
An Economic Premium Principle 
in Multiperiod Time Horizon 

Hideki Iwaki’ and Masaaki Kijima2 

Current Version: August 23, 1999 

Abstract 

This paper considers a multiperiod economic equilibrium model to derive the eco 

nomic premium principle of Biihlmann (1980, 1983). To do this, we construct a con- 

sumption/portfolio model in which each agent characterized by his/her utility function 

and endowments can invest his/her wealth into insurance market as well as financial 

market to maximize the expected, discounted total utility from consumption. The 

state price density in an equilibrium is obtained in terms of the Arrow-Pratt index 

of absolute risk aversion for the representative agent. As special cases, power and 

exponential utility functions are examined, and some comparative statics results are 

derived. 
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1 Intorduction 

The credit derivatives market has grown rapidly and they are now one of the major tools to 

hedge credit risk. Credit derivatives are financial instruments whose payoffs are linked to the 

credit characteristics of reference asset’s value. For example, a credit swap is an agreement 

between two parties, A and B say, to exchange risk and cash flows in the future according to 

a prearranged formula. Typically, Party A pays Party B at the credit events such as default, 

if before the maturity, the difference between the current value and the market value of 

an asset. In compensation of the payment, Party B pays Party A an annuity at a rate, 

called the credit swap premium, until either the maturity of the contract or termination 

by the designated credit events, whichever happens first.’ The idea of the credit swap is 

quite similar to that of insurance products. In fact, we can imagine that Party B pays an 

insurance premium to cover a sudden loss due to a credit event. 

Turning to insurance products, there are frequently traded ART (Alternative Risk Trans- 

fer) products in the market. Examples of ART products include insurance linked securities, 

insurance derivatives and holistic covers that hedge insurance and financial risks simultane- 

ously. Evidently, pricing of such ART products requires not only the theory of insurance 

but also the theory of finance. 

The classic risk theory suggests that insurance premiums are calculated based on the ex- 

pected loss under the observed probability measure. However, if financial risks are included, 

as a part, in an insurance product, or the product (or its derivative) is tradable in a financial 

market, then the premium should be calculated so as to reflect financial risks. One approach 

to this problem is to use the “non-arbitrage valuation framework” developed in the finance 

theory directly. For example, Delbaen and Haezendonck (1989) considered, as given, some 

risk-neutral measure under which the underlying price process is a martingale. Under this 

probability measure, the insurance premium is calculated as the expected, discounted total 

payoffs.’ This approach is applicable if we can find the risk-neutral measure. However, for 

such, the insurance market needs to have enough liquidity. 

The other approach to consider financial risks is to use an economic equilibrium model. 

The pioneering work by Biihlmann (1980) considered a single-period consumption model in 

which each agent is characterized by his/h er utility function and initial wealth, and the state 

price density is determined so as to achieve an equilibrium. 3 Especially, he showed that the 

standard premium calculation principle using the Esscher transform falls into a special case 

’ See Duffie (1999) and Kijima (1998) for the credit swap valuation. 

a See Harrison and Kreps (1979) and H arrison and Pliska (1981) for details. 
3 Another way to tackle this problem may be to use the CAPM (Capital Asset Pricing Model) type models 

developed in financial economics. See Miiller (1987), Cummins (1990) and references therein. 
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of his result. Since then, several extensions have been made based on his model. Examples 

of such include Biihlmann (1983), Lienhard (1986), Wyler (1990) and references therein. See 

Gerber and Shiu (1994) and Biihlmann et al. (1998) for the connection between the Esscher 

transform and some finance models. 

In this paper, we take the line of Biihlmann (1980, 1983) with some modifications and 

extensions. We consider a multiperiod consumption/portfolio model in which each agent 

characterized by his/her utility function and endowments can invest his/her wealth into in- 

surance market as well as financial market to maximize the expected, discounted total utility 

from consumption. It is shown that, even in this standard economic model, a similar result 

to Biihlmann (1980, 1983) is obtained. Especially, the state price density in an economic 

equilibrium is derived in terms of the Arrow-Pratt index of absolute risk aversion for the rep- 

resentative agent. For power and exponential utility functions, closed form solutions of the 

state price density are given and some comparative statics results are obtained accordingly. 

This paper is organized as follows. In the next section, we formally state our discrete- 

time multiperiod model with emphasis on the differences of our model from Biihlmann’s 

model (1980, 1983). It is shown that, under the market completeness assumption together 

with some technical conditions, an optimal consumption/portfolio process for every agent 

exists and the state price density in equilibrium can be derived under the market clearance 

condition. While, in Section 3, the special cases of power and exponential utility functions 

are examined, Section 4 studies some comparative statics about our economic premium 

principle. It is shown that the insurance premium for risk is higher for the economy with 

more risk-averse agents. 

Throughout this paper, all the random variables considered are bounded almost surely 

(a.s.) to avoid unnecessary technical difficulties. Equalities and inequalities for random 

variables hold in the sense of a.s.; however, we omit the notation a.s. for the sake of notational 

simplicity. 

2 The Discrete-Time Model 

In this section, we construct a discrete-time consumption/portfolio model to derive the 

economic premium principle of Biihlmann (1980, 1983). W e consider an economy consisting 

of a finite number of agents, i = 1,2,. . , n say, who constitute buyers of insurance companies, 

insurance companies and reinsurance companies. 

In the economy, it is assumed that trading dates consist of the set of integers 7 z 

(0, 1,. ,T} with ‘I’ > 0, i.e. any economic trade occurs at discrete-time points between 

0 and T, and that uncertainty is described by a given probability space (n,F-,p). Also, 

-127- 



as to resolution of uncertainty of the economy, we are given a P-augmentation of filtration 

IF G {Ft; t E 7) such that 

with Fo = (a, 0). The conditional expectation operator given Ft is denoted by Et. 

Agent i is endowed w,(t) units of a single (perishable) commodity, and he/she encounters 

rislc xi(t) measured in units of the commodity at time t E T. While the quantities u~i(t) 

and xi(t), t = 1,2,. , ‘I’, are assumed to be nonnegative random variables, w;(O) and Xi(O) 

are nonnegative constants. We call Z;(2) G w;(t) - X;(t) the net endowment for agent i at 

time t E ‘T. The aggregated net endowment 

Z(t) Fi 2 Z;(t), t E r, (2.1) 
i=l 

is assumed to be strictly positive. 

Next, we introduce an insurance with premium-per-share p(t) at time t, which is strictly 

positive and satisfies 

p(t t 1) = p(t)(l + ((t + I))> P(O) = P> t=o,l,...,T-l, (2.2) 

for some F-adapted, possibly negative process t(t) > -1, where p is a positive constant. 

One generalization of Riihlmann’s model (1980, 1983) is to allow the agents to invest 

their wealth into a financial market consisting of the money market and m risky securities. 

We denote the time t price of the money market account by So(t) whereas the time t price of 

security j by Sj(t), j = 1,2,. , m. It is assumed that S,(t) are strictly positive and, while 

So(t) satisfies 

So(t t 1) = So(l)(l t r(l t l)), So(O) = 1, t=o,l,...,T-l, (2.3) 

for some IF-adapted, positive process r(t) which represents the tisli-free interest rate, the 

risky security prices S,(t) are defined by 

Sj(T) = Sj(O)(l t ~(l)(t t l)), Sj(0) = Sjr t =O,l,...,T--1, (2.4) 

for some IF-adapted, possibly negative process t(j) > -1, wh ere Sj are positive constants. 

P(t), So(t), Sj(t), j = 1,2,‘. , m, are all assumed to be measured in units of the commodity 

at time t E 7. 

Formally, our discrete-time insurance/financial market is defined as follows. See Pliska 

(1997) for the basic discrete-time securities market. 

Definition 2.1 The discrete-time insurance/financial market consists of 
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(1) the filtered probability space (a, F’, IF, P), 

(2) the set of IF-adapted net endowment processes Z;(t) with Z(t) = C:=r Zi(t) > 0 for 

ail t E 7, 
(3) the positive, F-adapted risk-free interest rate process r(t), 

(4) the set of IF-adapted processes [ j (t) > -1, j = 1,2,. , m, 

(5) th e IF- aa e ro d pt d p cess ((2) > -1:’ 

The market is referred to as M = ({Zi(t)}~z’=l,r(t), {@j)(t)},“=l,t(t)). 

Let x(t), @‘(t) and 0!‘(t) denote the number of shares of insurance, the number of 

shares in the money market and the number of shares in security j, respectively, carried 

by agent i from time t to t $ 1. Hereafter we call I’$) a rislc ezchange and (e,(t),x(t)) a 

portfolio of agent i at time 1, where 6;(t) E (@j(l), 0/“(t), . , fJj”“(t))T and T denotes the 

transpose. Once a market M is given, each agent i chooses a consumption process c;(t) and 

a portfolio process (e,(t), k;(t)), t E T. 

Given a portfolio process (@;(t),K(t)) and a cumulative income process 6=,(Z;(s) - 

c;(s)), t E 7, the wealth process {W’;(t); t E 7) is defined by kVi(O) = Z,(O) - c;(O) and 

Wi(t t 1) - W;(t) = Zi(t + 1) - C;(t + 1) 

$ p(t - l)x(t - l)[(t) + 5 Sj(t - l)ey’(t - l)[‘j’(t) (2.5) 
j=l 

$ (W(t) - p(t - l)x(t - 1) - eSj(t - i)ej’)(t - l)@)(t))r(t) 
,=l 

for t = 1,2, .. . ,T. Furthermore, suppose that the state price density b(t) is given that 
satisfies 4(O) = 1, 0 < d(t) < 00, and 

J%lM(4P(~)l = #(t - l)P(i - 1); Et-1[4(t)Sj(t)] = 4(t - l)Sj(t - l), j = 0, 1, ‘. .) my 

(24 
for each t = 1,2,. . ,T. It is easily seen from (2.5) that 

#(t)K(t) = k4(s)(Zi(s) - G(s)) t 2 4(s)P(s - l)K(s - l)(E(s) - r(s)) 
s=o S=l 

+ k 5 ~(s)S,(S - l)@(s - l)(@j’(s)) - r(s)), t = 1,2,. ‘. ,T. (2.7) 
r=l j=l 

The next definition is similar to the one given in Karatzas and Shreve (1998). 

Definition 2.2 A consumption/portfolio process (c;(t), (O,(t), Y,(t))) is admissible for agent 

i if the corresponding wealth process satisfies 

Wi(t)tEt [s$140Zt(sI] 20, t ET. 

The class of admissible process (ci(t), (O,(t), x(t))) is denoted by A;. 

(2.8) 
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We note that, from (2.5) - (2.8), if (ci(t), (e;(t), Y;(t))) is admissible, then the consump- 

tion process ci(t) must satisfy the budget constraint 

(2.9) 

for each agent i. 

Now, suppose that, while all the agents have a common discount process P(t), agent i 

has a utility function Ui : IR --t (0, co) which is strictly increasing, strictly concave and twice 

continuously differentiable with the properties Cr,!(ao) G limz+, U:(z) = 0 and U;‘(O+) E 

limzro Cr,l(zc) = 00. The problem that each agent faces in the market M is as follows. 

(MP) Find an optimal consumption/portfolio process (c(t), (i;(t), c(t))) to maximize the 

expected total, discounted utility from consumption 

[ 

T 
E ~e-C:=ofl(“)Ui(~(t)) 

t=o 1 
over the admissible consumption/portfolio processes (c;(t), (e,(t), Y,(t))) E Ai that satisfy 

E 5 e- C:=op(“’ min(0, ui(c;(t))) 1 > --co. t=o (2.10) 

For every utility function CJi, we shall denote by Z, the inverse of the derivative U,!. Under 

the assumption stated above, the inverse Ii is also continuous, strictly decreasing, and maps 

(0,oo) onto itself with the properties Ii = U,‘(O+) = co and Z,(M) = U;‘(oo) = 0. The 

next lemma is easily established (see e.g., Rockafellar (1970)). 

Lemma 2.1 Let lT’i be defined by 

Oili s ,~z$,",{~i(~) - zY}, o<y<w. (2.11) 

Then, 0; : R + (O,CO) is conuez, decreasing, continuously diferentiable on (O,oo), and 

satisfies 

oi(Y) = ui(li(Y)) - Yzi(Y), 0 < Y < 03, 

oi(Ot) = Ui(m)y lqw) = U;(Ot). 

(2.12) 

The derivative 0: is well defined, continuous, and increasing on (O,CXI), and given by 

@(Y) = -Ii(Y), o<y<w. (2.13) 
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Let us define 

Xi(y) 5 E 54(t)Ii (!, lZC~=o’(u)~(t))] 1 o<y<m. (2.14) 
k0 

The function Xi maps (0, co) onto itself, and is continuous and strictly decreasing with the 

properties Xi(O+) E lim,~&(y) = 03 and pi s lim,,, A’,(y) = 0. This function has a 

continuous and strictly decreasing inverse y, : (0, M) “%” (0, M), which satisfies 

xt(Yi(r)) = z~ vz E (0, co). (2.15) 

To proceed further, we need the following assumption regarding the market completeness: 

(MC) For each t, t = 1,2;. ,T, and for every & random variable B, there exists a 

portfolio (e(‘)(s), ,8(“)(s), Y(s)), s = 0, 1,. . ,I” - 1, such that 

f? = kp(s - l)Y(s - l)([(s) - r(s)) + f: c ,s,(S - 1)0(q.s - l)(+)(s) - r(s)). 
S=, s=l J=, 

Remark 2.1 Suppose that R consists of a finite number of elements. If the number of 

securities is no more than the number of the elementary events, then the condition (MC) is 

satisfied (see e.g. Pliska (1997)). 

Theorem 2.1 Under the conditions stated above, an optimal consumption/portfolio process 

(Zi(t),(fi;(t),p,(t))) E d, for agent i and the corresponding wealth process iy,(t) are given, 

respectively, by 

t E 7, (2.16) 

where 

Yt =Yt (E [$4(t)Z(t)]) > 

(B,(t), c(t)) is a solution Of 

kg(S)p(S - 1)x(.? - l)([(S) - r(s)) $ ~ ~~(S)Sj(S - l)@)(S - 1)(+“(S) - r(s)) 
s=l s=l j=l 

= Et [$d(s)(r.(.) - Z;(s))], t = 1,2,...,T, (2.18) 

and 

&O'(t) = W(t) -dt)K(t) - 2 sj(t)ep'(t) t = O,l,...,T - 1, (2.19) 
j=l 

and 

5 +(S)(&(S) - Z,(S)) 
I 

, t=o,l,...,T-l, (2.20) 
s=t+1 

where W;(T) = 0 for all agents. 
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Prooj First, we show that (Ei(t), (bi(t),R(t))) IS a missible with the property (2.10). From d 

the market completeness assumption (MC), there exists a portfolio (h,(t), t(t)) satisfying 

(2.18). This leads to (2.20) and (?,(1),(8,(t),fi(,))) E A,. From Lemma 2.1 with y = 

y;eC:=~st“)#(t) and z = 1, we obtain 

e -C:=~P’“‘ui(~i(t)) > e-C:=,p’u’U,(l) + yi~(t)(~(t) - 1). 

It follows that 

Next, we show that (E,(t), (B;(t), k(t))) attains the optimal. TO this end, let (c;(t), (B;(t), x(t))) 

be any admissible process. Using Lemma 2.1 again, we have 

e -c’=op(u)I~,(Ei(t)) - y,~(t)E,(t) > e-C’=op(u)Ul(C;(t)) - y,+(t)Ci(t), 

and thus 

&-C:=~fl(~)U(&(t)) &%R(u)l/(s(t)) 
t=ll t=Ll 1 

Furthermore, (2.14), (2.15), (2.17) and the budget constraint (2.9) together lead to 

It follows that 

E -~:=d+‘)U(c;(t)) 1 , 

completing the proof. 0 

We are now in a position to develop the economic premium principle. To this end, we 

formally state the notion of an equilibrium market. 

Definition 2.3 Given the net endowment processes Z;(t) and utility functions Ui, i = 

1,2,. . , n, as well as the discount process B(t), we say that M is an equilibrium market, if 

the following conditions hold: 

(1) Clearing of the commodity market: 

c&(t) = Z(t), t E 7. (2.21) 
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(2) Clearing of the insurance market: 

”  

c k(t) = 0, t E r. i=l 
(3) Clearing of the securities market: 

2 i!j’(t) = 0, j= 1,2...,rn, t E7. 
i=l 

(4) Clearing of the money market: 

5 dj”‘(t) = 0, 
i=l 

t E 7. 

Here E;(t), i?‘(t), e;(t) are the optimal solutions for Problem (MP). 

The next theorem characterizes the equilibrium market. 

Theorem 2.2 IjM is an equilibrium market, then 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

where yl;..,y, are given by (2.17). 

Conversely, ijM is a market for which the state price density ~6 satisfies (2.&5) and 

E [24(t) { 1, (Yi eC~=oPc“)4(t)) - 2((t)}] = 0, i= 1,2;..,n, (2.26) 

for some (~1,. , yn) E (0, co)“, then M is an equilibrium market. 

Proof. The first statement follows by summing (2.16) over i and using the commodity 

market clearing condition (2.21). To prove the converse, note that if (2.26) holds, then the 

optimal consumption/portfolio pair for agent i is given by (2.16), (2.18) and (2.19). Now, 

summing (2.18) over i and using (2.25), we conclude that 

2 ~(s)P(s - l)(G) - r(s)) kk;:(s - 1) 
.4=1 i=l 

$2 2 4(S)Sj(S - l)($j)(S) - r(S)) k 0!j’(s - 1) = 0, t= 1,2,...,T. 
a=1 j=l i=l 

It follows that ‘& c(t) = 0 and C%1 i?‘(t) = 0 for j = 1,. . ,m, for all t E 7. The money 

market clearing condition follows from summing (2.19) over i, proving the theorem. 0 
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Given A = (AI,. . , A,) E (0, CO)“, let 

Z(y;A)&(~). O<Y<ocL 
i=l ' 

Then, we can rewrite (2.25) as 

z(t) = I (eC:=ow#J(t); A*) (2.28) 

with A* = (y;‘,...,y;‘), where yr,...,y, are given by (2.17). The function I(y;A) is 
continuous and strictly decreasing with respect to y, and maps (0,oo) onto itself with the 

properties Z(O+;A) = 00 and I(oo; A) = 0. Th erefore, it has a continuous, strictly decreasing 
inverse ‘M(.; A) : (0, co) “y (0, oo) with the properties X(0+; A) = 00 and ‘H(co; A) = 0. 

That is, 

Z(Yl(z; A); A) = 5, v z E (0, cm). (2.29) 

It follows from (2.28) that, if the market M is in equilibrium, then the state price density 

4(t) and the aggregated net endowment Z(t) are connected through 

4(t) = e- ~:=~P’“‘ltC(Z(t); A*), t E 7. (2.30) 

Also, from (2.16) and (2.30), the optimal consumption process of agent i is given by 

(2.31) 

We note from (2.31) that the optimal consumption process depends not on the insurance as 

well as the securities but only on the aggregated net endowment Z(t), the discount factor 

/3(t) and the utility function CJ;. 

We can characterize the function ‘H(y; A) using a utility function of the representative 

agent, which is defined by 

U(c;A)=max 
{ 

2X,S(q); q>O,i=l,...,n, k~=c , o<c<co. (2.32) 
i=l i=l ) 

The next theorem is well known. For the proof, see, e.g., Karatzas and Shreve (1998). 

Theorem 2.3 Let A E (0, cc~)~ be giuen and let II; be of class C3(0, m). Then the function 

U(.; A) is of class C3(0, co), strictly increasing, and strictly concave with 

U’(c; A) = 31(c; A), o<c<m. (2.33) 

Finally, we can obtain the expression for the state price density d(t), which is similar to 

the one given by Biihlmann (1980, 1983). G iven a utility function U(z, A), 

(2.34) 

is called the Arrow-Pratt index of absolute risk aversion. 
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Theorem 2.4 If M is an equilibrium market, then the state price density $(t) is given by 

exp { - ~:=a p(u) - J?“) p (5, A*) dr) 

‘(t)= EIS,(t)exp{-C:=oP(U)-luZ’f’P(Z,A*)dZ}]’ t “. 
(2.35) 

Proof. From (2.30) and (2.33), we have 

d(t) = e- CL~(-w (Z(t); A*) 

Solving (2.34) with respect to U’, we have 

U’(z,A) = Kexp{+(s,A)dz), 

where K is the normalizing constant. Since E[d(t)&(t)] = 1, the theorem follows. 0 

If, in particular, p(O) = 0 and ,8(t) = log(1 + r(t)) so that S,(t) = ~C:=O~(~), then we 

have the following. 

Corollary 1 Suppose that p(O) = 0 and P(t) = log(1 i-r(t)), t = 1,2;.‘,T. Then, under 

the conditions of Theorem 2.4, we have 

exp{-Jt(‘)p(z,A’)dz} 

‘(t) = S,(t),?3 [exp (-J,oztt) p (z, A*) dz}] 
(2.36) 

We note that if S’s(t) = 1, t E ‘T, then Corollay 1 agrees with the result of Biihlmann 

(1983). Also, the expression (2.35) or (2.36) suggests us consider 4(t)&(t) rather than the 

state price density 4(t) itself. Namely, we can define a new probability measure P’ whose 

conditional expectation, given Ftl, is defined by 

(2.37) 

for any random variable X. For any price S(t), we define the relntiue price with respect to 

the money market account So(t) by 

s(t) 
S’(t) = Yj-Jq’ 

The next result can be easily proved using (2.6). Th e new probability measure P’ may be 

called a risk-neutral measure. 

Theorem 2.5 The relative insurance premium p*(t) as well as the relative security prices 

S;(t) is a martingale under F”. 
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For a risk X(t) at future time t, the insurance premium P(X(t)) at time 0 is given by 

the economic premium principle 

P(X(t)) = E[X(t)c$(t)] = E;[x*(t)], (2.38) 

Here the equality follows from (2.37) with t = 0 and T = t. That is, the economic premium 

principle agrees with the risk-neutral valuation in finance, which calculates the expectation 

of relative price under the risk-neutral measure. 

Now, as a special case, suppose that the utility functions of agents are all exponential. 

This case will be examined in the next section. Then, as will be shown later, the utility 

function U of the representative agent is also exponential, and the Arrow-Pratt index of 

absolute risk aversion is constant, p say. It follows from (2.36) that 

4(Wo(t) = ,;l’z.y:,,, 7 

the Esscher transform. The connection between the Esscher transform and the martingale 

measure has been discussed by Biihlmann el al. (1998). 

Remark 2.2 Although we do not present here, the results obtained so far can be transferred 

to the continuous-time setting as they stand. The advantage of the continuous-time model 

is that an optima1 consumption/portfolio process can be obtained as a closed form solution 

for some particular cases such as power and exponential utility functions. We will report 

such results elsewhere. 

3 Some Special Cases 

In this section, we consider an equilibrium market M with some special utility functions for 

the agents. Namely, we study the cases of power and exponential utility functions, and show 

that the state price density 4(t) can be expressed in terms of the aggregated net endowment 

Z(t), the discount function P(t) and the parameter of the utility function. Recall that the 

general form (2.35) in Theorem 2.4 includes the unknown values XT. However, in the special 

cases, these parameters are expressed by the initial aggregated net endowment in equilibrium. 

3.1 Power Utility Functions 

First, we consider the case in which each agent has a utility function defined by 

U;(z) = p;, 0 < 5 < co, y, > 0, 0 E (-m,l). (3.1) 
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Note that every agent has the common shape parameter (Y. Also, the case cr = 0 corresponds 

to the logarithmic utility function. 

Now, it is easily seen that the inverse of the marginal utility is given by 

I,(y) = y;y-"(l-a), y E (0, co) 

It follows from (2.27) that 

I(y;A) = pi (;) = (&Ay-“)) Y-“(‘-“). 
,=I 

Note that, in equilibrium, we have from (2.28) with t = 0 that 

Z(0) = 1(1;A’) = &(x:)‘l(r-“) 
i=l 

Since 31(x; A) is the inverse of Z(y; A), we obtain 

Nz;A’) = & i 1 
-( l-a) 

, 5  E (O,m). 

It follows from (2.30) that 

4(t) = em Ct=oLw g -(1-a), 

i 1 
t E I-. 

Especially, in the case that So(t) = ec:=op(“) as in Corollary 1, we have 

z(t) i ) 
-(I-n) 

+(t)So(t) = z(o) 1 t E 7. 

Since E[d(t)&(t)] = 1, it follows that 

4($%(t) = 
Z-W(t) 

E[Z-(‘-4(t)]’ t E r. 

The economic premium principle for this case is given, from (2.38), by 

p(X(q) = -w*(w-(‘-“)(t)1 
E[Z-(‘-“j(t)] ’ 

t E r, 

3.2 Exponential Utility Functions 

Next, we consider the case in which each agent has a utility function defined by 

ll,(Z)=E, O<Z<CO, 7,>0. 
71 

(3.2) 

(3.3) 
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Using similar arguments to the above, it is not difficult to derive 

I(y; a*) = - 2 !%J! + Z(0) 
,=I. 71 

Letting y be such that 

we then obtain 

31(x; A’) = e-+-z(o)), 5 E (0, cm). 

It follows that 

4(t) = exp 1 - 2 P(u) - 7(2(t) - z(O)) 1 y t E 7. 
u=o 

Especially, in the case that So(t) = e~~=oa(“), we have 

+(t)So(t) = g& t E 7. 

The economic premium principle for this case is given by 

p(x(q) = w*(w’z(‘)l 
E[e-7ZW] ’ t E 7. 

Especially, if X*(t) = Z(t), then 

which is called the Esscher prmciple. 

4 Some Comparative Statics 

We have seen that the present value of risk X(t) is calculated as (2.38). In this section, we 

assume that the conditions of Corollary 1 hold and consider a risk given by X*(t) = f(Z(t)) 

for a certain function f. If the utility function of the representative agent is given by U, 

then the present value of this risk is given by4 

p (f. ,q = E[fWt)Pwt); *‘)I t 1 E[U’(Z(t); A*)] ’ (4.1) 

Now, consider two economics, El and ES say. We denote the utility function of the repre- 

sentative agent of economy Eli by Uk, JG = 1,2. In this section, we compare the present value 

of risk X(t) with respect to their marginal utilities. 

First, according to Kijima and Ohnishi (1996), we have the following. 

4 If f(z) = z, the right hand side of (4.1) is called the generalized harmonic mean (GHM), which has been 

studied extensively in the context of portfolio selection problems. See Kijima and Ohnishi (1999) for details. 
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Lemma 4.1 Let Ci, i = 1,2, be utility functions such that $fJ is nonincreasing in .c. If 

f is nonincreasing (nondecreasing, rcspcrtively) then, for any risk X(t) such that X*(t) = 

f(Z(f)), we have 

PO; UI) i (2) R(f; h). 

Let p(z; U) denote the Arrow-Pratt index of risk-aversion for the representative agent 

whose utility function is U. The agent with utility function lJz is more risk averse than the 

agent with cil, if p(z; II,) < p(z; Uz). A ccording to Jewitt (1989), p(z; U,) 5 p(z; ciz) if and 
u;(,). only if U;(zj IS nonincreasing in z, whence we have the following. 

Theorem 4.1 Suppose that the representative agent in economy Ez is more risk averse than 

the one in El. If j is nonincreasing (nondecreasing, respectively) then, for any risk X(t) 

such that X*(t) = f(Z(t)), we have 

In our model, the aggregated net endowment Z(t) is the difference between the aggregated 

endowments and risk. Hence, of interest is the case that f is nonincreasing. The next results 

are intuitively appealing. 

Corollary 2 Suppose that f is nonincreasing and that risk X(t) is given by X*(t) = f(Z(t)). 

1. Suppose that each agent in economy Eli has the power utility with the shape parameter 

ab. UQI 5 02, then PO; UI) i ‘Pt(f; UZ). 

2. Suppose that agent i in economy j has the exponential utility with parameter 7:. If 

c2, z$ 5 c2, +, then 7’0; 111) 5 Pt(j; UZ). 

References 
[l] Biihlmann, H. (1980), “An Economic Premium Principle,” Astin Bulletin, 11, 52-60. 

[2] Biihlmann, II. (1983), “The General Economic Premium Principle,” Astin Bulletin, 14, 
13-21. 

[3] Biihlmann, H., Delbaen, F., Embrechts, P. and Shiryaev, A.N. (1998), “On Esscher 
Transforms in Discrete Finance Models,” Astin Bulletin, 28, 171-186. 

[4] Cummins, D.J. (1990), “Asset Pricing Models and Insurance Ratemaking,” Astin Bul- 
letin, 20, 125-166. 

[5] Delbaen, F. and Haezendonck, J. (1989), “A Martingale Approach to Premium Calcula- 
tion Principles in an Arbitrage Free Market,” Insurance: Mathematics and Economics, 
8. 269-277. 

-139- 



[6] Duffie, D. (1999), “Credit Swap Valuation,” 
February) 73 87. 

Financial Analyst Journal, (January- 

[7] Gerber, H.U. and Shiu, E.S.W. (1994), “01 t’ ) ion Pricing by Esscher Transforms,” Twns- 
actzons of the Society of Actuaries, 99-140. 

[8] Harrison, M.J. and Kreps, D.M. (1979), “Martingales and Arbitrage in Multiperiod 
Securities Markets,” Journal of Economic Theory, 20, 381-408. 

[9] Harrison, M.J. and Pliska, S.R. (1981), “Martingales and Stochastic Integrals in the 
Theory of Continuous Trading,” Stochastic Processes and Their Applications, 11, 215- 
260. 

[lo] Jewitt, 1. (1989), “Choosing between Risky Prospects: The Characterization of Com- 
parative Statics Results, and Location Independent Risk,” Management Science, 35, 
60-70. 

[ll] Karatzas, I. and Shreve, S.E. (1998), Methods of Mathematical Finance, Springer, New 
York. 

[12] Kijima, M. (1998), “Valuation of a Credit Swap of the Basket Type,” Review of Deriua- 
lives Research, forthcoming. 

[13] Kijima, M. and Ohnishi, M. (1996), “Portfolio Selection Problems via the Bivariate 
Characterization of Stochastic Dominance Relations,” 
277. 

Mathematical Finance, 6, 237- 

[14] Kijima, M. and Ohnishi, M. (1999), “Stochastic Orders and Their Applications in Fi- 
nancial Optimization,” Mathematical Methods of Operations Research, 50, forthcoming. 

[15] Lienhard, M. (1986), “Calculation of Price Equilibria for Utility Functions of the HARA 
Class,” Astin Bulletin, 16, S91-S97. 

[16] Miiller, H.H. (1987), “Economic Premium Principles in Insurance and the Capital Asset 
Pricing Model,” Astin Bulletin, 17, 141-150. 

[17] Pliska, S.R. (1997), Introduction to Mathematical Finance: Discrete Time Models, 
Blackwell, Oxford. 

[18] Rochaffelar, R.T. (1970), C’onuez Analysis, Princeton Uiv. Press, New Jersey. 

[19] Wyler, E. (1990), “Pareto Optimal Risk Exchanges and a System of Differential Equa- 
tions: A Duality Theorem,” Astin Bulletin, 20, 23-31. 

-140- 




