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Abstract 

In this paper we analyse, in a contingent-claims framework, one of the most 
common life insurance policies sold in Italy during the last two decades. 
The policy, of the endowment type, is initially priced as a standard one, 
given a risk-neutral mortality probability tnea~ure and a technical interest 
rate. Subsequently, at the end of each policy year, the insurance company 
grants a bonus, which is credited to the mathematical reserve and depends on 
the performance of a special investment portfolio. More precisely, this 
bonus is determined in such a way that the total interest rate credited to the 
insured equals a given percentage (parficiparion level) of the annual return 
on the reference portfolio and anyway does not fall below the technical rate 
(minimum inferesf rate guaranfeed, henceforth). Moreover, if the contract is 
paid by periodical premiums, it is usually stated that the annual premium is 
adjusted at the same rate of the bonus, and thus the benefit is also adjusted 
in the same measure. In such policy the variables controlled by the 
insurance company (conwol-variables. henceforth) are the technical rate, the 
participation level and, in some sense, the riskiness of the reference 
portfolio measured by its volatility. We derive necessary and sufficient 
conditions under which each control-variable is uniquely determined, given 
the remaining two ones, by an arbitrage (fair) pricing of the contract. 

Keywords: Policies with profits, Minimum guarantee, Fair pricing, Black and 
Scholes framework 
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1. Introduction 

At the end of the seventies a new kind of life insurance product, the so-called 
rivalutabile, was introduced in Italy, together with the index-linked policies’, in order to 
match the high level of inflation that led the returns on Treasury Bonds and fixed-income 
securities up to 20% p.a.. The interest rate of 3% p.a. commonly guaranteed by 
traditional life insurance products was indeed completely inadequate and seriously 
jeopardized the marketability of such products. 

The term rivalutabile identifies the Italian version of the widely known 

participating policy, or policy with profits (Universal Life Insurance, in the United 
States). In Italy a special portfolio of investments, covering at least the mathematical 
reserves of all the policies with profits issued by a same insurance company, is 
constituted and kept apart from the other assets of the company. Within the end of each 
calendar year the rate of return on this portfolio (reference portfolio, henceforth) in the 
preceding financial year is computed and certified by a special auditor. The financial year 

usually begins on November 1 st and ends on October 3 1st. A percentage of this rate of 
return, that is defined every year and usually cannot be less than a fixed level (e.g. 
70%), is granted to the insured. More precisely, if the granted rate of return exceeds the 
technical interest rate already included in the premium calculation, a bonus computed at 
the excess rate is credited to the mathematical reserves of all the participating policies 

when they reach their anniversary (i.e., at the end of the policy year). Observe that, in 
this way, the technical rate becomes a minimum interest rate guaranteed. 

Policies with profits are very often paid by annual premiums. If this is the case, it 
is usually stated that the annual premium increases at the same excess rate credited to the 
mathematical reserve so that, as like as in the single premium contracts, also the benefits 

are adjusted in the same measure in order to maintain the actuarial equilibrium with 
regard to the residual policy period. 

Since the pioneering work by Brennan and Schwartz (1976, 1979a, 1979b) and 
Boyle and Schwartz (1977), a great prominence has been given so far in the financial 
and actuarial literature to the issues of pricing and hedging equity-linked life insurance 

contracts with minimum guarantees. In contrast with this, participating policies have not 
been studied very much in a contingent-claims framework, although they are the most 
important life insurance products in terms of market size. This is probably due to the fact 

1 Actually, the first index-linked policy traded in Italy dates back to 1968. 



that the minimum interest rate guaranteed used to be far lower than the market rates, and 
therefore the risk associated to the issue of the guarantee seemed to be quite negligible 
and was not seriously considered a threat to the solvency of a life insurance company. 

Now that the economic setting has dramatically capsized in most industrial countries and 
the market interest rates have sunk up to very low levels*, this threat has become 
impending. Then an accurate assessment of all the parameters characterizing the 
guarantees and the bonus mechanism constitutes a crucial problem in the management of 
a life insurance company. 

Some recent contributions in this direction are due to Briys and de 
Varenne (1997) Miltersen and Persson (1999) Grosen and Jorgensen (1999). 

Briys and de Varenne consider a single-period valuation model for the equities and 
the liabilities of a life insurance company. In particular the policyholders, i.e., the 
“owners” of the liabilities, earn a minimum interest rate guaranteed plus a bonus. The 

bonus is given by a percentage (participation level) of the difference, if positive, 
between the final value of the assets times the initial ratio between liabilities and assets, 
and the minimum guaranteed final value of liabilities. In their valuation model Briys and 
de Varenne take into account also the risk of default. Under the assumption that the 
assets follow a lognormal process and the stochastic interest rates behave as in 

Vasicek (1977), they obtain a closed-form solution both for equities and for liabilities. 
They also derive an equilibrium condition which relates, by an explicit formula, the 
participation level to the minimum interest rate guaranteed. 

Miltersen and Persson consider a multiperiod valuation model in which the 
“customers” (i.e., the policyholders) are entitled to two different accounts: the 

“customer’s account” and the “bonus account”. The customer’s account earns, at the end 
of each year, a minimum interest rate guaranteed plus a percentage of the positive excess 
between the realized rate of return on a benchmark portfolio and the promised minimum 

rate. The bonus account, instead, is a sort of buffer that receives, in “good” years, an 
additional percentage of the positive difference between the above mentioned rates and, 
in “bad” years, is used for fulfilling the minimum guarantee promise. At maturity, if the 
bonus account is negative, the deficit is anyway absorbed by the insurance company. 
Under the Black and Scholes (1973) framework, Miltersen and Persson derive a closed- 
form solution for the customer’s account and use instead the Monte Carlo approach for 
valuing the bonus account. They also derive an equilibrium condition which relates the 

* E.g., the return on short-term Italian Treasury zero-coupon-bonds is about 3% p.a.. 
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participation levels, the volatility parameter characterizing the return on the benchmark, 
and the annual minimum interest rates guaranteed. 

Grosen and Jorgensen consider, as Miltersen and Persson, a multiperiod 
valuation model, and split the Liability Side of the Balance Sheet into two components: 
the “policy reserve” and the “bonus reserve” (or simply “buffer”). At the end of each 

policy year the policy reserve earns the maximum between a minimum interest rate 
guaranteed and a percentage of the (positive) difference between the ratio buffer/policy 
reserve valued at the end of the preceding year and a target buffer ratio. Grosen and 
Jorgensen model the assets a la Black and Scholes, and obtain a martingale 
representation formula for the value of the participating policy, which is computed by 
means of Monte Carlo simulation. In particular, they decompose the contract into a risk- 

free bond element, a bonus option and a surrender option. While the bonus option is of 
European style, the surrender option is of American style. 

All the above mentioned authors consider a single-payment contract in which the 
mortality risk is not taken into account. The object of this paper is thefuirpricing of a 

real life insurance participating policy that couples the mortality risk with the financial 
elements and is paid either by a single premium or by a sequence of periodical 
premiums. 

The policy, of the endowment type, exhibits almost all the features of the Italian 
products, and in particular the same pricing technique. This technique consists in 

computing the (initial) net premium, single or annual, as in the case of a standard 
endowment policy, given the initial sum insured (benefit) and according to a technical 
interest rate and to death probabilities extracted from a risk-neutral mortality table, hence 
completely disregarding the financial risk connected to the technical rate guarantee. 
Then, at the end of each policy year, the benefit and the periodical premium are adjusted 

according to the bonus mechanism. 
By “fair pricing” we mean pricing consistent with no-arbitrage in the financial 

markets. Therefore, since the rules for computing the premium(s) are anyway fixed, a 
fair pricing is feasible by suitably choosing the parameters characterizing the contract. 
The contractual parameters, “controlled” by the insurance company, are the participation 

level and the technical (or minimum guaranteed) interest rate. Moreover, another 
parameter which, in some sense, can be also “controlled” by the insurance company is 
the riskiness of the investments composing the reference portfolio, measured by a 
volatility coefficient. If, in particular, this volatility is high, there is a good chance of 
high bonus returns for the insured being the “bad performances” anyway neutralized by 



the minimum interest rate guarantee. In this case the insured may be satisfied with a 
lower minimum rate guaranteed and/or a lower participation level. Moreover, it is quite 
intuitive that there is also a trade-off between the participation level and the minimum 
rate. 

We suggest that the insurance company, instead of keeping together the 
investments concerning all the participating policies issued, graduates several reference 
portfolios according to their volatility, and thus offers its customers the choice among 
different triplets of technical rate, participation level, volatility. 

Under the Black and Scholes assumption for the evolution of the reference 

portfolio and assuming independence between mortality risk and financial risk, we 
derive a very simple closed-form fairness (or arbitrage) relation, the same both in the 
case of a single premium and in that of periodical premiums. We then give necessary 
and sufficient conditions under which each one of the three control-parameters is 
uniquely (and quasi-explicitly) determined given the remaining two ones and the market 
instantaneous riskless interest rate. We act in perfectly competitive and frictionless 
markets, and we do not consider either expenses and connected loadings, or the 

presence of a surrender option. 
The paper is organized as follows. In Section 2 we formalize the structure of the 

policy and of the bonus mechanism. Section 3 starts with the presentation of our 

valuation framework and ends with the definition of the arbitrage condition. In Section 4 
we derive the fairness relation and give the conditions under which each control- 
parameter is uniquely determined. Moreover, we present some numerical examples of 
sets of parameters satisfying this relation. Section 5 concludes the paper. 

2. The structure of the policy 

Consider a single endowment policy (or a cohort of identical endowment policies) 
issued at time 0 and maturing at time T. We denote by x the entry age, by Cc the “initial” 
sum insured, and by i the annual compounded technical interest rate. 

2.1 Single premium contracts 

If the policy is paid by a single amount U at the initiation of the contract, and the 
benefit is assumed to be due at the end of the year of death t=1,2,...,T or, at the latest, at 
maturity T, the following relation defines U: 
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(9 T-l 

(1) U = CoA,:Tl = Co z t-l/19x Vt + T-IPx VT 7 
t=1 1 

where v=(l+i)-‘, t-r/tq, represents the probability that the insured dies during the t-th 
year of contract (i.e., between times t-l and t), and T-]pX represents the probability that 
the insured is alive at time T-l (i.e., he/she dies during the last year of contract or 

survives the term of the contract). 
Note that, as it is standard in actuarial practice, all these probabilities are extracted 

from a risk-adjusted mortality table, i.e., they are not ‘true”probabilities but risk-neutral 
ones. This does not mean that the insurance company is risk-neutral with respect to 
mortality; on the contrary, insurers are always risk-averse. However, in the recent 

literature on equity-linked policies with minimum guarantees, focusing above all on the 
management of financial risk, it is usual to assume risk-neutrality with respect to 

mortality by invoking the pooling argument; thus mortality is treated as like as it were 
deterministic. One of the main concerns of a life insurance company is indeed the 
possibility of systematic deviations between expected and realized mortality, especially 
for pure-endowment and annuity contracts (“longevity risk”; see, e.g., Macdonald, 
Cairns, Gwilt and Miller (1998), Benjamin and Soliman (1993)). Traditionally the 
insurer protects oneself against this risk by adjusting the mortality probability measure 

and, in this way, the premiums are implicitly charged by a “safety loading”. For 
instance, in an endowment policy, the risk-adjusted probabilities of death within the 
term of the contract will be higher than the “true” ones, whereas the probability of 
survival will be lower. Then market competition should lead to a unique adjusted 
probability measure for all the insurance companies with respect to the pricing of 

identical policies, and market completeness to the same mortality measure for “identical” 
individuals even with respect to different kinds of policies. 

Observe, moreover, that relation (1) disregards expense loadings, implicitly 
assuming the absence of expenses or, alternatively, the perfect matching between 

expenses and corresponding loadings. 
We assume that, at the end of the t-th policy year, if the contract is still in force, 

the mathematical reserve is adjusted at a rate 6, (“bonus rate”) defined as follows: 

(2) 6, = max 1s , 01, t=1,2 ,..., T. 



The parameter q, between 0 and 1, denotes the participation level, for simplicity 

assumed to be constant in time, and g, denotes the annual return on the reference 

portfolio. Relation (2) formally translates the fact that the total interest rate credited to the 
mathematical reserve during the t-th policy year, (l+i)( 1+&t) - 1, equals the maximum 
between i and qgt, i.e., that i is a minimum rate of return guaranteed to the policyholder. 

Since we are dealing with a single premium contract, the bonus credited to the 
mathematical reserve implies a proportional adjustment, at the rate St, also of the sum 

insured. In particular, if the insured dies within the term of the contract, we assume that 
the benefit profits by an additional (last) adjustment just before being paid at the end of 
the year of death. This is in contrast with what happens in Italy for participating policies, 
where the amount of the benefit due in a given policy year is fixed at the beginning of 
the year and therefore there is a sort of predictability with respect to the relevant 
information characterizing the financial uncertainty. We point out that our assumption is 
not motivated by the wish of obtaining closed-form solutions since, under the valuation 

framework depicted in the next section, the market value of the policy would anyway be 
expressible in closed-form. However, as we will see in the sequel of the paper, it is just 
this assumption that allows us to derive a very simple and explicit fairness relation, 

depending only on four variables: the participation level, the technical interest rate, the 
volatility of the reference portfolio, and the market interest rate. 

Denoting by CL, t=1,2,...,T, the benefit paid at time t if the insured dies between 
ages x+t-1 and x+t or, for t=T, in case of survival, the following recursive relation 

links then the benefits of successive years: 

(3) Ct = C,-, (l+&), t=1,2 ,..., T. 

The iterative expression for them is instead: 

(4) Ct = Co@, (1+&j), t=1,2,...,T. 

2.2 Periodic premium contracts 

Assume now that the policy is paid by a sequence of periodical premiums, due at 
the beginning of each year of contract, if the insured is alive. The initial premium, PO, 
paid at time 0, is given by 
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T-l 

c5) po = co pxi;/ = co&';, _ co ,F; "'l;;lvt + T-1Px VT , 

/-l-3x 
c rPx vt 
t=o 

where the death probabilities t-l/lq, and the survival probabilities tpx are extracted from 

the same risk-adjusted table introduced in the previous subsection. Moreover, most of 
the considerations and assumptions made in that subsection are still valid, in particular 

the bonus mechanism described by relation (2). 
In Italy it is usual that the periodical premium of a participating policy is annually 

adjusted at the same bonus rate 6, credited to the mathematical reserve. In this case, 
denoting by Pt, t=1,2 ,...,T-1, the (t+l)-th premium paid at time t, if the insured is 

alive, one has 

(6) Pt = P,-1 Cl+&), t=l 2. , , .., T-l 

or, alternatively, 

t=O 
(7) pt = 

t=1,2,...,T-1 

If this is the case, the benefit Ct is also adjusted in the same measure, so that relation (3) 
or, alternatively, (4), still holds. 

In this paper we also make this assumption of identical adjustment rates for the 
mathematical reserve, the premium and the benefit. However, we observe that 
sometimes it could be instead stated that the adjustment rate of the periodical premium is 
only a fraction, for instance one half, of 6,, or even 0 (i.e., the premiums are constant). 

In these cases an actuarial equilibrium relation concerning the residual policy period 

imposes that the adjustment rate of the benefit is a suitable mean of the remaining two 
adjustment rates (see, e.g., Pentikginen (1968)). Unfortunately this mean turns out to be 
path-dependent, and therefore it is hard to obtain closed-form relations for the market 

value of the contract. 



3. The valuation model 

In this section we describe, first of all, the basic assumptions concerning the 
financial set-up. Then, observing that both the periodical premiums and the benefit are 
typical contingent-claims, we apply the martingale approach put forward by Harrison 
and Kreps (1979) and Harrison and Pliska (1981, 1983) to obtain a valuation formula 
for them. Finally, the mortality risk comes into play in order to establish a fairness 

condition in the pricing of the contract. 

3.1 Assumptions 

Assume that markets are populated by rational and non-satiated agents, aiming at 
maximizing their profits. Moreover, let markets be perfectly competitive and frictionless 
(in particular, arbitrage opportunities are ruled out of them), and let trading take place 

continuously. 
We assume that the continuously compounded riskless interest rate in the economy 

is deterministic and constant, and denote it by r. Therefore, in our framework, there is a 
unique source of financial uncertainty, reflected by a stochastic evolution of the 
reference portfolio whose performance determines the bonus mechanism. Assume that 

this uncertainty is generated by a standard brownian motion W, defined on a filtered 
probability space (!2, 5, Q) in the time interval [O,T]. In particular, Q represents the 

equivalent martingale measure, under which the continuously discounted price of any 
financial security is a martingale (see Harrison and Kreps (1979)), and ($t, OSt ST) is 

a filtration, satisfying the usual conditions and representing the revelation of 
information. 

We assume that the reference portfolio is a well-diversified one, and that 
dividends, coupons or whatever else yielded by the assets composing it are immediately 
reinvested in the same portfolio and thus contribute to increase its unit price. We assume 

in fact that this portfolio is split into shares, or units. Therefore its annual returns are 
completely determined by the evolution of its unit price and not by that of its total value, 
which reflects also new investments (corresponding, for instance, to the payment of 
periodical premiums or to the entry of new policies into the portfolio) and withdrawals 
(when some policy expires). We denote by G, the unit price at time t of the reference 
portfolio and model it, under Q, as a geometric brownian motion: 
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(8) 2 = rdt + odW,, tE KITI, 

with the constant cr representing the volatility parameter and Go given. As it is well 

known, the solution to the stochastic differential equation (8) is given by 

(9) Gt = Guexp[(r-$)t + (5 Wr}, tE [O,T]. 

We assume that the annual compounded rates of return g, introduced in the 
previous section are defined as 

Gt (10) gt = G,_1 - 17 t=l2. Ts, I 1 ..1 

so that l+gr=exp { r-o2/2+o(W,-W,-1)) are independent and identically distributed 

(i.i.d.) for t=1,2 ,...,T and their logarithms, representing continuously compounded 
rates of return, are all independent and normally distributed with mean r-c&2 and 
variance 0.2. Therefore also the bonus rates 6, defined by relation (2) of Section 2 turn 

out to be i.i.d.. 
Finally, we assume independence between mortality and the financial elements, so 

that the valuation of the contract can be performed in two separate stages: in the first 
stage premiums and benefits defined by relations (7) and (4) of Section 2 are priced as 
like as they were (purely-financial) contingent-claims due with certainty at a fixed 
(future) date; in the second stage their time 0 prices are “weighted” with the risk-neutral 

life and mortality probabilities introduced in Section 2 in order to get a “fair” price of the 
contract. 

3.2 Fair valuation of single premium contracts 

To value these contracts, we first need to compute, for any t=1,2,...,T, the market 
value of the contingent-claim Cr, defined by relation (4) of the previous section and 

assumed to be due with certainty at time t. To this end we exploit the martingale 
approach put forward by Harrison and Kreps (1979) and Harrison and Pliska (1981, 

3 As described in the Introduction, the annual rate of return on the reference portfolio for Italian 
participating policies is actually referred to a financial year, that generally ends at least two months 
before a policy year. Here, for simplicity, we have instead assumed that g, is referred to a policy 
Year. 
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1983) and express the time 0 price of Ct, denoted by n(C,), as the following expectation 

under the risk-neutral measure Q: 

(11) n(C,) = EQ[exp(-rt)Ct], t=l,2 ,..., T. 

Exploiting relations (4) and (2) of Section 2 together with the stochastic independence of 
the bonus rates Sj for j=1,2,...,T, and after some algebraic manipulations, we get then 

(12) n(G) = Co$(expi-rl+$ EQ[exp{-r)max{ (l+gj)-(l+i/q). 0}]), 

t=l,...,T. 

Recalling that l+gj are, for any j, identically and lognormally distributed with, in 

particular, the same distribution as the time 1 stock price in the classical Black and 
Scholes (1973) model (given a time 0 price of the stock equal to l), it is immediate to 
realize that the Q-expectation into the round brackets in the RHS of relation (12) 
represents the time 0 value of a European call option on a non dividend paying stock 
with initial price equal to 1, option with maturity 1 and strike price equal to l+i/~~. 

Denoting this value by c, we have then 

t, t=1,2 ,..., T, 

with c given by the classical Black and Scholes (1973) formula: 

02 
r+ T- In l+l 

where dt = ( 1 rl , d2 = dt-o, and F denotes the cumulative 
0 

distribution function of a standard normal variate. 
The fair price of the single premium contract analysed in this paper, FVB, can be 

obtained by summing up, for t=1,2,...,T, the time 0 values of Ct weighted with the 
risk-neutral probabilities introduced in Section 2 that they are exactly due at time t: 

T-l 
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where v,=exp(-r)+&c and i,=v;l- 1. 

Then the contract is fair if and only if the single premium U equals FVB, i.e., recalling 
relation (1) of Section 2, if and only if the following condition is satisfied: 

(9 0,) 
(16) &:Ti = &:?-I. 

3.3 Fair valuation of periodic premium contracts 

Most of what said in the previous subsection for single premium contracts is still 
valid in the case of periodical premiums. In particular the fair value of the benefit is still 
given by relation (15), while the fair value of the sequence of periodical premiums, 

FVP, is given by 

T-l 

(17) I--VP = CtPxNPt), 
t=o 

where rr(PJ = EQ[exp(-rt]P] t re p resents the time 0 price of the contingent-claim Pt, 

defined by relation (7) of Section 2 and assumed to be paid with certainty at time t. 

Exploiting the same arguments employed in the previous subsection, we have then 

PO t=O 
(18) NPt) = 

PO4 t=l 2 7 ,..., T-l 

so that 

T-l 

(19) FVP = Pox tpxv: = PO,&“). 
t=O 

The fairness requirement implies now that the fair value of the benefit, FVB, 
equals the fair value of the premiums, FVP, i.e., that 

(20) Co A,(;$, = PO ,gi;’ . 
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Recalling the definition of PO given in relation (5) of Section 2, we conclude this 
subsection by stating that the contract is fair if and only if the following condition holds: 

(9 0,) 
(21) PKTI = px:r1, 

4. The fairness relation 

In the previous section we have seen that a participating policy is fairly priced if 
and only if K(i)=K(i,), being 

(Y) T-l 

WY) = &:Tl = &mx (l+y)-’ + T-lpx (I+Y)-~ 
kl 

for single premium contracts, and 

T-l 

(y) xt-l/l% (l+Y)-’ + T-Ipx (l+y)-T 

K(y) = P,,Tl = t=l 
T-l 

c tPx (l+y)-’ 
t=o 

for periodic premium ones (see relations (16) and (21) respectively). Since, in both 
cases, K is a strictly decreasing function of y, then both conditions (16) and (21) are 
satisfied if and only if i=i,, i.e., if and only if the following simple relation holds: 

(22) exp{-r)(l+i) + qc - 1 = 0. 

Note that relation (22) depends only on four parameters: the market instantaneous 
interest rate r, the annual compounded technical rate i, the participation level q, and the 
volatility coefficient o. While the rate r is exogenously given, the remaining parameters 

can be chosen by the insurance company, hence they are control-variables. In particular, 
i and q are directly fixed by the insurer, whereas (3 can be indirectly determined by a 

suitable choice of the assets that compose the reference portfolio. 
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It is quite intuitive that relation (22) defines a trade-off between any pair of 
control-parameters, given the third one and r. If the minimum interest rate guaranteed i is 
high, then the insurance company cannot afford to fix a great participation level since, in 
“good” years (i.e., when g,>i), it has to put aside a sufficient amount of non-distributed 
funds in order to be able to fulfil the minimum guarantee promise in “bad” years (when 
g, < i). Similarly, a highly volatile reference portfolio can produce high returns as like as 

heavy losses. The losses, however, are entirely suffered by the insurer since the 
policyholder benefits of the minimum interest rate guarantee. Therefore in this case, to 
protect itself, the insurance company must keep the technical interest rate and/or the 
participation level down. In what follows this trade-off will formally turn out from the 
fact that all the partial derivatives with respect to the control-parameters i, rl, o of the 

function 

(23) g(r,i,%o):=exp( -r)(l+i) + nc(r,i,n,o) - 1, 

with c(r,i,q,o):=c defined by relation (14), are of the same sign (in particular, positive). 

In the remaining part of this section we will analyse, separately for each one of the 
three control-parameters, necessary and sufficient conditions under which there exists a 
unique solution to the equation (22) for any given positive value of r and once the 

insurance company has “fixed” the values of the other two control-parameters. Before 
doing this, however, observe that relation (22) is equivalent to 

c = 1 - exp{-r)(l+i) 

rl 

Since the Black-Scholes value c is always strictly positive, a necessary (and indeed quite 
obvious) condition for a fair pricing of the contract is 

(24) i < exp{ r]-1 

or, equivalently, 

(25) ln( l+i) < r. 

This condition states that the technical interest rate i must be strictly less than the annual 
compounded market rate exp{r)-1 or, equivalently, that the continuously compounded 

technical rate, ln( l+i), must be less than r. 
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4.1 Solutions with respect to the technical rate i 

Given a market rate r > 0, imagine that the insurance company has already fixed 
the participation level q, between 0 and 1, and chosen the assets composing the 
reference portfolio, so that also o > 0 is given. We are now going to analyse if there 

exists a technical interest rate i, non negative and less than the annual compounded 
market rate exp{ r]-I, such that the fairness relation (22) holds, or, equivalently, such 

that the function g defined by relation (23) equals 0. 
To this end observe, first of all, that 

(26) 2 = exp[-r) [ I-F(dz)] > 0, 

i.e., that g is strictly increasing with respect to i. Moreover, since 

(27) sup g(r,i,rl,o) = lim g(r,i,rJ,o)=tlc(r,exp(r)-l,q,o) > 0, 
i<exp(r)-I i+exp{r]-1 

then a necessary and sufficient condition under which there exists a unique solution to 
the equation g(r,i,q,o)=O, is 

(28) (2; g(r,i,q,o) = g(r,O,q,o) =) exp{-r) + tjc(r,O,rt,o) - 1 5 0. 

Substituting relation (14) of Section 3 for the Black-Scholes price, condition (28) 
becomes 

(29) 11 I 
I-exp(-r) 

F[k + ;)-exp(-rjfi- ;) ’ 

Observe that relation (29) defines an actual upper bound for TJ, i.e., that 

This is due to the facts that 
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i.e., h is strictly decreasing with respect to (I, and 

(32) sup h(r,o) = Iim h(r,o) = 1. 
c-0 O--t0 

Summing up, given r > 0, o > 0, and UE (0, h(r,o)], there exists a unique 
k [0, exp(r)-1) such that the fairness relation holds. 

To get a numerical insight, in Tables 1 to 5 we provide some examples of 
solutions to equation (22) with respect to i for given values of r, q, o. To this end we 

have fixed for r either a value very close to the actual Italian rates (3% p.a.), or a value 
very close to the Italian rates when the first policies with profits were launched (20% 

p.a.), and of course we have also considered some intermediate values between these 
two extremes. 

TABLE 1 
Solutions with respect to the technical rate i (basis points) when r=O.03 

rl 
0 

0.1 0.2 0.3 0.4 0.5 0.6 

--_--- ----- 

0.05 305 
0.10 304 
0.15 300 
0.20 289 
0.25 273 
0.30 252 
0.35 227 
0.40 200 
0.45 171 
0.50 141 
0.55 111 
0.60 80 
0.65 49 
0.70 18 

------ ----- 

_----- 

304 
288 
248 
193 
128 
51 

_----- 

_----- 

297 
239 
143 
28 

------ 

276 
156 

------_ 

---- 

238 
41 

---- 

180 

0.7 

.-__--. 

95 

_-----. 
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TABLE 2 
Solutions with respect to the technical rate i (basis points) when r=O.OS 

r 
(J 

0.1 

----- ----- 

0.05 513 
0.10 513 
0.15 512 
0.20 509 
0.25 502 
0.30 490 
0.35 414 
0.40 455 
0.45 433 
0.50 410 
0.55 384 
0.60 357 
0.65 330 
0.70 302 
0.75 274 
0.80 245 
0.85 217 
0.90 189 

_---- _---- 

0.2 

513 
509 
491 
456 
409 
354 
294 
229 
162 

94 
26 

---- 

0.3 

.---_ 

512 
485 
422 
335 
233 
123 

8 

.---- 

0.4 

---- 

504 
430 
305 
153 

---- 

0.5 

.---- 

483 
341 
141 

0.6 0.7 0.8 0.9 

441 
213 

---- 

373 
36 

----- .---_ 

262 69 

----_ ---- ----- .---- 

TABLE 3 
Solutions with respect to the technical rate i (basis points) when r=O.l 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

-----. _---- 

0.05 1052 
0.10 1052 
0.15 1052 
0.20 1052 
0.25 1051 
0.30 1048 
0.35 1043 
0.40 1035 
0.45 1024 
0.50 1010 
0.55 994 
0.60 915 
0.65 955 
0.70 933 
0.75 909 
0.80 885 
0.85 860 
0.90 834 

_---- 

_--- 

1052 
1052 
1049 
1039 
1019 

989 

904 
853 
799 
741 
682 
621 
560 
499 
438 
378 
318 

---- 

.---- 

1052 
1049 
1027 

981 
916 
837 
748 
652 
551 
449 
345 
241 
138 

36 

_---_ 

---- 

1051 
1030 

963 
862 
137 
598 
450 
297 
143 

1048 
982 
849 
617 
482 
274 

61 

.---- 

----_ 

1031 
893 
676 
419 
143 

----_ 

---- 

990 
750 
428 

71 

_--- 

----- 

905 
524 

70 

_---- 

----- 

726 
138 

----- 
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TABLE 4 
Solutions with respect to the technical rate i (basis points) when r=O.lS 

rl 
II 

0.1 
(5 

------ 
tt----- 

0.05 1618 
0.10 1618 
0.15 1618 
0.20 1618 
0.25 1618 
0.30 1618 
0.35 1616 
0.40 1613 
0.45 1607 
0.50 

II 
1599 

0.55 1588 
0.60 1575 
0.65 1560 
0.70 1542 
0.75 1522 
0.80 1501 
0.85 1479 
0.90 1456 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

---- _---- ----_ _---- 

1618 1618 
1618 1618 
1618 1611 
1616 1587 
1607 1545 
1590 1487 
1565 1416 
1532 1335 
1493 1247 
1448 1154 
1399 1057 
1346 958 
1291 858 
1234 758 
1176 659 
1116 560 
1057 464 

997 369 

1618 
1613 
1577 
1507 
1411 
1295 
1165 
1027 

883 
736 
588 
440 
295 
152 

12 

1618 
1588 
1497 
1361 
1194 
1009 

813 
611 
406 
202 

1 

1613 
1526 
1355 
1135 

886 
621 
351 

79 

----- 

1589 
1408 
1131 

808 
462 
108 

----. 

1523 
1201 

786 
335 

----- 

1358 
815 
206 

----_ _---- _---- ----. ----- 

TABLE 5 
Solutions with respect to the technical rate i (basis points) when r=0.2 

rl 
(5 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

----- ----- ----. ---- _--- 

0.05 2214 2214 2214 2214 
0.10 2214 2214 2214 2213 
0.15 2214 2214 2212 2194 
0.20 2214 2213 2200 2146 
0.25 2214 2210 2172 2070 
0.30 2214 2201 2129 1972 
0.35 2213 2184 2072 1857 
0.40 2212 2160 2003 1730 
0.45 2209 2130 1925 1594 
0.50 2204 2093 1839 1453 
0.55 2197 2050 1748 1309 
0.60 2187 2003 1654 1163 
0.65 2175 1953 1557 1017 
0.70 2161 1899 1458 872 
0.75 2145 1843 1359 729 
0.80 2127 1786 1260 589 
0.85 2107 1727 1161 452 
0.90 2085 1668 1064 318 

----- ----- ---- .---- ---- 

.---- 

2214 
2200 
2138 
2028 
1884 
1716 
1533 
1340 
1141 

939 
738 
539 
344 
153 

.---- 

---- 

2213 
2158 
2021 
1828 
1599 
1349 
1088 

821 
554 
289 

30 

.---- 

.---- 

2200 
2061 
1818 
1518 
1189 

844 
495 
149 

.---- 

.---- 

2150 
1870 
1483 
1049 

597 
142 

.---- 

----- 

1997 
1485 

890 
274 

----- 
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The results reported in Tables 1 to 5 do not require many comments. We only 
point out that, when the volatility parameter 0 and/or the participation level tl are low, 

the price c of the call option defined by relation (14) of Section 3 practically vanishes 
and then the rounded values of i and exp(r]-1 coincide, in terms of basis points. 

Moreover, observe that with the actual Italian market rates (about 3%) and a volatility 
coefficient of 1520%, there are non negative solutions for i only when ~230% (see 
Table I), whilst, for instance, when r=20% and o=30%, a participation level between 

70% and 80% leads to a fair technical rate between 8.44% and 1.42% (see Table 5). 

4.2 Solutions with respect to the participation level q 

Assume now that, given r> 0, the insurance company has already fixed a 
technical interest rate iE [O,exp( r)-1), and chosen a reference portfolio with volatility 
coefficient o > 0. We are then concerned with the determination of a participation level 
n, between 0 and 1, such that the contract is fair. 

As in the case analysed in the previous subsection, we observe first of all that 

(33) k =c(ri?lo)+-exp(-r]F(dz)>O, 
aq “’ T) 

i.e., that g is strictly increasing also with respect to tj. Moreover: 

(34) inf g(r,i,n,o) = lim g(r,i,Co) = exp(-r}(l+i) - 1 < 0, 
w r1’0 

(35) sup g(r,i,r,o) = lim g(r,i,n,o) = exp{-r](l+i) + c(r,i,l,o) - 1 > 0. 
WI rl-1 

The first inequality follows immediately from the fact that i <exp{ r)--1. To establish the 

second one define 

(36) z(r,i,o):=exp(-r)(l+i) + c(r,i,l,o) - 1, 

(37) f(y):=F ‘(y) = L 
G- 

exp I -y*l2 1, 

and observe that 

(38) E =exp(-r)(l+i)f y- s 
i 1 

,o, 
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i.e., z is strictly increasing with respect to 0, and 

(39) inf z(r,i,o) = lim z(r,i,o) = 0. 
o>o 0+0 

Therefore, given r>O, 0>0, and k [O,exp(r]-1), there is a unique QE(O, 1) 
such that g(r,i,q,o)=O. 

Tables 6 to 10 report some examples of solutions to the fairness condition with 
respect to q for given values of r, i, 0. 

TABLE 6 
Solutions with respect to the participation level 17 (b.p.) when r=0.03 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

---- 

754 
668 
578 
483 
380 
261 

81 
---- 

0 
i 

------ 

0.000 
0.005 
0.010 
0.015 
0.020 
0.025 
0.030 

----- 

0.1 0.2 

2225 1124 
2029 1564 
1819 1394 
1589 1208 
1330 1000 
1013 750 

463 324 
.---- ---- 

-----t---- 
1410 
1273 
1128 

971 

1195 1038 920 
1074 930 821 

941 816 717 
810 694 606 
659 559 484 
419 401 342 
185 146 118 

828 
736 

5295 3 140 
4929 2883 
4522 2606 
4061 2299 
3516 1948 
2818 1514 
1494 737 

640 
538 
426 
297 

97 

797 
588 
240 

.---_ 

TABLE 7 
Solutions with respect to the participation level q (b.p.) when r=O.OS 

0.5 0.6 0.7 0.8 0.9 1.0 

---- _---. _--- ---- 

2238 1911 1670 1486 1341 1224 
2114 1800 1569 1393 1254 1143 
1985 1686 1466 1298 1166 1059 
1851 1567 1358 1199 1074 974 
1711 1443 1246 1097 919 885 
1563 1312 1129 990 880 793 
1405 1173 1005 876 776 696 
1233 1023 870 755 664 592 
1040 855 721 620 542 479 

809 656 546 463 399 348 
456 357 286 234 195 164 

---- ----. ---_ .---- ---- ---_ 

0 
i 

0.1 0.2 0.3 0.4 

------ ---- ---- ---- 

0.000 7167 4667 3427 2706 
0.005 6930 4461 3259 2564 
0.010 6672 4245 3083 2416 
0.015 6392 4016 2898 2261 
0.020 6084 3771 2704 2099 
0.025 5742 3507 2496 1926 
0.030 5358 3219 2271 1742 
0.035 4916 2898 2023 1539 
0.040 4387 2527 1741 1311 
0.045 3702 2066 1396 1034 
0.050 2525 1318 851 606 

------ ---- ---- _---_ .---_ 
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TABLE 8 
Solutions with respect to the participation level q (b.p.) when r=O.l 

a 
i 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

---- ---- ---- _---_ ---- ---- ---_ 

0.00 9232 7171 5687 4684 3977 3458 3062 2752 2503 2299 
0.01 9069 6927 5449 4465 3777 3273 2890 2590 2350 2154 
0.02 8878 6664 5198 4235 3567 3081 2712 2423 2193 2005 
0.03 8655 6377 4930 3993 3348 2880 2526 225 1 2030 1851 
0.04 8392 6064 4643 3737 3117 2670 2333 207 1 1862 1692 
0.05 8082 5718 4333 3462 2872 2447 2129 1882 1685 1525 
0.06 7712 5333 3994 3165 2608 2210 1912 1682 1499 1351 
0.07 7262 4894 3615 2838 2320 1952 1678 1466 1299 1164 
0.08 6698 4377 3181 2467 1996 1664 1418 1229 1081 961 
0.09 5938 3731 2651 2022 1612 1326 1115 955 830 730 
0.10 4699 2763 1887 1393 1079 864 708 591 500 429 

----- ----- ---- ---- ---- .---_ _--- ---- 

TABLE 9 
Solutions with respect to the participation level 17 (b.p.) when r=O.Z5 

(J 
i 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

------ ---- ---- ---- ---- _--_. _--- -_-- ---- 

0.00 9809 8516 7179 6130 5330 4711 4223 3831 3509 3243 
0.01 9760 8375 7014 5964 5170 4558 4077 3691 3375 3114 
0.02 9701 8224 6840 5791 5004 4400 3927 3548 3239 2982 
0.03 9630 8061 6658 5612 4832 4237 3772 3401 3099 2848 
0.04 9546 7884 6466 5424 4654 4069 3614 3251 2955 2711 
0.05 9446 7694 6263 5228 4469 3895 3450 3096 2808 2571 
0.06 9329 7488 6048 5022 4276 3715 3281 2936 2657 2427 
0.07 9190 7264 5819 4806 4074 3527 3105 2771 2501 2278 
0.08 9027 7020 5575 4577 3863 3331 2922 2599 2339 2125 
0.09 8835 6752 5312 4334 3639 3125 2731 2420 2171 1966 
0.10 8607 6456 5028 4073 3401 2906 2529 2233 1995 1800 
0.11 8334 6124 4717 3791 3146 2673 2314 2034 1809 1626 
0.12 8002 5748 4371 3482 2867 2421 2083 1820 1611 1440 
0.13 7590 5309 3977 3134 2558 2142 1830 1587 1395 1239 
0.14 7051 4775 3511 2727 2200 1822 1541 1324 1153 1015 
0.15 6277 4063 2908 2212 1752 1427 1188 1005 862 748 
0.16 4635 2711 1817 1309 987 767 610 493 405 336 

--_--_ ---- ---- _---. ---_ ---- ---- ---- ---- --- 
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TABLE 10 
Solutions with respect to the participation level q (b.p.) when r=0.2 

0 
i 

0.1 0.2 0.3 0.4 

---_-- ---- ---- _---_ .---_ 

0.00 9958 9234 8164 7189 
0.01 9945 9155 8050 7063 
0.02 9929 9068 7930 6932 
0.03 9909 8975 7804 6797 
0.04 9884 8875 7672 6656 
0.05 9854 8767 7534 6510 
0.06 9818 8650 7388 6358 
0.07 9774 8524 7235 6200 
0.08 9722 8388 7074 6036 
0.09 9661 8241 6904 5864 
0.10 9588 8083 6724 5684 
0.11 9501 7910 6533 5495 
0.12 9400 7723 6330 5296 
0.13 9281 7519 6113 5086 
0.14 9140 7295 5880 4864 
0.15 8973 7048 5629 4625 
0.16 8775 6773 5355 4369 
0.17 8537 6464 5053 4089 
0.18 8246 6108 4714 3779 
0.19 7879 5690 4325 3428 
0.20 7394 5172 3857 3012 
0.21 6679 4466 3237 2474 
0.22 5011 2999 2019 1450 

------ ---- ---- _---_ .---- 

T - 

_._. 

_ 

0.5 0.6 0.7 0.8 0.9 1.0 

---- ---- ---- ---- .---- 

6383 5727 5192 4750 4382 4072 
6254 5600 5067 4629 4264 3957 
6122 5469 4940 4506 4144 3841 
5985 5336 4810 4379 4022 3722 
5845 5198 4677 4251 3898 3602 
5700 5057 4540 4119 3771 3480 
5550 4912 4400 3985 3642 3355 
5395 4762 4257 3847 3509 3228 
5234 4608 4109 3706 3374 3097 
5067 4448 3957 3561 3235 2964 
4894 4283 3800 3411 3093 2828 
4713 4112 3638 3257 2946 2688 
4524 3933 3469 3098 2795 2544 
4326 3747 3294 2932 2638 2395 
4117 3551 3111 2760 2475 2240 
3895 3345 2918 2580 2305 2080 
3657 3125 2714 2389 2127 1911 
3401 2889 2496 2187 1937 1734 
3119 2632 2260 1968 1734 1543 
2803 2345 1998 1727 1511 1335 
2432 2012 1696 1452 1258 1101 
1959 1592 1320 1111 948 817 
1086 837 658 527 427 350 
---- ----. ---_ ---- ---- .--- 

As far as the results reported in Tables 6 to 10 are concerned, we observe that, 

when r=3%, a reference portfolio with a medium or a high volatility produces a very 
low fair participation level. For instance, if 0=30%, a technical rate between 0 and 3% 

gives rise to a fair participation level between 22.25% and 4.63% (see Table 6). When 
instead r=20%, the fair participation levels are rather high. For instance, a 3%-value of 
the technical rate, very common in Italy at the end of the seventies, when the policies 
with profits were introduced, leads to fair participation levels between 99.09% and 

67.97%, corresponding to volatility coefficients between 10% and 40% (see Table 10). 
This explains why the first participation contracts usually provided a minimum 
participation level of about 70%. 
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4.3 Solutions with respect to the volatility coefficient (3 

We analyse now the problem of finding a volatility coefficient o > 0 in order to 

satisfy the fairness relation, given a market rate r > 0 and once the insurance company 
has fixed a participation level TJE (0,l) and a technical rate ie [0, exp[r)-1). 

Once again, we exploit the strict monotonicity of g with respect to the third 
control-parameter cr. Observe, in fact, that 

Moreover, 

i 

[I-exp[-r)](q-1) < 0 if t<exp{r)-1 

(41) inf g(r,i,q,o) = hno g(r,i,q,o) = 
c-0 exp(-r](M)-1 < 0 if tkexp(r)-1 

and 

(42) sup g(r,i,q,o) = lim g(r,i,q,o) = exp{-r](l+i) + IJ - 1. 
CD0 O-C- 

Then a necessary and sufficient condition for the existence of a unique solution in (5 to 
the equation g(r,i,q,o)=O is exp(-r)( l+i) + q - 1 > 0. This condition produces the 
following (strictly positive) lower bound for q: 

(43) q > 1-exp{-r)(l+i). 

Summing up, given r>O, iE[O,exp(r)-1) and qe(l-exp{-r}(l+i),l), there 
exists a unique (T > 0 such that the contract is fair. 

Some numerical solutions with respect to (J for given values of r, i, IJ are reported 

in Tables 11 to 1.5. 
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TABLE 11 
Solutions with respect to the volatility coefficient (T (b.p.) when r=O.03 

11 
i 

------ 

0.000 
0.005 
0.010 
0.015 
0.020 
0.02s 
0.030 

--_--- 

0.1 

----- 

7296 
6478 
5670 
4855 
4002 
3039 
1501 

----- 

0.2 0.3 0.4 

’ I 
.---- ----_ 

3387 
3049 
2702 
2338 
1943 
1484 

727 

2113 1475 1087 823 628 472 
1907 1331 979 740 562 420 
1693 1180 867 652 493 366 
1466 1020 747 559 420 309 
1218 845 615 457 340 247 

927 639 461 338 248 175 
446 300 210 149 103 67 

.----+----. 

0.5 0.6 0.7 0.8 

_---- ---- -.-- --- 

.---_ _---- 

- 

--. 

- 

0.9 

----- 

333 
293 
253 
210 
164 
112 

37 
----- 

TABLE 12 
Solutions with respect to the volatility coefficient (T (b.p.) when r=O.OS 

0.010 10661 
0.015 9717 
0.020 8806 
0.025 7916 
0.030 7031 
0.035 6133 
0.040 5189 
0.045 4126 
0.050 2596 

0.2 0.3 0.4 0.5 

_---- ----. ---- 

5694 3534 2462 1814 
5325 3318 2314 1704 
4958 3100 2164 1593 
4590 2879 2010 1478 
4219 2653 1853 1361 
3840 2421 1690 1239 
3449 2178 1519 1111 
3038 1920 1336 975 
2591 1637 1136 825 
2071 1305 901 649 
1301 812 552 390 

----. ----. ---- 

- 

_- 

- 

0.6 0.7 0.8 

---- ----- ----- 

1373 
1289 
1203 
1114 
1024 

930 
831 
725 
610 
475 
278 

---- 

1047 786 
981 734 
913 681 
844 627 
773 572 
699 514 
622 454 
539 390 
449 321 
345 241 
195 130 

_---- --_- 

0.9 

---- 

555 
515 
476 
435 
393 
350 
305 
258 
208 
151 

74 
---- 
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TABLE 13 
Solutions with respect to the volatility coefficient CJ (b.p.) when r=O.l 

II q II 0.1 
i 

-__--- ----_ 

0.00 39052 
0.01 29577 
0.02 24522 
0.03 20928 
0.04 18076 
0.05 15663 
0.06 13526 
0.07 11554 
0.08 9652 
0.09 7694 
0.10 5327 

------ ---__ 

- 

I 
1 
1 

0.2 0.3 0.4 0.5 0.6 0.7 

----- ---- ----_ 

1902 7183 4962 3643 2753 2097 
.0939 6685 4638 3410 2576 1960 
I0027 6197 4315 3175 2399 1822 

9156 5714 3991 2939 2219 1682 
8314 5234 3665 2700 2036 1540 
7491 4751 3334 2455 1848 1394 
6675 4260 2994 2203 1654 1242 
5849 3753 2638 1938 1450 1083 
4990 3213 2257 1653 1230 912 
4044 2608 1826 1330 981 719 
2829 1818 1262 907 658 470 

----- ---- .---- 

- 

_- 

- 

0.8 0.9 

.---- 

1574 1110 
1468 1030 
1361 950 
1252 869 
1141 786 
1028 702 

910 615 
787 524 
655 428 
507 321 
320 190 

.---- _---- 

TABLE 14 
Solutions with respect to the volatility coefficient (r (b.p.) when r=O.lS 

rl 
i 

-----_ 

0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 

_----. 

0.1 

---- 

4264 
3236 
2716 
2350 
2059 
1813 
1595 
1395 
1203 
1012 

803 
495 

--_- 

0.2 

_--- 

19576 
18123 
16814 
15618 
14511 
13478 
12503 
11575 
10684 

9821 
8975 
8137 
7292 
6422 
5490 
4415 
2739 

---- 

0.3 0.4 0.5 
I I 

--_- ----- 
t 

11090 7543 
10497 7183 

9926 6829 
9373 6481 
8835 6138 
8311 5797 
7797 5459 
7291 
6790 
6290 
5788 
5278 
4754 
4202 
3602 
2897 
1783 

I 

5121 
4782 
4441 
4094 
3739 
3370 
2978 
2549 
2042 
1240 

----- 

-----_ 

5503 4146 3153 2364 1666 
5253 3961 3012 2255 1585 
5005 3777 2871 2147 1505 
4759 3593 2729 2038 1424 
4515 3409 2588 1929 1343 
4270 3225 2446 1820 1262 
4026 3040 2303 1709 1180 
3780 2853 2158 1597 1097 
3532 2664 2012 1484 1013 
3281 2472 1862 1369 928 
3024 2275 1709 1250 841 
2760 2072 1551 1128 751 
2484 1860 1386 1001 658 
2191 1634 1210 866 560 
1868 1385 1017 718 454 
1486 1091 790 546 333 

886 634 443 290 160 

0.6 0.7 0.8 0.9 

---- _---. _---_ 

---- _---. ----. 

2.5 



TABLE 15 
Solutions with respect to the volatility coefficient 0 (b.p.) when r=0.2 

rl 
i 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 
0.21 
0.22 

c-----. 

.- 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

_---- ----- -----_----_ .---- .---- ----- ----_ --_- 

56492 
36556 
30434 
26410 
23314 
20738 
18488 
16447 
14532 
12671 
10772 

8656 
5306 

32549 L5477 10256 7412 5559 4217 3158 2223 
29128 14737 9850 7142 5364 4071 3047 2142 
26507 14035 9454 6876 5171 3926 2936 2060 
24365 L3366 9069 6614 4980 3781 2826 1979 
22543 (2727 8692 6356 4790 3637 2716 1898 
20948 12114 8322 6100 4601 3493 2606 1817 
19525 L1523 7960 5847 4414 3350 2496 1736 
18234 I0952 7603 5596 4226 3207 2386 1655 
17049 10398 7251 5346 4040 3063 2276 1574 
15948 9858 6903 5098 3853 2920 2166 1492 
14917 9330 6559 4849 3665 2775 2055 1410 
13941 8812 6216 4601 3477 2630 1943 1327 
13011 8302 5873 4352 3288 2483 1830 1244 
12116 7796 5531 4100 3096 2334 1715 1160 
11250 7293 5186 3846 2901 2183 1598 1074 
10403 6789 4836 3587 2702 2029 1479 987 

9566 6279 4480 3321 2498 1870 1357 898 
8729 5758 4113 3046 2287 1705 1230 805 
7878 5219 3729 2758 2064 1532 1098 709 
6992 4647 3319 2449 1826 1347 956 607 
6034 4018 2865 2106 1561 1142 800 496 
4906 3267 2320 1694 1244 897 616 368 
3026 1999 1400 1003 718 500 325 174 

----- ----- ---- ----. .---- ----- ----- ---_ 

Once again, we choose the extreme scenarios considered in Tables 11 and 15 in 

order to catch some numerical feelings about our findings. When r=3% (a scenario 
similar to the Italian one at the present time) and the participation level is rather high, 
then a fair pricing is attainable only with the choice of a reference portfolio characterized 
by a very low volatility. For instance, if 11 is between 70% and 90%, a fair pricing 

would require a volatility coefficient between 6.28% and 3.33% for i=O, and 
respectively between 1.03% and 0.37% for i=3% (see Table 11). When instead r=20%, 
there are no solutions in (3 if q=lO% and i < 10%. In this case, moreover, a technical 

rate of 3% and a participation level between 70% and 90% lead to a fair volatility 
coefficient between 37.81% and 19.79% (see Table 15). 
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5. Concluding remarks 

In this paper we have analysed a life insurance endowment policy, paid either by a 
single premium at issuance or by a sequence of periodical premiums, in which both the 

benefit and the periodical premiums are annually adjusted according to the performance 
of a special investment portfolio. The premium calculation technique and the adjustment 
mechanism are defined in such a way that a minimum interest rate is guaranteed to the 
policyholder and, moreover, a special bonus is annually credited to the mathematical 
reserve of the policy. These features introduce in the contract some embedded options, 
of European style, that can be priced in a contingent-claims framework once an 

independence assumption allows us to keep apart the financial risk from the mortality 
one. Under the Black and Sholes model for the evolution of the reference portfolio and 
exploiting the martingale approach, we derive a very simple closed-form relation that 
characterizes “fair” contracts, i.e., contracts priced consistently with the usual 

assumptions on financial markets and, in particular, with no-arbitrage. This relation 
links together the contractual parameters (i.e., the minimum interest rate guaranteed and 
a “participation” coefficient) with the market interest rate and the riskiness of the 

reference portfolio. 
Undoubtedly a quality of our valuation model is its simplicity, although it includes 

almost all the features of Italian participating policies. However, taking into account that 
life insurance policies are usually long-term contracts and bearing in mind the experience 
on the evolution of the market interest rates in the last two decades, it must be admitted 
that a framework with deterministic interest rates, such as the Black and Scholes one, is 
not suitable to represent the real world. Therefore a natural extension of the present 

paper is certainly the inclusion of stochastic interest rates. Moreover, since endowment 
policies are usually equipped with a surrender option, obviously of American style, the 
valuation of such option constitutes another topic of future research. 
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