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1 One period Model 

In this section, we remind “no arbitrage”, the basic idea of mathematical finance. First, 
we think of the simplest model, one period model. Let us think of the following setting. 

There are only two dates, date 0 (the present date) and date 1 (the future). 

l There are only two securities, a risk free bond and a stock. 

l The price of the bond at date 0 is El,,, and the price of the bond at date 1 is &. So 
the interest rate R is (B1 - &)/Bo. 

l The price of the stock at the present date is So. 

Let us assume that there will be only two possibilities on the price of the stock at date 
1. 
o Scenario 1 (wl) The price of the stock at date 1 is S1. 
o Scenario 2 (wz) The price of the stock at date 1 is 5’2. 

Then the rate of return of the Stock will be Q1 = (S1 - So)/& at Scenario 1 and will 
be Qz = (Sz - &)/So at Scenario 2. We assume that &I < R < Q2. 

Now let us think of the following derivative. That is, the derivative holder will take 21 
yen at date 1 if the Scenario 1 takes place, and will take 2, yen at date 2 if the Scenario 
2 takes place. Then the payoff 2 is a function of Scenarios, i.e. 

Z(4 = Zl, Z(e) = zz 

We may regard the set of scenarios as a set of events mathematically. So we may regard 
Z as a random variable. Our main problem is to price this derivative. 
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Now suppose that we take the following portfolio at date 0 such that we hold the bond 
by amount of 5 yen and hold the stock by amount of y yen. Here we assume that there 
is no restriction on short sale. Therefore 5 or y can be negative. The cost to take this 
portfolio is z + y yen, of course. The return will be 

(1 + R)z + (1 + Qi)y, if Scenario 1 takes place, and 
(1 + R)z + (1 + Q2)y, if Scenario 2 takes place. 

Now let us think of the following linear equation. 

(l+R)s+(l+Q,)y = 21 
(l+R)z+(l+Q,)y = 2, (1) 

This equation can be rewritten as follows: 

2: + (1 + R)-‘(1 + Qi)y = (1 + R)-‘& 
z + (1 + R)-‘(1 + QZ)Y = (I+ R)-‘Zz (2) 

One can easily see that there exists a unique solution (2, y) to Equation (1). Therefore 
we see that if we pay z + y yen at date 0 and take a portfolio strategy (z, y), we can 
replicate the same payoff at date 1 as same as the derivative given by Z. This cost z + y 
is called the replication cost of the derivative. By “no free lunch” argument, we may 
conclude that the price of derivative is equal to the replication cost 2 + y. 

Moreover, we have the following. Let ni, ~2 be given by 

Q2 - R 
T1 = Q2-Ql’ 

R-Q1 
T2=QpyjyQ2 

Then we easily obtain 

2 +y = (1 + R)-*Z1rl + (1 + R)-‘Z27rz (3) 

Obviously we have 
711 + 7r2 = 1, Tl,TZ > 0 

and also we have 
(1 + R)-‘Sgrl + (If R)-‘S27r2 = So (4 

One may think that ~1, and ~2 are probability of Events wi and w2, respectively. This 
probability is called risk neutral probability. Equation (3) shows that the price of the 
derivative at date 0 is given by the expectation of discounted payoff at date 1 under risk 
neutral probability. Equation (4) shows that the expectation of discounted price of the 
stock at date 1 under risk neutral probability is equal to the price of the stock at date 0. 
One should note that the risk neutral probability is different from subjective probability. 

Let us think of a little more general model. In the previous model, we think of only 
two scenarios. What does happen if we think of three scenarios? 
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We think of the following setting. The interest rate is R. The rate of return of the Stock 
will be Qi, i = 1,2,3, if Scenario i takes place. The payoff of the derivative at date 1 is 
Z’i, i = 1,2,3, if Scenario i takes place. Then we have the following linear equation. 

(1 + R)z + (1 +- Ql)y = Zr 

(1+ R)z+ (1 +QZ)y = Zz 

(1 + R)z + (1 + QS)Y = 23 

This equation does not have a solution in general, and so we cannot determine the price 
of the derivative. 

Since we want to think of various scenarios, we have to think of a multi-period model 
or a continuous time model. By using a stochastic differential equation, one can generate 
an infinitely many scenarios. 

2 Continuous time model: Black-Sholes model 

Let (C& 3, P) be a probability space. Let {Wt}t+,m~ be a l-dimensional Brownian 
motion starting from the origin, and let us think of a filtration 3t = g{Ws; s 5 t}, t > 0. 
Also, let r > 0,a > 0,~ E R. We assume that there are two securities, Bond and Stock 
and the information up to time t is given by n-algebra 3r. 

Let St be the price of the Stock at time t and let & be the price of the Bond at time t. 
We assume that the price processes St and B, are adapted and they satisfy the following 
SDE. 

dBt = B,rdt, 

dSt = St(odWt + pdt) 

Then we see that 

Bt = Boeexp(Tt), 
St = Soexp(a& + (p - c)t). 

So the interest rate per unit time is T. We think of a continuous trading portfolio strategy 
such that we hold the Bond by amount of r@ yen and hold the Stock by amount of 
&St yen at time t. The portfolio processe(qt,<t) has to be adapted. If the strategy is 
self-financing, we have the following equation. 

exp(-rt)(vtBt + &St) = (VOBO + EoSO) + ~‘E,d%. (5) 

Here St = exp-rt)St (discounted stock price). The integral appeared here is Ito integral. 
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Now let us think of an European type derivative such that the payoff at the maturity T is 
Z(w), w E 0, if the state is w. Then the random variable 2 should be FT measurable. For 
example, an European call option of the exercise price a is given by 2 = max{Sr - a, 0). 

We need the following theorem. 

Theorem 1 (Ito’s representation theorem) If 2 is a good random variable, then 
there are c E R and a good adapted process {&}t+,~ such that 

exp-rT)Z = c + k” &d$ (6) 

By virtue of this theorem, we see that there is a good self-financing trading strategy 
(Q, &) such that 

VOBO + toso = c 

and 
2 = qTBT + &ST = erT(c + lT&ds,). 

These imply that one can replicate the derivative Z with an initial cost c. 
The following theorem is important to compute the replication cost c. 

Theorem 2 (Cameron-Martin-Maruyama-Girsanov) There ezists a probability meawe 
Q in (f&F) equivalent to the probability measure P such that 3, = exp(-rt)S*, t E [O,Z’], 
is a martingale under Q. 

By the property of stochastic integral, we see that 

So we have 
c = exp(-rT)EQ[Z] 

Suppose that the payoff Z is given by Z = f(ST) for some continuous function f of 
polynomial order growth. If a function u is a nice function defined in (0, T] x R, by Ito’s 
lemma we have 

exP(-rT)u(Tt ST) = ~(0, so) + iT g(C St)d% + lTexp(-rt)(g(& St) + h(t, S,))dt, 

where 

So if u is a solution to the PDE 

$(t, z) + ;z2f&, z) + rg,, Lx) - ru(t, z) = 0 ks) E P,Tl x R, 
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we see that 

and so we have 

exp(-rT)u(T, ST) = ~(0, So) + 1’ g(t, S,)dS, 

40, SO) = EQ[exp(-rT)j(S7-)] 

Moreover, we see that the hedging strategy is given by G(t, St) (Delta hedge). 
In the case of European call option we have 

c = exp(-rT)EQ[max{Sr - a, 0}] 

= exp( --TT) /_u, max{Seexp(oz+ (r - g)T) - o,O}(&)fe-gdz 

= S,‘N(d,) - Ke+-N(d2). 

Here 

and 

N(x) = &- J_:, e-y2’2dy 

d 
1 

= log(Sola) + (r + a*/2P- 
uJ7; 

, dz=dl-a@. 

This is the Black-&holes formula. 

3 Historical Remark on Stochastic Analysis 

We see that Stochastic Analysis plays very important role in Mathematical Finance. 
In particular, the following are basic tools. 
(1) Brownian motion and additive processes (noise and innovation) 
(2) Stochastic Integral, Stochastic Differential Equation and Ito’s lemma 
(3) Martingale Representation Theorem 
(4) Transformation of Measure (Girsanov Transformation) 

We will review the following historical papers, the origin of Stochastic Analysis. 

(1) Brownian motion etc. 

Bachelier, M.L., Theorie de la Speculation, Ann. de 1’Ecole norm. 17(1900) 21-86 

Wiener, N., Differential space, J.Math. and Physics 2(1923), 131-174 

Levy, P., ThCorie de l’addition des variables alkatoires, Gauthier-Villoars, Paris, 1937 

(2) SDE etc. 

Kohnogorov, ober die analytishen Methoden in der Wahrscheinlichkeitsrechnung, Math. 
Arm. 104(1931), 415458 

Ito, K.(4?3ll&I$), Markoff s@f47z% Il&?!?rEi;f”rz, +~&@@@:&~ 1077(1942) 
Differential equations determining a Markoff process, Zenkoku Sizyo Sugaku Danwakaisi 
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1077( 1942) 
(English translation is in ‘Kiyosi Iti, Selected papers’, Springer 1987) 

Doob, J.L., Stochastic Processes depending on a continuous parameter, Trans. Am. Math. 
sot. 42(1937) 

Ito, K., Stochastic integral, Proc. Imp. Acad. Tokyo 20(1944), 519522 

Ito, K., On a formula concerning stochastic differentials, Nagoya Math. Journ. 3( 1951),55- 
65 

Ito, K., On stochastic differential equations, Mem. Amer. Math. Sot. 4(1951), 1-51 

Levy, P., Le mouvement brownien plan, Amer. J.Math., 62(1940), 487-550 

Doob, J.L., Stochastic Process, John Wiley and Sons, New York, 1953 

Kunita, H., and Watanabe, S., On square integrable martingales, Nagoya Math. J. 
30(1967),209-245 

(3) Martingale Representation 

N.Wiener, The homogeneous chaos, Amer.J.Math. 60(1938), 897-936 

It& K., Multiple Wiener integral, J. Math. Sot. Japan 3(1951), 157-169 

(4) Girsanov Transformation 

Cameron, R.H., and Martin, W.T., Transformation of Wiener integrals under translations, 
Ann. Math. 45(1944), 386-396 

Cameron, R.H., and Martin, W.T., The transformation of Wiener integrals by nonlinear 
transformations, Trans. Amer. Math. Soc.66(1949),253-283 

Maruyama, G., On the Transition Probability Functions of the Markov Process, Natural 
Sci. Rep. Ochanomizu Univ. 5(1954), 10-20 

Girsanov, I.V., On transforming a certain class of stochastic processes by absolutely con- 
tinuous substitution of measures, Theory Prob. Appl. 5(1960), 285-301 
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