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1 One period Model

In this section, we remind ”no arbitrage”, the basic idea of mathematical finance. First,
we think of the simplest model, one period model. Let us think of the following setting.
There are only two dates, date 0 (the present date) and date 1 (the future).

e There are only two securities, a risk free bond and a stock.

o The price of the bond at date 0 is By, and the price of the bond at date 1 is By. So
the interest rate R is (B, — By)/Bo.

o The price of the stock at the present date is Sp.

Let us assume that there will be only two possibilities on the price of the stock at date
1.
© Scenario 1 (w;) The price of the stock at date 1 is S;.
¢ Scenario 2 (we) The price of the stock at date 1 is 5.

Then the rate of return of the Stock will be @Q; = {S1 — Sp)/ S0 at Scenario 1 and will
be Q2 = (S; — Sp)/So at Scenario 2. We assume that ) < R < Q.

Now let us think of the following derivative. That is, the derivative holder will take Z;
yen at date 1 if the Scenario 1 takes place, and will take Z; yen at date 2 if the Scenario
2 takes place. Then the payoff Z is a function of Scenarios, i.e.

Z(UJI) = Z], Z(UJQ) = Zg

We may regard the set of scenarios as a set of events mathematically. So we may regard
Z as a random variable. Our main problem is to price this derivative.



Now suppose that we take the following portfolio at date 0 such that we hold the bond
by amount of z yen and hold the stock by amount of y yen. Here we assume that there
is no restriction on short sale. Therefore z or y can be negative. The cost to take this
portfolio is z 4+ y yen, of course. The return will be

(14 R)x + (1 + @Q,)y, if Scenario 1 takes place, and
(14 R)z + (1 + @)y, if Scenario 2 takes place.
Now let us think of the following linear equation.

1+Rz+(1+Q)y = 4

1
1+Rz+(1+Q)y = Z, @

This equation can be rewritten as follows:
+(1+R)(1+Q)y = (1+R)'Z @)

z+(1+R)(1+Q)y = (1+R)'Z,

One can easily see that there exists a unique solution (z,y) to Equation (1). Therefore
we see that if we pay = + y yen at date 0 and take a portfolio strategy (z,y), we can
replicate the same payoff at date 1 as same as the derivative given by Z. This cost z +y
is called the replication cost of the derivative. By “no free lunch” argument, we may
conclude that the price of derivative is equal to the replication cost z + y.

Moreover, we have the following. Let 7;, w5 be given by

o Q-R R-Q
1= y - .
Q2— Q1 Q-

Then we easily obtain

t+y=(1+R)"'Zim +(1+R)'Zym, @)
Obviously we have

mt+m=1,  m,m>0
and also we have
(14 R 'Sim+ (1+R)'Symy = S 4)

One may think that m, and w, are probability of Events w; and w,, respectively. This
probability is called risk neutral probability. Equation (3) shows that the price of the
derivative at date 0 is given by the expectation of discounted payoff at date 1 under risk
neutral probability. Equation (4) shows that the expectation of discounted price of the
stock at date 1 under risk neutral probability is equal to the price of the stock at date 0.
One should note that the risk neutral probability is different from subjective probability.

Let us think of a little more general model. In the previous model, we think of only
two scenarios. What does happen if we think of three scenarios?



We think of the following setting. The interest rate is R. The rate of return of the Stock
will be @Q;, i = 1,2, 3, if Scenario 4 takes place. The payoff of the derivative at date 1 is
2y 1=1,2,3, if Scenario i takes place. Then we have the following linear equation.

(14+Rz+(1+Q)y = Z,
(I+Rz+(1+Q)y = Zs
(1+Riz+(1+Q3)y = Z4

This equation does not have a solution in general, and so we cannot determine the price
of the derivative.

Since we want to think of various scenarios, we have to think of a multi-period model
or a continuous time model. By using a stochastic differential equation, one can generate
an infinitely many scenarios.

2 Continuous time model: Black-Sholes model

Let (Q,F, P) be a probability space. Let {W,}to.c) be a 1-dimensional Brownian
motion starting from the origin, and let us think of a filtration F; = o{W,; s < t},¢t > 0.
Also, let r > 0,0 > 0,1 € R. We assume that there are two securities, Bond and Stock
and the information up to time ¢ is given by o-algebra F,.

Let S, be the price of the Stock at time t and let B, be the price of the Bond at time ¢.
We assume that the price processes S; and B, are adapted and they satisfy the following
SDE.

dB,
ds;

Bt'f'dt,
S/(odW, + pdt).

I

il

Then we see that

B, = Byexp(rt),

2
S, = Syexp{oB;+ (i — %)t).

So the interest rate per unit time is . We think of a continuous trading portfolio strategy
such that we hold the Bond by amount of n,B, yen and hold the Stock by amount of
&:S; yen at time t. The portfolio processe(n, &) has to be adapted. If the strategy is
self-financing, we have the following equation.

exp(—rt) (1B + &50) = (mBa + 50) + [ €5, (5)

Here S, = exp(—rt)S; (discounted stock price). The integral appeared here is Ito integral.



Now let us think of an European type derivative such that the payoff at the maturity T is
Z(w), w € L, if the state is w. Then the random variable Z should be F; measurable. For
example, an European call option of the exercise price a is given by Z = max{Sr — a, 0}.

We need the following theorem.

Theorem 1 (Ito’s representation theorem) If Z is a good random variable, then
there are ¢ € R and a good adapted process {& }iepo,ry such that

exp(—1T)Z = ¢ + /0 " d8, (6)

By virtue of this theorem, we see that there is a good self-financing trading strategy
(e, &) such that
M0 Bo + &S0 = ¢
and T
Z=mBr+rSp=cT(e+ [ 6dS).

These imply that one can replicate the derivative Z with an initial cost c.
The following theorem is important to compute the replication cost c.

Theorem 2 (Cameron-Martin-Maruyama-Girsanov) There erists a probability meaure
@ in (2, F) equivalent to the probability measure P such that S, = exp(—1t)S,, t € [0,T],
is a martingale under Q.

By the property of stochastic integral, we see that

T
E9[ /0 £d5,) =
So we have
¢ = exp(~rT)E®|[Z].

Suppose that the payoff Z is given by Z = f(Sr) for some continuous function f of
polynomial order growth. If a function u is a nice function defined in [0, T] x R, by Ito’s
lemma we have

exp(—rTu(T, St) = u(0, Sy) +/ (t S,)dS, +/ exp( rt)( (t Se) + Luf(t, Sp))dt,

where P u

u
Lu(t,z) = 2(9 5(t,x) +r (t z) —ru(t, )
So if u is a solution to the PDE

%?(t, z)+ %—z (t z)+ L (t ) —-ru(t,z)=0 (t,z)€[0,T] xR,
u(T,z) = f(J;),
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we see that

exp(—rT)u(T, Sr) = u(0, Sy) + /T o

s )
— (1
0 Bm(’S‘)dSt

and so we have
u(0, So) = E®[exp(—rT) f(Sr)]

a? 1

= exp(=1T) [~ f(Soexploz + (r = LD 57
Moreover, we see that the hedging strategy is given by 2:(t, S;) (Delta hedge).

In the case of European call option we have

1 2
Yie Tdz.

¢ = exp(—rT)E®[max{Sr — a,0}]
g a? 1 1 2
= exp(—rT) /_Oo max{S; exp(oz + (r - —2—)T) - a, 0}(m)2e Tz

= SIN(dy) — Ke TN (dy).

Here | .
N@) = —= [ e
(.’L‘) \/57? _ooe Yy
d log(So/a) + (r + a*/2)T
og(So/a)+(r+ o
d = . dy=dy—oVT.
' oVT 2mme

This is the Black-Scholes formula.

3 Historical Remark on Stochastic Analysis

We see that Stochastic Analysis plays very important role in Mathematical Finance.
In particular, the following are basic tools.
(1) Brownian motion and additive processes (noise and innovation)
(2) Stochastic Integral, Stochastic Differential Equation and Ito’s lemma
(3) Martingale Representation Theorem
(4) Transformation of Measure (Girsanov Transformation)

We will review the following historical papers, the origin of Stochastic Analysis.
(1) Brownian motion etc.
Bachelier, M.L., Théorie de la Spéculation, Ann. de 'Ecole norm. 17(1900) 21-86
Wiener, N., Differential space, J.Math. and Physics 2(1923), 131-174
Lévy, P., Théarie de I’addition des variables aléatoires, Gauthier-Villoars, Paris, 1937

(2) SDE etc.

Kolmogorov, Uber die analytishen Methoden in der Wahrscheinlichkeitsrechnung, Math.
Ann. 104(1931), 415-458

Its, K.(Fv%), Markoff ;B2 7 Z A NVMAHEA, 2EM EEFHFESR 1077(1942)

Differential equations determining a Markoff process, Zenkoku Sizyo Sugaku Danwakaisi
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1077(1942)
(English translation is in 'Kiyosi Ito Selected papers’, Springer 1987)

Doob, J.L., Stochastic Processes depending on a continuous parameter, Trans. Am. Math.
Soc. 42(1937)

Itd, K., Stochastic integral, Proc. Imp. Acad. Tokyo 20(1944), 519-522

Itd, K., On a formula concerning stochastic differentials, Nagoya Math. Journ. 3(1951),55-
65

Itd, K., On stochastic differential equations, Mem. Amer. Math. Soc. 4(1951), 1-51
Lévy, P., Le mouvement brownien plan, Amer. J.Math., 62(1940), 487-550

Doob, J.L., Stochastic Process, John Wiley and Sons, New York, 1953

Kunita, H., and Watanabe, S., On square integrable martingales, Nagoya Math. J.
30(1967),209-245

(3) Martingale Representation

N.Wiener, The homogeneous chaos, Amer.J. Math. 60(1938), 897-936

Itd, K., Multiple Wiener integral, J. Math. Soc. Japan 3(1951), 157-169

(4) Girsanov Transformation

Cameron, R.H., and Martin, W.T., Transformation of Wiener integrals under translations,
Ann. Math. 45(1944), 386-396

Cameron, R.H., and Martin, W.T., The transformation of Wiener integrals by nonlinecar
transformations, Trans. Amer. Math. Soc.66(1949),253-283

Maruyama, G., On the Transition Probability Functions of the Markov Process, Natural
Sci. Rep. Ochanomizu Univ. 5(1954), 10-20

Girsanov, 1.V., On transforming a certain class of stochastic processes by absolutely con-
tinuous substitution of measures, Theory Prob. Appl. 5(1960), 285-301
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THEORIE

LA SPECULATION,

Pax 3. L. DACHELIER.

INTRODUCTION.

Les inflvences qui détermineat les mourements de la Boursc seat
insembrables, des Evimcements passis, aclwels o méme escomptables,
e priscatant saurenl Jucun cappert spparent dvec ses varialions, s
répercutent suc son cours.

A cité des causes en quelque serle mivrelles des variations, intee
vieanent sussi des causcs facti Bourse agit suc ellemime ctle
mouvement acuel est fanclion, non sculement des mourements aaté-
mm mais mw de la pesition de pla::

ien de ces /! s un ssmbrx
inkni de Rctours.: il est des lors .....u.sl. Ten expéer fa peivic
sien malkimalique. Les spinions ires rolatives & ces varia-
Gions sc partagent 3i hitn quau mime instaat les acheteurs ereient
Ia hawsse et fes vendeues i La baisse.

Le Caleul des peobabilités ne pourca sans doute jamais s'appliquer
aux mewrements de la cote 8t L dymamique de Ja Bourse ae ser
jamais wne seience exacte.

Bais il est pessible d'¢tudicr matkématiquement ['éat statique du
marchd 3 e instant donaé, c'est-i-dire d"établir fa loi de probabilité
des aciutions Je cours quadmet & cet instant e marché. Sile marchi,
en effcl, ae privoit pas les mowvements, il les cunsidire comme éant

Uber dic analytischen Methoden in der
Walrscheinlichkeitsveclnung.
Veon
A. Kolmogorolf in Meksu.

Zusammenlassuag,
Ein physitalabss Praed (&iv Anderwng sines phssikalieckea Systems;
stachostioch-dehail, wenn aun dee Kenninia ded Zuetandes X, des Sysiews
Zeitowmenl . i, dic Kewntain dov Vertribingsiuntiion dor

Wakcschoinbimhbelten fr e miglichon Tusibade ¥ dos Sresems in simen
Zeitmement £3 £, folg2

Der Vorlasser betracklet srstcmatich die sinfaikuten Fille der stochaatischs
dwbmiten, Promwas wnd in trvier Lioke solche, fie mack er Zait stetip sind
{dacin butod dic wescntiicke Noneit doc Methode: Bia feuzt boscachiete mam
fomdhalich sicn stachasischca Preced obs sime ke o dinkecten Eevig-
Loy

Wema & biomge 3 dar miiglichun vemchiodoncn ZmiSude dos Systams
ondiich at, vo B3t sich dor dekeite Proach ducch gewl
Foeors Difiemotiaileichinge charekicrisioran (Kap, ). Wona der Zustand
o Syuteme durch siven wdee mabexs stetipe Forameter doinicrt t, oo wied
der amalytimhe Appace: durch paraboliosim puctiale Difarcatislgieichungc
prochon (Ko 1Y) Xan komumt dabei tu verschivdenen Yertwilungatunkionea,
onter s die Laplaceeche Normivsricilung uis aatheficher sinfachatcr Fall
rwcheint.

Einleitung.
L
Wenn man Natuc oder Sasislereignissc mathematisch behandoln will,
mub aun st diese Eceignise mm&mm, -ar kann admlich die
P ioche Awalysis zur 1 h wnes #ines
Syttems mus daan anwenden, wenn maa voraussciet, daf jedec miglicke
Zutand dicscs Spatems sich mit Hille eines bestimmtcn mathematischén
Apparste  volletandig beschiciben 1i0e, & B. dureh die Weete siuee
- Anzabl von F: «in -skki
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DIFFERENTIAL-SPACE
By Noxsear Wigxea

§1.  Introduction.

§2.  The Brownian Movement.

$3. Difierentiai-Space.

§4.  The Non-Differentiability Coefficient of a Function.

5. The Maximum Gain in Coin-Tossing.

§6. Measure in Differential-Space.

§7.  Measure and Equal Continuity.

§3. The Average of a Bounded, Uniformly Continuous Func.

§9. The Average of an Analytic Functional.
§10.  The Average of a Functional as a Danielt Integral.
§11. Independent Linear Functionals
§12. Fourier Coefficients and the Average of a Functional.

§1. Intreduction. The notion of a function or & curve as an
element in a space of an infinitude of dimensions is familiar to alt
mathematicians, and has becn since the early wurk of Volterra
on functions of lines. It is worthy of note, however, that the
physicist is equally concerned with systemis the dimensioaality
of which, if not infinite, is so large that it invites the use of limit-
processes in which it is treated as infinite. These systems are the
systems of statistical mechanics, and the fact that we treat their
dimensionality as infinite is witnessed by our continual employ-
ment of such asymptotic formulae as that of Stirling o7 the
Gaussian probability-distribution.

The physicist has often occasion to consider quantities which
are of the nature of functions with arguments ranging over such
a space of infinitely many dimensions. The density of a gas, or
one of its velocity- at a point, idered a5 depend-
ing on the codrdinates and velocitics of its molecules. are cases
in point. He therefore is implicitly. ii not explicitly, studying the
theory of functionals. Moreover, he gencrally replaces any of
these functionals by somc kind of average value, which is essea-
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