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1 Introduction

An important issue in life insurance is pricing policies written on more than

one individual. Consider, for example, the following policies issued to two

lives:

1. First survivor policy: Here, the couple pays premiums until earlier

death when beneÞts are paid to the survivor.

2. Last survivor policy: Premiums are paid until later death, when the

heirs collect the beneÞts.

Such models are discussed in several texts. When the two lives are inde-

pendent, formulas for the discounted premiums inßow and discounted sum

assured were derived, compare Bowers et. al (1997) Chapter 8, and Neill

(1977) Chapter 7.

Recently, experimental and theoretical studies have demonstrated depen-

dence between lifetimes of paired lives such as husband and wife. It is of

great interest to Þnd the impact of the dependence on actuarial quantities

such as annuities, expected present value (EPV) of beneÞts, and on pricing

of insurance contracts.

Norberg (1989) considers the joint lifetime distribution of husband and

wife. Assuming that the force of mortality of the husband and wife increases

after death of the spouse, he showed that the lifetimes of the couple are pos-

itively correlated, while if the hazard rate of the husband and wife decreases

after the spouse death then their life times are negatively correlated. He

showed that the annuities for the Þrst survivor is greater in the positively

correlated case than in the independent case, while the EPV of the sum as-

sured is smaller than in the independent case. Reverse results hold for the

last survivor case.

Experimental results presented in Denuit et. al. (2001), show that mor-

tality rate of widows is higher than the mortality rate in the entire popula-

tion. Thus Norberg�s assumptions hold. In the same paper the authors found
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upper and lower bounds for the EPV of annuities and insurance for paired

life, based on comonotinicity. They studied also some parametric models

for the cumulative distribution of paired lives and derived estimators for the

parameters. They also derived estimators for the parameters in a Markovian

model.

Dhaene and Goovaerts (1996) studied the impact of dependence on a

portfolio containing several risks. They considered portfolios containing m

couples, and n−m singles. The risks of each couple are dependent, but the

different couples and the n −m single risks are independent. They showed

that as the dependence among the members of a couple increases the sum of

the risks in the portfolio increases in stop loss (increasing convex) ordering. In

another paper (1997), they compared portfolios containing n risks, assuming

the marginal distributions of the risks in the different portfolios are identical.

They showed that the sum of risks in a portfolio with comonotone risks is

the biggest in the sense of stop loss ordering .

As an example for dependence between the lifetimes of a couple consider

the following model: The death of each life can be of two types: 1. natural

death. 2. non-natural death caused, say, by an accident. In a given accident

several lives might die at the same time. Assume that the times to natural

deaths are independent and moreover they are independent of the times un-

til non-natural death. The possibility of common death imposes dependence

among lifetimes of insurdes. This model enables one to demonstrate the be-

havior of certain actuarial quantities such as annuities, EPV of sum assured,

and premiums as dependence among lives increases.

The paper is organized as follows: In Section 2 we give deÞnitions of

dependence. In section 3 we introduce concepts of stochastic dependence. In

Section 4 we discuss the impact of dependence on present value of annuity

and insurance. In Section 5 we give an example of dependence due to common

cause. Finally, in section 6 we give a numerical example.

3



2 Definitions and Notations

Throughout the paper, R denotes the real line. We use small bold letters

to denote a row vector, i.e. x = (x1, · · · , xn), and by capital bold letters we
denote random vectors.

2.1 Notions of Dependence between Random Variables.

Definition 1 Let X and Y be random vectors in Rn. X is smaller than Y

in stochastic order, written X ≤
st

Y, if Ef(X) ≤Ef(Y) for all increasing

functions f, provided that the expectations exist

Remark 1 . 1. Note that X ≤
st

Y implies that g(X) ≤
st
g(Y) for any

increasing function g : Rn → R.

2. If X, Y are random variables then X ≤
st
Y if and only if P (X ≤ t) ≥

P (Y ≤ t), or, equivalently, P (X > t) ≤ P (Y > t).

We give now the deÞnition of supermodular function and supermodular

ordering. A comprehensive reference for supermodular functions is Topiks

(1978). For further discussion on supermodular ordering of random vectors

see Marshall and Olkin (1979), Bäuerle (1997) and Shaked and Shanthikumar

(1997).

Let S ⊆ R. For x,y ∈Sn, let x ∧ y = (x1 ∧ y1, · · · , xn ∧ yn), similarly
x ∨ y = (x1∨y1, · · · , xn∨yn), where, x∧y = min(x, y) and x∨y = max(x, y).

Definition 2 A function ψ : Sn → R is said to be supermodular if for all

x ∈Sn,
ψ(x+εei+δej) + ψ(x) ≥ ψ(x+εei) + ψ(x+ δej), (1)

where ei is a vector in which the i0th components is 1, and all the others are

0.Or equivalently

ψ(x ∧ y) + ψ(x ∨ y) ≥ ψ(x) + ψ(y) (2)
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Definition 3 Let X and Y be two n−dimensional random vectors. X is

larger than Y in supermodular ordering, X ≥
sm

Y, if for all supermodular

functions ψ, Eψ(X) ≥Eψ(Y).

The following Lemma is stated and proved in Bäuerle (1997):

Lemma 1 If X ≥
sm

Y, then:

1. Xi and Yi are identically distributed, i = 1, · · · , n.

2. (Xi1 , · · · ,Xik) ≥
sm
(Yi1, · · · , Yik), for all i1 ≤ · · · ≤ ik, k ≤ n.

3. Cov(f(Xi), g(Xj)) ≥ Cov(f(Yi), g(Yj)) for all non-negative increasing

functions f, and g.

Definition 4 Let X = (X1, X2) and Y =(Y1, Y2) be bivariate random vectors

with the same marginals. Then X is said to be smaller than Y in concordance

ordering denoted by, X ≤
c

Y if

P (X1 ≤ s,X2 ≤ t) ≤ P (Y1 ≤ s, Y2 ≤ t) for all s and t. (3)

Thus the concordance ordering is equivalent to the supermodular ordering

for n = 2. Tchen (1980) showed that ifX ≤
c

Y then the distribution of Y can

be derived from that of X by Þnite number of repairing which add mass ε to

(a, b) and to (a0, b0) while subtracting mass ε from (a0, b) and (a, b0), where,

a0 > a, and b0 > b.We intend to apply this technique in the current research.

Definition 5 A random vector X =(X1, · · · , Xn) is said to be (positively)

associated if

Cov(f(X),g(X)) ≥0 (4)

for all increasing functions f, g : Rn → R.
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Definition 6 A random vector X =(X1, · · · , Xn) is said to be negatively

associated if

Cov(f(XK),g(XL)) ≤0 (5)

for all disjoint subsets K and L of {1, · · · , n}, for all increasing functions f

and g.

The following Theorem is stated and proved in (Müller and Stoyan (2001),

Chapter 3.8):

Theorem 2 Let X and Y be bivariate random vectors with the same marginals.

Then the following conditions are equivalent:

� X ≤
c

Y.

� P (X1 > s,X2 > t) ≤ P (Y1 > s, Y2 > t).

� E(f1(X1)f2(X2)) ≤ E(f1(Y1)f2(Y2)), for all increasing functions f1 and

f2 .

� Cov(f1(X1), f2(X2)) ≤ Cov(f1(Y1), f2(Y2)) for all increasing functions

f1 and f2 .

� X ≤
sm

Y.

Let X be bivariate random vector. Let X⊥ the independent version of

X, that is the components of X⊥ are independent with the same marginal

distribution as X.

The Proof of the following Proposition is straight forward from the deÞ-

nition of associated random vectors.

Proposition 3 1. If X is positive associated then X ≥
c

X⊥.

2. If X is positive associated then X ≤
c

X⊥.

Remark 2 The Proposition holds also for m-dimensional random vectors

where the supermodular ordering replaces the concordance ordering. (See Xu

(1999)).
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2.2 Actuarial Notations and Definitions

In this subsection we consider actuarial quantities involving two lives, (x,y),

say husband aged x and wife aged y. Let Tx and Ty be the remaining lifetimes

of the husband and wife respectively. Let F̄x(t) = 1− Fx(t) and F̄y(t) = 1−
Fy(t) be the survival functions of Tx and Ty. The joint life or the Þrst survivor,

is min(Tx,Ty) = Tx ∧ Ty. Its survival function at t is P (Tx > t, Ty > t). The
last survivor or the longest life is max(Tx,Ty) = Tx ∨ Ty. Its distribution
function at t is P (Tx ≤ t, Ty ≤ t).
Let v = e−δ denote the discount factor corresponding to interest rate

i = eδ − 1, where δ is the force of interest. In this paper we derive some
expressions for the present value of annuities and a unit sum assured. We

will discuss only the continuous case, that is

1. Annuity is paid continuously at rate 1.

2. Death beneÞt, taken to be 1 is paid out at the moment of death.

3. Interest is compound continuously.

Extensions to the discrete case are obvious.

In Table 1 we give some actuarial notations.

Table 1. Actuarial notation-continuous case.

Payment scheme Present value Expected present value

Term Annuity
R T∧n
t=0

e−δtdt
= 1−v(T∧n)

δ

ān̄| = 1−Ev(T∧n)

δ

Term insurance
vT I(T ≤ n)
= vT∧n − vnI(T > n)

Ān̄| = 1− δān̄|
−vnP (T > n)

Whole life annuity 1−vT
δ

ā = 1−Ev−δT
δ

Whole life insurance vT Ā = 1− δā

Here, I(A) denotes the indicator of the event A.

For detailed actuarial notations see Appendix A.
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Consider a Term insurance issued to an insured aged x. The equation of

value gives the rate of the net premium stream

π =
Ā1
xn̄|
āxn̄|

(6)

3 Impact of dependence on joint life and last
survivor life.

In this section, we study the impact of the dependence relations deÞned in

Section 2.1 on the distribution of the present value of annuities and insurance

involving two lives.

Consider a couple (husband and wife) aged x and y respectively. Let

Tx, Ty be the residual life times of the husband and wife respectively. Assume

that (Tx, Ty), has a joint distribution Fxy(u, v) with marginal distributions

Fx and Fy respectively. In this section we use the notation (x, y) for the joint

life status and xy for the last survivor status. We compare the present values

of annuities or of of life insurance beneÞts for two couples with residual life

times as described above. The symbol 0 is attached to variables of the second

couple.

We apply two dependence relations between two vectors of life times. In

Section 3.1 we study the impact of concordance ordering and in Section 3.2

we study the the multivariate hazard rate ordering.

3.1 Concordance ordering

Proposition 4 If (Tx, Ty) ≤
c
(T 0x, T

0
y), then (Tx ∧ Ty) ≤

st
(T 0x ∧ T 0y).

Proof. Theorem 2 imply that

P ((Tx ∧ Ty) > t) = P (TX > t, TY > t) ≤ (T 0x > t, T 0y > t) = P ((T 0x ∧ T 0y) > t)

Thus the result follows from Remark 1.
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Proposition 5 If (Tx, Ty) ≤
c
(T 0x, T

0
y), then for n ≥ 1 :

1. vTx∧Ty∧n − vnI(Tx ∧ Ty > n) ≥
st
vT

0
x∧T 0y∧n − vnI(T 0x ∧ T 0y > n).

Here we compare the present value (PV) of benefits of life insurance given

at the moment of death of the first survivor.

2. 1−v(Tx∧Ty∧n)

δ
≤
st

1−v(T 0x∧T 0y∧n)

δ
.

Here we compare the PV of two annuities having rate 1 paid until the first

death or up to n.

3. (i) Ā01
xy:n̄|

≤ Ā1
xy:n̄|, (ii) Ā0xy ≤ Āxy, (iii) axy:n̄| ≤ a0xy:n̄| and (iv) āxy ≤

ā0xy.

Proof 1-2. Since v < 1, vz is decreasing in z. Thus the results of the

proposition follows from Proposition 4 and 1 of Remark 1.

3. Just take expectation of both sides of 1-2 and apply DeÞnition 1 and

Remark 1.

Proposition 6 If (Tx, Ty) ≤
c
((T 0x, T

0
y) then, (Tx ∨ Ty) ≤

st
(T 0x ∨ T 0y).

Proof. The result follows directly from Theorem 2.

The next Proposition studies how dependence affects last survivor

Proposition 7 If (Tx, Ty) ≤
c
((T 0x, T

0
y) then,

1. v(Tx∨Ty)∧n − vnI(Tx ∨ Ty > n) ≥
st
v(T 0x∨T 0y)∧n − vnI(T 0x ∨ T 0y > n).

Here we compare the PV of unit sum assured given at the moment of

death of the last survivor if it occurred before time n.

2. 1−v(Tx∨Ty)∧n
δ

≤
st

1−v(T 0x∨T 0y)∧n
δ

.

Here we compare the PV of annuity of rate 1 paid until the last death.

3. (i) Ā01
xy:n̄|

≥ Ā 1
xy:n̄|

, (ii) Ā0xy ≥ Āxy, (iii) āxy:n̄| ≤ ā0xy:n̄| and (iv) āxy| ≤
ā0xy|.
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Proof Since v < 1, vz is decreasing in z, thus the results follow from

proposition 6 and 1 of Remark 1.

Consider a couple (x, y). In some annuity schemes, upon the death of x, y

starts collecting continuous term annuity at rate 1. This annuity is paid until

the earlier between the death of y or the term n. The EPV of this annuity,

x|āy:n is

x|āy:n = āy:n − āxy:n = E

·
v(Tx∧Ty∧n) − v(Ty∧n)

δ

¸
(7)

Proposition 8 If (Tx, Ty) ≤
c
(T 0x, T

0
y) then

x|āy:n ≥x |ā0y:n (8)

Proof. Note that by Lemma 1 (Tx, Ty), (T 0x, T
0
y) have the same marginals.

Proposition 4 implies that T 0x ∧ T 0y ≥
st
Tx ∧ Ty. Thus the result follows from

DeÞnition 1.

In another type of contracts a continuous term annuity, at rate 1 is paid

until earlier death. Then, the annuity is reduced to θ if y dies before x,

otherwise there are no payments. Assuming the term is n. The EPV of this

annuity is:

y|ā θ
xy:n̄| = E

·
1− v(Tx∧n)

δ
− (1− θ)v

(Tx∧Ty∧n) − v(Tx∧n)

δ

¸
= āx:n̄| − (1− θ)(āx:n̄| − āxy:n̄|) (9)

Proposition 9 If (Tx, Ty) ≤
c
(T 0x, T

0
y) then for n ≥ 1

y|ā0θ
xy:n̄|

≥y |ā θ
xy:n̄| (10)

Proof. Similar to the proof of Proposition 8.

Consider a continuous term annuity, at rate 1 paid whenever both mem-

bers are alive. A fraction θ is paid to the survivor after earlier death before
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the end of the term. Let ϕn(x, y) be the PV of the annuity for term n, and

let ā θ
xy:n

= E(ϕn(x, y)), n ≥ 1. Note that

ϕn(x, y) =
1− v(Tx∧Ty∧n)

δ
+ θ

v(Tx∧Ty∧n) − v(n∧(Tx∨Ty))

δ
. (11)

Proposition 10 ϕn(x, y) is supermodular for 0 ≤ θ ≤ 1/2, and ϕn(x, y) is

submodular for 1/2 ≤ θ ≤ 1, n = 1, 2 · · · .

Proof. We prove the proposition for the case 0 ≤ θ ≤ 1/2, and n =

1, 2, · · · . The proof for the case 1/2 ≤ θ ≤ 1 is similar. Let 0 < x1 < x2,

0 < y1 < y2, 0 < v < 1. For 0 ≤ θ ≤ 1/2, (1/2 ≤ θ ≤ 1). According to

DeÞnition 3 we have to prove that

(1− θ)(vx1∧y1∧n + vx2∧y2∧n) + θ(vn∧(x1∨y1) + vn∧(x2∨y2))

≤ (1− θ)(vx1∧y2∧n + vx2∧y1∧n) + θ(vn∧(x1∨y2) + vn∧(x2∨y1)) (12)

case 1. x2 < y1. In this case the two sides of (12) are equal to

(1− θ)(vx1∧n + vx2∧n) + θ(vy1∧n) + vy2∧n))

case 2. y2 < x1. In this case the two sides of (12) are equal to

(1− θ)(vy1∧n + vy2∧n) + θ(vx1∧n + vx2∧n).

case 3. x1 < y1, x2 < y2, x2 > y1, . The left hand side of (12) is

(1− θ)(vx1∧n + vx2∧n) + θ(vy1∧n + vy2∧n).

The right hand side of (12) is

(1− θ)(vx1 + vy1) + θ(vy2 + vx2),

thus difference between the right hand side and the left hand side of (12) is

(1− 2θ)(vx2∧n − vy1∧n) ≤ 0,
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since 0 ≤ θ < 1/2, x2 > y1, and v < 1.

case 4. x1 < y1, x2 > y2. The left hand side of (12) is

(1− θ)(vx1∧n + vy2∧n) + θ(vy1∧n + vx2∧n).

The right hand side of (12) is

(1− θ)(vx1 + vy1) + θ(vy2 + vx2)

Thus difference between the right hand side and the left hand side of ((12)is

(1− 2θ)(vy2∧n − vy1∧n) ≤ 0 since 0 ≤ θ < 1/2, y2 > y1, and v < 1.

case 5. x1 > y1, x2 < y2. The left hand side of (12) is

(1− θ)(vy1∧n + vx2∧n) + θ(vx1∧n + vy2∧n)

the right hand side of (12) is

(1− θ)(vx1 + vy1) + θ(vy2 + vx2),

thus difference between the right hand side and the left hand side of (12)is

(1− 2θ)(vx2∧n − vx1∧n) ≤ 0 since 0 ≤ θ < 1/2, x2 > x1, and v < 1.

case 6. x1 > y1, x2 > y2, x1 < y2. The left hand side of (12) is (1 −
θ)(vy1∧n+vy2∧n)+θ(vx1∧n+vx2∧n) the right hand side of (12) is (1−θ)(vx1∧n+

vy1∧n) + θ(vy2∧n + vx2∧n). Thus the difference between the right hand side

and the left hand side of (12)is (1 − 2θ)(vy2∧n − vx1∧n). The letter term is

negative since 0 ≤ θ < 1/2, y2 > x1, and v < 1.

Corollary 11 Assume that (Tx, Ty) ≤
c
(T 0x, T

0
y). Then ā θ

xy:n̄|
≤ ā0 θ

xy:n̄|
for

0 ≤ θ ≤ 1/2, and ā θ

xy:n̄|
≥ ā0 θ

xy:n̄|
for 1/2 ≤ θ ≤ 1. If θ = 1/2 then

ā θ

xy:n̄|
= ā0 θ

xy:n̄|
.

In the next Remark we show that the EPV of annuities and sum assured

when life times of the couple are associated can be bounded by the respected

quantities for independent life times.

Let (T⊥x , T
⊥
y ) be the indpendent version of (Tx, Ty). That is (T

⊥
x , T

⊥
y ) has

the same marginal distributions as (Tx, Ty) but are independent.
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Remark 3 Proposition 3 part 1, yields that if (T 0x, T
0
y) is positively associated

then (T 0x, T
0
y) ≥

c
(T⊥x , T

⊥
y ). Thus, Propositions 4-10, and Corollary 11, hold

when substituting (T⊥x , T
⊥
y ) with (Tx, Ty).

Similarly, if (Tx, Ty) is negatively associated then (Tx, Ty) ≤
c
(T⊥x , T

⊥
y ).

It implies that Propositions 4-10, and Corollary 11, hold when substituting,

(T⊥x , T
⊥
y ) with (T 0x, T

0
y).

For the following deÞnition see Tchen (1980) or Chapter 3 in Müller and

Stoyan (2002).

Definition 7 Consider the class of all bi-variate distributions with fixed

marginals, say FX and FY . The Fréchet lower bound is the joint distribution

defined by

W (x, y) = max{FX(x) + FY (y)− 1, 0} (13)

The Fréchet upper bound is the joint distribution defined by

M(x, y) = min{FX(x), FY (y)} (14)

Let (X,Y ) be a bi-variate random vector with joint distribution function

having marginals FX and FY . Let ( �X, �Y ) be bi-variate random vector with

joint distrbutionW (x, y) and ( ÿX, ÿY ) be a bi-variate random vector with joint

distribution M(x, y). Tchen (1980) showed that

( �X, �Y ) ≤
c
(X,Y ) ≤

c
( ÿX, ÿY ) (15)

In the sequael we denote by ∧ and ∨ the quantities relating to ( �Tx, �Ty) and
to ( ÿTx, ÿTy) respectively.

Proposition 12 Assume that (Tx, Ty) has an arbitrary joint distribution

with marginals FX , and FY . Then for n ≥ 1:

vŤx∧Ťy∧n − vnI( ÿTx ∧ ÿTy > n) ≤
st
vTx∧Ty∧n − vnI(Tx ∧ Ty > n)

≤
st
vT̂x∧T̂y∧n − vnI( �Tx ∧ �Ty > n)
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Proof. Note that the functions w(s, t) = I(Tx > t, Ty > s) and

m(s, t) = I(Tx ≤ t, Ty ≤ s) are supermodular. By Theorem 2, in the bi-

variate case, concordance ordering is equivalent to supermodular ordering.

Thus,
�Tx ∧ �Ty ≤

st
Tx ∧ Ty ≤

st

ÿTx ∧ ÿTy (16)

ÿTx ∨ ÿTy ≤
st
Tx ∨ Ty ≤

st

�Tx∨ �T y (17)

The result follows from (15), Proposition 4 and 1 of Remark 1.

Corollary 13 1. ÿA1
xy:n̄| ≤ Ā1

xy:n̄| ≤ �A1
xy:n̄|

2. 1−e−δ(T̂x∧T̂y∧n)

δ
≤
st

1−e−δ(Tx∧Ty∧n)

δ
≤
st

1−e−δ(Ťx∧Ťy∧n)

δ

3. �axy:n̄| ≤ āxy:n̄| ≤ ÿaxy:n̄|.

4. v(T̂x∨T̂y)∧n − vnI( �Tx ∨ �Ty > n) ≤
st
v(Tx∨Ty)∧n − vnI(Tx ∨ Ty > n)

≤
st
v(Ťx∨Ťy)∧n − vnI( ÿTx ∨ ÿTy > n)

5. �A 1
xy:n̄|

≤ Ā1
xy:n̄| ≤ ÿA 1

xy:n̄|

6. 1−e−δ((Ťx∨Ťy)∧n)

δ
≤
st

1−e−δ((Tx∨Ty)∧n)

δ
≤
st

1−e−δ((T̂x∨T̂y)∧n)

δ

7. ÿaxy:n̄| ≤ āxy:n̄| ≤ �axy:n̄|.

8.
∨

x|āy:n̄ ≤x |āy:n̄| ≤
∧

x|āy:n̄, where x|āy:n̄ is given in (8).

9. y|�a θ
xy:n̄| ≤y |ā θ

xy:n̄| ≤ y|ÿa θ
xy:n̄|y

, where, y|ā θ
xy:n̄| is given in (9)

10. For 0 ≤ θ ≤ 1/2, �a θ

xy:n̄|
≤ ā θ

xy:n̄|
≤ ÿa θ

xy:n̄|
For 1/2 ≤ θ ≤ 1, ÿa θ

xy:n̄|
≤

ā θ

xy:n̄|
≤ �a θ

xy:n̄|
, where, ā θ

xy:n̄|
is given in (11)

Proof. 2,4,6, follow from from Proposition 12, and Remark 1. 1,3,5,and

7-10, follow by taking expectations of the related quantities and applying

DeÞnition 1.

Remark 4 1. If (X,Y ) is positively associated then Proposition 3 part 1

implies that (X,Y ) ≥
c
(X⊥, Y ⊥). In this case (X⊥, Y ⊥) is an improved lower
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bound for (X,Y ), in the sense of concordance order, over ( ÿX, ÿY ), defined by

(13).

2. If (Tx, Ty) is positive associated, then 1 implies that, Tx∧Ty ≥
st
T⊥x ∧T⊥y ,

and Tx∨Ty ≤
st
T⊥x ∨T⊥y . In this case 1-10 of Corollary 12 hold with (T⊥x ∧T⊥y )

substituting (
∧
T x,

∧
T y). Thus, in this case tighter bounds can be derived .

3.2 Multivariate hazard rate ordering

Another stochastic ordering which indicates a different kind of dependence

among random variables is the multivariate hazard rate ordering. The mul-

tivariate hazard rate ordering was introduced in Chapter 4 of Shaked and

Shantikumar (1987). The deÞnition here follows Chapter 3 in Müller and

Stoyan (2002). Consider a non-negative random vector X =(X1, · · · , Xn)
having joint density. Let I be a subset of {1, · · · , n} and assume that k ∈ Ic,

i.e. k /∈ I. DeÞne

rX,k|I(t|xI) = lim
ε→0

1

ε
P (t < Xk < t+ ε|XI = xI ,XIc > t1), (18)

where 1 = (1, · · · , 1) is a vector of 1�s.
The interpretation of rX,k|I(t|XI) in actuarial sciences is the force of mor-

tality of life k given that individuals in I have already died and the individuals

in Ic are still alive. When n = 2, we describe mortality rate of a couple. For

n = 2, r(Tx,Ty),x|y(t|y) is the force of mortality of the husband given that the
wife died, similarly r(Tx,Ty),y|x(t|x) is the force of mortality of the wife given
that the husband has died.

Consider now the deÞnition of multivariate hazard rate ordering:

Definition 8 The random vector Y is said to be larger than X in multivari-

ate hazard rate order, written X ≤
hr

Y, if X and Y having hazard rates rX

and rY satisfy

rX,k|J(t|xJ) ≥ rY,k|I(t|yI) (19)
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for all positive t whenever J ⊇ I, 0 ≤ xI ≤ yJ ≤ t1 and 0 ≤ xI ≤ yJ ≤ t1
and 0 ≤ xJ ≤ t1.

In the context of multiple life insurance (Tx, Ty) ≤
hr
(T 0x, T

0
y), means:

1.The force of mortality of Tx, (Ty) at t given Ty > t (Tx > t) is bigger

than the rate of mortality of T 0x (T
0
y) at t given T

0
y(T

0
x) > t.

2. The force of mortality of Tx (Ty) at t given that Ty(Tx) = s < t is

bigger than the rate of mortality of of T 0x (T
0
y) at t given T

0
y(T

0
x) > t, or given

that T 0y(T
0
x) = s

0 > s, s0 < t.

Shaked and Shanthikumar (1987) proved the following Theorem:

Theorem 14 If X and Y are two random vectors such that (19) holds then

X ≤
st

Y (20)

Remark 1 yields the following corollary:

Corollary 15 If (Tx, Ty) ≤
hr
(T 0x, T

0
y) then the following relations hold:

1. Relation for the PV of unit sum assured given at the moment of earlier

death.

vTx∧Ty∧n − vnI(Tx ∧ Ty > n) ≥
st
vT

0
x∧T 0y∧n − vnI(T 0x ∧ T 0y > n)v

2. Relation for the PV of annuity of rate 1 paid until the up to n or

earlier death.
1− e−δ(Tx∧Ty∧n)

δ
≤
st

1− e−δ(T 0x∧T 0y∧n)

δ

3. Relation for the PV of unit sum assured given at the moment of death

of last survivor.

v(Tx∨Ty)∧n − vnI(Tx ∨ Ty > n) ≥
st
v(T 0x∨T 0y)∧n − vnI(T 0x ∨ T 0y > n)

4. Relation for the PV of annuity paid until the death of last survivor.

1− e−δ(Tx∨Ty)

δ
≤
st

1− e−δ(T 0x∨T 0y)

δ
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5. Relation for the PV of annuity at rate 1 given to x as long as both x

and y live and reducing to θ upon earlier death of y

1− v(Tx∧n)

δ
−(1−θ)v

(Tx∧Ty∧n) − v(Tx∧n)

δ
≤
st

1− v(T 0x∧n)

δ
−(1−θ)v

(T 0x∧T 0y∧n) − v(T 0x∧n)

δ

6. Relation for the PV of annuity at rate 1 given to a couple as long as

both are alive, and reducing to θ upon earlier death.

1− e−δ(Tx∧Ty)

δ
+θ
e−δ(Tx∧Ty) − e−δ(Tx∨Ty)

δ
≤
st

1− e−δ(T 0x∧T 0y)

δ
+θ
e−δ(T

0
x∧T 0y) − e−δ(T 0x∨T 0y)

δ

4 The impact of common cause on life insur-
ance contracts

4.1 Bi-variate common cause model

4.1.1 Model description

As an example for concordance ordering consider a couple (x, y). In addition

to the natural cause of death (which occur at times �Tx or �Ty) both members of

the couple might suffer a non-natural death say, due to accidents. Consider

now the case where there are three factors to non-natural death: 1. An

accident that kills x only. The time until such an accident is a random

variable U10, with distribution F10 and hazard rate r10(·) 2. An accident
that kills y only. The time until such accident is a random variable U20,

with distribution F20 and hazard rate r20(·) 3. An accident that kills both
husband and wife. The time until such an accident is a random variable

U12, with distribution F12 and hazard rate r12(·).We assume that these three
random variables are independent and independent of ( �Tx, �Ty). We call this

model the bi-variate common cause model (BCC). Let U1, (U2) be the time

until an accident kills the husband (wife) respectively. Clearly, U1, and U2

are dependent, due to the common cause. Note that U1(U2), is distributed

as min(U10, U12) (min(U20, U12)). The hazard rates rj(t), j = 1, 2 of the
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distribution of Uj are:

rj(t) = rj0(t) + r12(t) (21)

The joint distribution of (U1,U2) is :

P (U1 > u1, U2 > u2) = F̄10(u1)F̄20(u2)F̄12(u1 ∨ u2), (22)

where, F̄ (u) = 1 − F (u), and u1 ∨ u2 = max(u1, u2). Note that the joint

corresponding to the BCC model is singular.

Note that the time to the Þrst accident is a random variable with hazard

rate α(t), where:

α(t) = r10(t) + r20(t) + r12(t) (23)

Consider another couple (x0, y0) with BCC distribution until accident having

the following hazard rates r010(t), r
0
20(t) and r

0
12:

r010(t) = r10(t) + ε(t) (24)

r020(t) = r20(t) + ε(t) (25)

r012(t) = r12(t)− ε(t), (26)

where, 0 < ε(t) ≤ r12(t).

Proposition 16 Assumptions (24)-(26) imply that:

(U1, U2) ≥
c
(U 01, U

0
2) (27)

Proof. Note that Uj = min(Uj0, U12), and U 0j = min(U
0
j0, U

0
12), thus for

j = 1, 2

rj(t) = rj0(t) + r12(t)

= r0j0(t) + r
0
12(t) = r

0
j(t) (28)

Equation (28) implies that (U1, U2), (U
0
1, U

0
2) have the same marginals. By

Theorem 2, to prove (27) one has to show that

P (U1 > u1, U2 > u2) ≥ P (U 01 > u1, U
0
2 > u2). (29)
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Note that

P (U1 > u1, U2 > u2)

= P (U10 ∧ U12 > u1, U20 ∧ U12 > u2)

= P (U10 > u1, U20 > u2, U12 > (u1 ∨ u2)

= exp(−
u1Z

t=0

r10(t)dt−
u2Z

t=0

r20(t)dt−
u1∨u2Z
t=0

r12(t)dt) (30)

Similarly,

P (U 01 > u1, U
0
2 > u2)

= exp(−
u1Z

t=0

(r10(t) + S(t))dt−
u2Z

t=0

(r20(t) + S(t))dt−
u1∨u2Z
t=0

(r12(t)− S(t))dt)

Thus the result follows.

Note also that

α0(t) = r010(t) + r
0
20(t) + r

0
12(t) = α(t) + ε(t) (31)

Corollary 17 Assume that ( �Tx, �Ty), U10, U20,, and U12 are independent. Sim-

ilarly assume that ( �T 0x, �T
0
y), U

0
10, U

0
20,, and U 012 are independent. Assume that

the random vectors ( �Tx, �Ty) and ( �T 0x, �T
0
y) are identically distributed and U10, U20,,

U12, U
0
10, U

0
20,, and U 012 have have hazard rates r10(t), r20(t), r12(t), r

0
10(t),

r020(t), r
0
12(t), respectively, such that (24)-(26) hold. Then

( �Tx ∧ U1, �Ty ∧ U2) ≥
c
( �T 0x ∧ U 01, �T 0y ∧ U 02) (32)
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Proof.

P ( �Tx ∧ U1 > u, �Ty ∧ U2 > v)

= P ( �Tx ∧ U10 ∧ U12 > u, �Ty ∧ U20 ∧ U12 > v)

= P ( �Tx > u,U10 > u, �Ty > v,U20 > v,U12 > max(u, v))

= P ( �Tx > u, �Ty > v) exp(−
u1Z

t=0

r10(t)dt−
u2Z

t=0

r20(t)dt−
u1∨u2Z
t=0

r12(t)dt)

≥ P ( �Tx > u, �Ty > v) exp(−
u1Z

t=0

(r10(t) + S(t))dt−
u2Z

t=0

(r20(t) + S(t))dt−
u1∨u2Z
t=0

(r12(t)− S(t))dt)

= P ( �T 0x ∧ U 01 > u, �T 0y ∧ U 02 > v)

Thus, all the inequalities derived in Section 3 are valid for this model.

Remark 5 1. In the BCC model we can measure the impact of increasing

dependence, on the actuarial quantities. Increasing dependence in this

model is done by increasing r12(t) and decreasing both r10(t) and r20(t)

such that r10(t) + r12(t), and r20(t) + r12(t) remain fixed.

2. Reducing dependence in the BCC model as described in (24)-(26) in-

creases the rate of total number of accidents from α(t) to α0(t) =

α(t) + S(t). Note that the distribution of the number of accidents that

hits either x or y do not change.

4.1.2 Bounds

Consider a BCC family of distributions where all joint distributions in the

family have the samr margnal distribution with hazard rates r1(t) and r2(t).

Let ( ùU1, ùU2) be a random vector with the following distribution:

P ( ùU1 > u1, ùU2 > u2) = exp(−
u1Z

t=0

ÿr10(t)dt−
u2Z

t=0

ÿr20(t)dt−
u1∨u2Z
t=0

ÿr12(t)dt), (33)
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where,

ÿr10(t) = r1(t)− r1(t) ∧ r2(t)

ÿr20(t) = r2(t)− r1(t) ∧ r2(t)

ÿr12(t) = r1(t) ∧ r2(t)

Remark 6 1. Note that marginal distributions of ( ùU1, ùU2) have hazard rates

r1(t) and r2(t) respectively.

2. Note that equation (28) implies that ÿr12(t) = r1(t) ∧ r2(t) ≥ r12(t), for

all BCC distributions with the same marginals.

Proposition 18 Assume that (U1, U2) has BCC distribution. Assume that

hazard rate function of Uj is rj(t), j = 1, 2. The joint distribution of ( ùU1, ùU2)

is as in (33). Let (U⊥1 , U
⊥
2 ) be the independent version of (U1, U2). Then:

(U⊥1 , U
⊥
2 ) ≤

c
(U1, U2) ≤

c
( ùU1, ùU2). (34)

Proof. Note that

P (U1 > u1, U2 > u2) =


exp(−

u1Z
t=0

r1(t)dt−
u2Z

t=0

r20(t)dt) if u1 ≥ u2

exp(−
u2Z

t=0

r2(t)dt−
u1Z

t=0

r10(t)dt) if u2 ≥ u1

(35)

Thus, (35) and (38) imply that

P (U1 > u1, U2 > u2) ≥ exp(−
u1Z

t=0

r1(t)dt−
u2Z

t=0

r2(t)dt)

= P (U1 > u1)P (U2 > u2) (36)

Thus the left hand side of (34) holds.
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To show right inequality, assume Þrst that u1 ≤ u2. Equations (21), (30)

and Remark 6 imply that

P (U1 > u1, U2 > u2) = exp(−
u1Z

t=0

(r1(t)− r12(t))dt−
u2Z

t=0

r2(t)dt)

≤ exp(−
u1Z

t=0

(r1(t)− r1(t) ∧ r2(t))dt−
u2Z

t=0

r2(t)dt)

= P ( ÿU1 > u1, ÿU2 > u2). (37)

Similar inequality holds when u1 ≥ u2. Thus inequality of (34) follows

from the deÞnition of concordance ordering.

Remark 7 Let ÿα(t), α⊥(t) be the accident rates for the models with joint

distributions corresponding to ( ùU1, ùU2) and (U⊥1 , U
⊥
2 ) respectively. Then

1. ÿα(t) = r1(t) ∨ r2(t).

2. α⊥ = r1(t) + r2(t).

Note that ÿα and α⊥ are the minimal and the maximal rates, of accidents

in the BCC model with fixed marginals.

Corollary 19 1. U⊥1 ∧ U⊥2 ≤
st
U1 ∧ U2 ≤

st

ùU1 ∧ ùU2

2. ùU1 ∨ ùU2 ≤
st
U1 ∨ U2 ≤

st
U⊥1 ∨ U⊥2

In the next subsection we consider a well known special BCCmodel known

as the Marshall and Olkin bivariate Exponential distribution.

4.2 Marshall and Olkin bivariate Exponential distri-
bution.

In this section we assume that:

1. The time until an accident that kills x (y) only, U10, (U20), is exponen-

tially distributed with parameter λ10 (λ20). The time until an accident that
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kills both husband and wife, U12, is exponentially distributed with param-

eter λ12. Recall that the density of an exponential random variable X with

parameter θ is

fX(x) = θe
−θx x > 0

We assume that these three random variables are independent and indepen-

dent of ( �Tx, �Ty). This model is known as Marshall and Olkin (MO) bivariate

Exponential distribution. Let U1, (U2) be the time until an accident kills the

husband (wife). Clearly, Uj, is exponentially distributed with parameter λj,

where,

λ1 = λ10 + λ12

λ2 = λ20 + λ12 (38)

The joint distribution of (U1,U2) is :

P (U1 > u1, U2 > u2) = exp(−λ10u1 − λ20u2 − λ12(u1 ∨ u2) (39)

Note that the time to the Þrst accident is exponentially distributed with

parameter α, where

α = λ10 + λ20 + λ12 (40)

Consider the family of Marshal-Olkin bi-exponential distributions with

Þxed marginals, say exponentials with parameters λ1 and λ2. Let ( ÿU1, ÿU2) be

a random vector with the following MO distribution:

P ( ùU1 > u1, ùU2 > u2) = exp(−(λ1−λ1∧λ2)u1−(λ2−λ1∧λ2)u2−(λ1∧λ2)(u1∨u2))

(41)

Let āαxy:n̄|/δ be the EPV of term annuity paid as long as both members

of the couple are alive. Accidents occur according to bi-exponential model,

with total rate α and the force of interest is δ. Then

āαxy:n̄|/δ =
Z n

t=0

e−δt tpxy e−αtdt = āxy:n̄|/(α+ δ) (42)
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where, āxy:n̄|/δ, and āxy:n̄|/(α+δ) are the EPV of the annuity when the force of

interest is δ and (α + δ) respectively. Clearly, āxy:n̄|/(α+δ) is decreasing in α.

Thus the EPV of the annuity decreases as dependence increases. Similarly let

Āα1
xy:n̄|/δ

be the EPV of unit sum assured given upon the Þrst death provided

it is within the term n, when the force of mortality is δ .

Āα1
xy:n̄|/δ = 1− δāαxy:n̄|/δ − e−δnP (Tx ∧ Ty ∧ U10 ∧ U20 ∧ U12 > n)

= 1− δāxy:n̄|/(δ+α) − e−(δ+α)nP (Tx ∧ Ty > n) (43)

Clearly, Āα1
xy:n̄|/δ

is increasing in α.

Similarly, we can Þnd the EPV of annuity paid continuously for n years

as long as at least one of the members of the couple is alive. Note that:

āxy:n̄| + āxy:n̄| = āx:n̄| + āy:n̄| (44)

Thus

āαxy:n̄|/δ = āαx:n̄|/δ + ā
α
y:n̄|/δ − āαxy:n̄|/δ

= āx:n̄|/(λ1+δ) + āy:n̄|/(λ2+δ) − āxy:n̄|/(α+δ) (45)

Thus the EPV of the annuity is increasing in α.

The EPV of one unit sum insurance paid to the last survivor is

Āα1
xy:n̄|/δ

= 1− δāαxy:n̄|/δ − e−δnP ((Tx ∧ U10 ∧ U12) ∨ (Ty ∧ U20 ∧ U12) > n)

= 1− δāαxy:n̄|/δ − e−δnP (U12 ∧ ((Tx ∧ U10) ∨ (Ty ∧ U20)) > n) (46)

= 1− δāαxy:n̄|/δ − e−λ1nP (Tx > n)− e−λ2nP (Ty > n) + e
−(α+δ)nP (Tx ∧ Ty > n)

Thus Ā 1
xy:n̄|

is decreasing in α, that is, increases as the dependence between

Tx and Ty increases.

Similarly, deÞne x|āαy|/δ the EPV of annuity given to y after the death of
x

x|āαy/δ = E

·
e−δ(Tx∧Ty∧U10∧U20∧U12) − e−δ(TyvU20∧U12)

δ

¸
= āy/(λ2+δ) − āxy/(α+δ) (47)
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Clearly for Þxed λ2, x|āy/δ increases in α.

Let us consider annuity at rate 1 while both members of the couple are

alive and at rate θ given to x if he survives after y.

y|āαθ
xy:n̄|

/δ = E

·
1− e−δ(Tx∧U10∧U12∧n)

δ
− (1− θ)e

−δ(Tx∧Ty∧U10∧U20∧U12∧n) − e−δ(Tx∧U10∧U12∧n)

δ

¸
= āx:n̄|/(λ1+δ) − (1− θ)(āx:n̄|(λ1+δ) − āxy:n̄|/(α+δ)) (48)

Thus, also y|ā θ
xy:n̄|/δ is decreasing in α.

Similarly, (9) and 44 yield the following expression for the EPV of annuity

at rate while both members of the couple are alive and at rate θ to the last

survivor

āα θ

xy:n̄|/δ
= āxy:n̄|/(α+δ) + θ(āx:n̄|/(λ1+δ) + āy:n̄|/(λ2+δ) − āxy:n̄|/(α+δ) − āxy:n̄|/(α+δ))

= (1− 2θ)āxy:n̄|/(α+δ) + θ(āx:n̄|/(λ1+δ) + āy:n̄|/(λ2+δ)) (49)

Thus for Þxed λ1 and λ2, ā
α

θ

xy:n̄|/δ
is decreasing in α for 0 ≤ θ ≤ 1/2 and

increasing in α for 1/2 ≤ θ ≤ 1.

5 An Example

In the following example we consider couple where the husband and the wife

are at ages 35 and 30 respectively. The husband is subject to mortality Table

a-(55m) and the wife to mortality table a-(55f), given in Formulae and Tables

for Actuarial Examinations (1997). We assume that the times until natural

death of the husband and wife are independent. We assume that the times to

accident that might kill the husband and the wife follows M.O bi-exponential

distribution, where the time until accident that kills the husband follows

exponential distribution at rate 0.0002 and the time until accident that kills

the husband follows exponential distribution at rate 0.00017. For different
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values of λ12, the rate of accidents that kills both, we present in Table 2: 1.

A whole life annuity paid until Þrst death ä35,30. 2. The expected present

value of the sum assured given at the end of the year of Þrst death-A30,35. 3.

The premium paid in the case of joint life -Π30,35. In Table 3 we calculate:

1. A whole life annuity paid until the death of the last survivorä30,35. 2 The

expected present value of the sum assured given at the end of year of death

of the last survivalA30,35. 3. The annual premium paid in the case of last

survival whole life insuranceΠ30,35
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Table 2: annuity, EPV of sum assured and annual premium for joint life
λ12 ä35,30 A30,35 Π30,35

0 21.77201928 0.365863516 0.016804299
0.00005 21.78857751 0.365381238 0.016769394
0.00007 21.79520644 0.365188162 0.016755435
0.00009 21.801838 0.364994992 0.016741478
0.00011 21.80847399 0.364801728 0.016727522
0.00013 21.81511261 0.36460837 0.016713568
0.00015 21.82175447 0.364414918 0.016699616
0.00017 21.82839956 0.364221372 0.016685665

Table 3: annuity, EPV of sum assured and annual premium for last sur-

vivor model
λ12 ä30,35 A30,35 Π30,35

0 26.79257784 0.219633655 0.008197556
0.00005 26.77601961 0.220115934 0.008220637
0.00007 26.76939068 0.220309009 0.008229885
0.00009 26.76275851 0.220502179 0.008239142
0.00011 26.75612312 0.220695443 0.008248409
0.00013 26.7494845 0.220888801 0.008257684
0.00015 26.74284265 0.221082253 0.008266969
0.00017 26.73619756 0.221275799 0.008276263

6 Appendix A

Ā1
xy:n̄|−EPV of unit sum insured payable at the moment at earlier death if it
occurs before time n.

Āxy−EPV of unit sum insured payable at earlier death if it occurs before
time n.

A 1
xy:n̄|

−EPV of unit sum insured payable at the end of year of death of

the last survivor if this occurs before time n.

Axy−EPV of unit sum insured payable at the end of year of death of the
last survivor.

Āxy−EPV of unit sum insured payable at the moment of death of the last
survivor.
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āxy:n̄|−EPV of continuous stream of payments at rate 1, payable up to n
periods or until the Þrst death.

āxy−EPV of continuous stream of payments at rate 1, payable until the

Þrst death.

āxy:n̄|−EPV of continuous stream of payments at rate 1, payable up to n
years or until the last death.

āxy−EPV of continuous stream of payments at rate 1, payable until the

last death.
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