
ables.

We have that W | V = v is the sum of n comonotonic risks. This implies

T = FV;}‘,:U [FWW:U(LE)} =YL Py (Fwv=(@)) F7'(v). This means that
the conditional distribution function of W, given that V = v, follows from

ZF (Fyw=o()) Fy'(v) ==
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In order to determine the distribution function of W, the following algorithm
can be used:
For any z, the value of Fiy(z) is given by

= '/01 fz(v) dv

where the function f, can be determined from
ZF (fo(v) Fy (v) = .

Remark that we can derive upper bounds ( in terms of convex order) for
Yo  Xo Y, Z; in a similar way.

5.3 Asian Options

Consider an arithmetic Asian call option with price given by
1 n-1
e "TE? [ Z S(T } ,
+

where S(t) is the price process of the underlying risky asset, T is the expira-
tion date, K is the exercise price, r is the risk-free interest rate and n is the
number of averaging days.

In general, we are not able to evaluate the expectation in the above pricing
formula. Different approaches have been considered for approximating the
price of the option, see e.g. Kemna and Vorst {1990), Turnbull and Wakernan
(1991), Levy (1992) and Jacques (1996). It is easy to see that the approxi-
mation method we presented here also enables us to find an upper bound for
the price of the option. For more details, we refer to Simon, Goovaerts and
Dhaene (1999).

6 Numerical Examples

In the previous sections, we derived a stochastic bound for the sum of random
variables with given marginals. We have seen that this upper bound has
an easy computable distribution function, whereas the exact distribution
function is often not computable. It remains to compare the goodness-of-fit
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of our proposed approximation. In order to be able to do this, we will have to
consider a case where the exact distribution function can be determined. We
will then compare the exact distribution with our approximation. Therefore,
we will consider the continuous (temporary) annuity with constant payments

VI/(:exp[#ST—er(T)} dr

where as before X(7) represents a standard Brownian motion process and
6 is the risk free interest intensity. For this annuity, an analytic result for
the distribution function is known (see e.g. De Schepper et al. (1994)), such
that we can compare the distribution of V' with the distribution function of
the stochastic upper bound W defined by

W= /; exp {~(5T —o T <I>_1(U)] dr.

In figures I to IV, we present the graphs of both distribution functions
for different choices of the volatility , the interest intensity . and the time
horizon t |, so as to see the appropriateness of the upper bound in various
situations.

[ Figure I |

[ Figure II |

[ Figure III |

| Figure 1V |

Figure V shows the graph of the distribution functions (exact and Fréchet
bound) for a perpetuity. When the time horizon t reaches infinity, V is
known to have an inverted Gamma distribution, see e.g. Dufresne (1990)
and Milevsky (1997).

[ Figure V]

From the figures 1-5, it seems that the distribution function of the ap-
proximation we propose is rather close to the original distribution function.
This result was more or less to be expected, because the dependency struc-
ture between X (t) and X (s) resembles comonotonicity, at least if ¢ and s are
close enough to each other.
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