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The paper consists of two parts:

Part 1: Estimating the loading of the largest claims reinsurance covers.
Part 2: On the loading of the ECOMOR.

Abstract on part 1

The largest claims reinsurance treaties are reconsidered. Two approaches for
estimating a certain main part of the loading are given. For the first approach
certain bounds are derived, for the second the Monte-Carlo-Integration-
method adapted. The second, not so practicable approach can be used for
finding adequate mixing coefficients for the first, quite practicable approach.

Abstract on part 2

Unfortunately the in part one given, very practicable, first approach can not
be used in case of the ECOMOR-cover, though this treaty is related to the
largest claims covers of part 1. So this note gives further, more special results
on the loading of the ECOMOR, in case of using again the standard-deviation
or variance principle.
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Estimating the loading of the
largest claims reinsurance covers

1 Introduction

Since the beginning of the eighties the author published many new papers
on the theory of the largest claims reinsurance treaty. Mentioned can be
his articles on the total claims amount and the efficiency (see e.g. Kremer
(1990a), (1990b), (1992)), furthermore his general work on the premium (see
e.g. Kremer (1984), (1985) (1986), (1988), (1994), (1998), (2001), (2002)).
Many comparably handy results were given on the net premium, whereas for
a long time nothing handy was developed for the security loading. General
exact formulas for the loading were already given in Kremer (1985), and in
addition under different model assumptions in Kremer (2002). Unfortunately
those formulas are, like given, much too unhandy for practical application.
Further more adequate results are needed. Two such are presented in the
present paper. First a very practical approach is given that uses two crude
bounds on a part of the loading formula. The second approach consists in
adapting adequately the method of Monte-Carlo-Integration. Though this
second solution is quite unpractical, it is very helpful for finding out most
adequate mixing coefficients for the first approach. All is illustrated in a
typical example.

2 The Treaty

Consider a collective of risks of a first insurer and let N denote the random
variable of the number of claims. The corresponding claims amounts are des-
cribed by the random variables X1, X2, X3, . . . . Suppose all random variables
are defined on one and the same probability space (Ω,A, P ). Denote by

XN :1 ≥ XN :2 ≥ . . . ≥ XN :N

the claims ordered in nonincreasing size. Furthermore let c1, c2, c3, . . . be real
constants such that

Rp :=

p∑
i=1

ci ·XN :i

with a fixed p ∈ N describes a certain claims amount to be paid by the
reinsurer to the first insurer. Consequently, the family (c1, . . . , cp) defines
a reinsurance treaty, called by the author (generalized) largest claims
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cover with parameter p (in short: GLC(p)). For the more special choice

ci = 1, ∀i

one gets the (classical) largest claims treaty covering the p largest claims
(see e.g. Ammeter (1964), Kremer (1982)).

A topic of great practical actuarial interest is the calculation of the (risk)
premium of that GLC(p). In risk theory various premium principles were
defined and analyzed (see e.g. De Vylder et. al. (1984) or Kremer (1999)).
For the (generalized) largest claims cover it is most adequate to take the
so-called standard deviation principle, giving as risk premium

Πp = mp + Λp · sp

with the net premium
mp = E(Rp)

and the standard deviation

sp = [V ar(Rp)]
1/2 .

The loading factor Λp > 0 shall be given, so that mp and s2
p remain to be

of interest. Handy formulas and methods on calculating mp are given e.g. in
Kremer (1985), (1986), (1994), (1998), (2002), so that because of

V ar(Rp) = E(R2
p)−m2

p

only the E(R2
p) remains to be of further interest. Results on E(R2

p) can also be
found in Kremer (1985), (2001), (2002), but they turn out to be too unhandy
or too crude.

3 Bounding Approach

Assume for the sequel
ci ≥ 0, ∀i .

One of the two main results of this section is

Theorem 1

Define new coefficients cpi according

cpi =
(
ci + 2 ·

p∑
j=i+1

cj

)
· ci, for i ≤ p− 1

cpp = c2
p

3



and with them

Sp =

p∑
i=1

cpi ·X2
N :i

qp = E(Sp) .

One has the upper bound

E(R2
p) ≤ qp (3.1)

Proof

One takes the splitting up

R2
p =

p∑
i=1

c2
i ·X2

N :i + 2 ·
p−1∑
i=1

p∑
j=i+1

ci · cj ·XN :i ·XN :j (3.2)

where obviously the double sum is bounded from above by

p−1∑
i=1

ci ·
( p∑

j=i+1

cj

)
·X2

N :i

since for j > i holds XN :i ≥ XN :j. Altogether one has

R2
p ≤ Sp

what implies at once the statement. 2

The problem arises how to calculate qp. On this

Theorem 2

Define the random variables

Up =

p∑
i=1

ci ·X2
N :i

Vp =

p∑
i=1

c2
i ·X2

N :i

and their means

up = E(Up)

vp = E(Vp) .
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With these one has the recursion

qp = qp−1 + 2 · cp · up−1 + vp − vp−1 (3.3)

for p ≥ 2 starting with
q1 = c2

1 · E(X2
N :1) .

Proof

One simply gets by the definition of the cpi for i ≤ p− 1

cpi − c(p−1)i = 2 · ci · cp

and consequently

Sp − Sp−1 = 2 · cp · Up−1 + c2
p ·X2

N :p .

Since
c2
p ·X2

N :p = Vp − Vp−1 ,

one arrives at the statement by taking the expectations. 2

Now the new problem of calculating up, vp is there. On this see the following
section. As second main result

Theorem 3

Suppose X1, X2, X3, . . . are i.i.d. with distribution function F and density f
and that they are independent of N . Assume that f is continuous and strictly
positive on {x : 0 < F (x) < 1}. Then one has the lower bound

E(R2
p) ≥ vp + 2 · tp (3.4)

with

tp =

p−1∑
i=1

p∑
j=i+1

(mi −mi−1)(mj −mj−1) (3.5)

= mp ·mp−1 −
p−1∑
i=2

(mi −mi−1) ·mi −m2
1 .

(with convention m0 := 0).
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Proof

By (3.2) one has

E(R2
p) = vp + 2 ·

p−1∑
i=1

p∑
j=i+1

ci cj · E(XN :i ·XN :j) (3.6)

In analogy to exercise 3.1.12 in David (1981) the inequality

Cov(XN :i, XN :j) ≥ 0

holds, what is equivalent with

E(XN :i ·XN :j) ≥ E(XN :i) · E(XN :j) .

This one substitutes into (3.6) and uses

E(XN :i) =
mi −mi−1

ci

for E(XN :i) and E(XN :j). So one gets (3.4) with the tp according to (3.5).
2

Also in the bound (3.4) the new problem of calculating (efficiently) vp ap-
pears.

Note that (3.5) can be written more elegantly as a recursion

tp = tp−1 + (mp −mp−1) ·mp−1 (3.7)

with start
t1 = 0 .

For estimating E(R2
p) crudely, one is willing to take an adequate mixture of

the upper bound qp and the lower bound

wp = vp + 2 · tp . (3.8)

The simplest choice would be

1

2
· qp +

1

2
· wp . (3.9)

A discussion of this and a more adequate proposal is given for the classical
largest claims reinsurance cover in the section 6.
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4 Helpful Results

For calculating the qp and wp one needs handy results on mp, up, vp. According
to Kremer (1985) one has for continuous distribution function F of the i.i.d.
Xi, independent of the N , as general formulas for the mp, up, vp

mp =

p∑
i=1

ci

Γ(i)
·

1∫
0

F−1(u) · (1− u)i−1M (i)(u) du

up =

p∑
i=1

ci

Γ(i)
·

1∫
0

[F−1(u)]2 · (1− u)i−1M (i)(u) du

vp =

p∑
i=1

c2
i

Γ(i)
·

1∫
0

[F−1(u)]2 · (1− u)i−1M (i)(u) du

where

F−1(u) = inf{x : F (x) ≥ u}

Γ(i) = (i− 1)!

and with the i− th derivative M (i)(u) of the probability generating func-
tion of N

M(u) =
∞∑

n=0

P (N = n) · un .

For the author it is quite sure that these general fomulas are too terrible for
the practical actuary. He likes to have more handy results. Under additional
model assumptions one gets such. So assume that N is Poisson-distributed
with parameter λ = E(N) > 0, i.e.

P (N = n) =
λn

n!
· exp (−λ), n = 0, 1, 2, 3, . . .

and the Xi is Pareto-distributed with parameter α > 2 and start value a > 0,
i.e.

F (x) = 1−
(x

a

)−α

, x ≥ a .

Then the above formulas simplify to

mp = λ1/α ·
p∑

i=1

ci

Γ(i)
· Γλ(i− 1/α) · a (4.1)
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up = λ2/α ·
p∑

i=1

ci

Γ(i)
· Γλ(i− 2/α) · a2 (4.2)

vp = λ2/α ·
p∑

i=1

c2
i

Γ(i)
· Γλ(i− 2/α) · a2 (4.3)

with the incomplete Gamma-function

Γλ(s) =

λ∫
0

exp(−t) · ts−1 dt .

For larger λ one can replace Γλ by Γ = Γ∞. But often also these formulas
will appear to be too unhandy or inadequate. In these situations the author
proposes to use his recursive method in Kremer (1994) for approximate com-
putation of the mp, up, vp. So for mp one has the approximate recursion

mp =̇ mp−1 ·
[
1 + Kp ·

(
1−

(
k

p− 1

))]

−mp−2 ·Kp ·
(

1−
(

k

p− 1

))
, p ≥ 3 (4.4)

with Kp = cp/cp−1 and an adequate small number k > 0. The counterpart
for up is

up =̇ up−1 ·
[
1 + Kp ·

(
1−

(
2k

p− 1

))]

−up−2 ·Kp ·
(

1−
(

2k

p− 1

))
, p ≥ 3 (4.5)

and for vp

vp =̇ vp−1 ·
[
1 + K2

p ·
(

1−
(

2k

p− 1

))]

−vp−2 ·K2
p ·

(
1−

(
2k

p− 1

))
, p ≥ 3 (4.6)

Remember that behind these recursions there stands the general assumption
that the claims number N satisfies with given parameters a, b the recursion

P (N = n) = P (N = n− 1) · (a + b/n)

for n = 1, 2, 3, . . . (compare Kremer (1986), (1994)). Note also that these
recursions are only adequate for

”
not too large“ p.
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5 Monte-Carlo-Approach

For the sequel assume that the Xi, i = 1, 2, 3, . . . are i.i.d. with continuous
distribution function F and that they are independent of N . Again a result
in Kremer (1985) gives that

E(R2
p) = vp + ρp (5.1)

where vp is that given already in sections 3–4 and

ρp = 2 ·
p∑

j=2

j−1∑
i=1

cj

Γ(j − i)
· ci

Γ(i)
· Sij

where

Sij =

1∫
0

v∫
0

F−1(v) · F−1(u) · (v − u)j−i+1 · (1− v)i−1 ·M (j)(u)du dv ,

in what
F−1(u) := inf{x : F (x) ≥ u) ,

is the so-called Pseudo-Inverse of F , and M (j) is the j-th derivative of

M(t) =
∞∑

n=0

P (N = n) · tn ,

the probability generating function of the distribution of N . Practicable re-
sults on computing vp where already given in section 4. So the crucial part in
(5.1) is the ρp. A simple lower bound on ρp was already fiven in Theorem 3.
Since that bound is expected to be quite crude, the question arises whether
one perhaps could calculate nearly exactly the ρp with methods of nume-
rical mathematics. It is nearlying to apply numerical integration methods
to the Sij in ρp. Most elegant appears to be the method of Monte-Carlo-
Integration (see e.g. Robert & Casella (2000)).

So suppose one has 2K standard-pseudo-random numbers

U1, V1, U2, V2, . . . , UK , VK .

The simulated value for Sij is then

Ŝij =
1

K
·

K∑
k=1

fk(i, j) (5.2)
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with
fk(i, j) = 0 , if Uk ≥ Vk

and

fk(i, j) = F−1(Vk)·F−1(Uk)·(Vk−Uk)
j−i−1·(1−Vk)

i−1·M (j)(Uk) , if Uk < Vk .

According to classical probability theory the Ŝij converges almost surely
against the exact Sij, when K goes to infinity. Consequently, K has to be

chosen considerably large. The Ŝij one puts into the formula for ρp, resulting
in an estimated ρ̂p.

6 Example

Take just the (classical) largest claims treaty, covering the p largest claims.
Assume basically the conditions underlying the formulas (4.1) - (4.3). Take
the parameter λ > 0 of the Poisson distribution to be larger, more concretely
such that the Γλ in (4.1) - (4.3) (with ci = 1,∀i) can be replaced by Γ∞ = Γ.
Then the formulas (4.1) - (4.3) reduce (with ci = 1 ∀i) to

mp = λ1/α ·
(

α

α− 1

)
· Γ(p + 1− 1/α)

Γ(p)
· a (6.1)

up = vp = λ2/α ·
(

α

α− 2

)
· Γ(p + 1− 2/α)

Γ(p)
· a2 (6.2)

(compare already Ammeter (1964)). Consequently one has for the startvalues
in (3.3), (3.7), (4.4), (4.5) (≡ (4.6))

m1 = λ1/α · α

α− 1
· Γ(2− 1/α) · a (6.3)

m2 = λ1/α · α

α− 1
· Γ(3− 1/α) · a (6.4)

u1 = λ2/α · α

α− 2
· Γ(2− 2/α) · a2 (6.5)

v1 = q1 = u1 (6.6)
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u2 = λ2/α · α

α− 2
· Γ(3− 2/α) · a2 (6.7)

v2 = u2 . (6.8)

Finally in (4.4), (4.5) ((4.5)≡ (4.6)) one has simply to insert

Kp = K2
p = 1 .

Note that for k = 1/α the recursions (4.4), (4.5) give the same results like
the rhs of (6.1) and (6.2) (see on this Kremer (1994)).

With the calculated mp, up = vp one can apply the bounds (3.1), (3.8), where
qp has to be computed with recursion (3.3) (with cp = 1 and vp = up) and
tp with recursion (3.7). With (3.9) one gets a first crude estimate of E(R2

p),

denoted by r
(1)
p . With that a first estimate of sp is just

s(1)
p = (r(1)

p −m2
p)

1/2 .

Now on the method of section 5. Under the given assumptions the Sij can
be rearranged to

Sij = a2 · λj ·
1∫

0

1∫
t

ti−1−1/α · s−1/α · (s− t)j−i−1 · exp (−λ · s) ds dt .

For giving this, one has to take the substitutions

s = 1− u, t = 1− v

and to remember that

F−1(u) = a · (1− u)−1/α

M (j)(u) = λj · exp (λ · (u− 1))

As modified, simulated value for Sij one takes now (5.2) with

fk(i, j) = 0, if Sk ≤ Tk

and

fk(i, j) = a2 ·λj ·T i−1−1/α
k ·S−1/α

k · (Sk −Tk)
j−i−1 · exp (−λ ·Sk), if Sk > Tk.
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Here
S1, T1, S2, T2, . . . , SK , TK

are again 2K standard-pseudo-random numbers. For very large K the

rp = vp + ρ̂p

(ρ̂p is the ρp with Sij replaced by Ŝij) can be expected to be nearly exactly
the exact value of E(R2

p).

In practice one is mostly more interested in rates than in the absolute values.
This means that one divides up, vp, qp, wp, r

(1)
p , rp by µ2 with

µ = E(N) · E(Xi)

and s
(1)
p , mp by µ. Note that under the given Poisson-Pareto-model one has

just

µ = λ ·
(

α

α− 1

)
· a .

The so calculated rates corresponding to mp, up, vp, qp, wp, r
(1)
p , s

(1)
p , rp shall

be denoted by
m̃p, ũp, ṽp, q̃p, w̃p, r̃

(1)
p , s̃(1)

p , r̃p .

The author made numerical calculations for the choices

i) λ = 100, a = 1, α = 2.5

First the computations of q̃p, w̃p were made with the (nearly) exact
results (6.1), (6.2), resulting in table 1. Then for a second time the
computations were done with the recursions (4.4), (4.5) (remember
vp = up) with Kp = 1 and k = 0.3, giving as result table 2. Note
that with k = 1/α = 0.4 one would have got the same results like
with (6.1), (6.2). Finally the simulation fo r̃p was carried through with
K = 2 5000 000. The resulting values are given in table 3. Note, all
numbers are in percent of µ2 or µ.

ii) λ = 100, a = 1, α = 3.0

The computations of q̃p, m̃p were done with (4.4), (4.5) with Kp = 1
and k = 1/3. The results are given in table 4, again in percent of
µ2 or µ. Finally the simulation of r̃p was carried through again with
N = 2 500 000, resulting in table 5.
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Table 1 case i)

p=1 2 3 4 5 6 7 8

m̃p 5.64 9.02 11.73 14.07 16.18 18.12 19.94 21.65

ũp = ṽp 0.66 0.79 0.87 0.93 0.97 1.01 1.04 1.07

q̃p 0.66 2.11 3.76 5.56 7.46 9.44 11.50 13.62

w̃p 0.66 1.17 1.74 2.35 2.99 3.65 4.34 5.06

r̃
(1)
p 0.66 1.64 2.75 3.95 5.22 6.54 7.92 9.34

s̃
(1)
p 5.85 9.09 11.72 14.05 16.13 18.06 19.85 21.56

Table 2 case i)

p=1 2 3 4 5 6 7 8

m̃p 5.64 9.02 11.90 14.48 16.88 19.13 21.26 23.31

ũp = ṽp 0.66 0.79 0.88 0.96 1.02 1.07 1.12 1.17

q̃p 0.66 2.16 3.78 5.62 7.59 9.68 11.88 14.18

w̃p 0.66 1.17 1.78 2.47 3.23 4.04 4.90 5.83

r̃
(1)
p 0.66 1.67 2.78 4.05 5.41 6.86 8.39 10.00

s̃
(1)
p 5.85 9.23 11.68 13.97 16.00 17.89 19.68 21.38

Table 3 case i)

p=2 3 4 5 6 7 8

r̃p 1.24 1.85 2.49 3.14 3.82 4.53 5.25
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Table 4 case ii)

p=1 2 3 4 5 6 7 8

m̃p 4.19 6.98 9.31 11.38 13.28 15.05 17.73 19.31

ũp = ṽp 0.26 0.34 0.40 0.44 0.48 0.51 0.41 0.57

q̃p 0.26 0.86 1.60 2.44 3.36 4.35 5.41 6.51

w̃p 0.26 0.57 0.96 1.39 1.86 2.36 2.89 3.45

r̃
(1)
p 0.26 0.72 1.28 1.91 2.61 3.35 4.15 4.98

s̃
(1)
p 2.91 4.77 6.40 7.86 9.20 10.45 11.64 12.76

Table 5 case ii)

p=2 3 4 5 6 7 8

r̃p 0.60 1.01 1.46 1.95 2.47 3.02 3.60

The numerical results of the tables show the following

1.) It makes no great difference working with (4.4), (4.5) (with start values
(6.3)-(6.8)) than with (6.1), (6.2) (compare tables 1 and 2) when k is
chosen adequately.

2.) For longer p values the upper bound q̃p and the lower bound w̃p dif-
fer considerably. Obviously the more, the more risky the claims size
distribution is (compare tables 1 and 4).

3.) The crude rule of thumb (3.9) gives senseful results. But r̃
(1)
p , rp differ

still considerably (compare tables 1, 3 and 4, 5).

According to 3.) one likes to see what happens for the choice

1

3
· qp +

2

3
· wp , (6.9)

as estimator for E(R2
p), denoted by r

(2)
p . From tables 1 and 4 the author

computed the relevant rates r̃
(2)
p = r

(2)
p /µ2, given in tables 6 and 7 (all in
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percent of µ2). Also given there is s̃
(2)
p , the rate corresponding to

s(2)
p = (r(2)

p −m2
p)

1/2 .

Table 6 case i)

p=1 2 3 4 5 6 7 8

r̃
(2)
p 0.66 1.48 2.41 3.42 4.47 5.58 6.72 7.90

s̃
(2)
p 5.85 8.18 10.10 12.00 13.63 15.16 16.59 17.95

Table 7 case ii)

p=1 2 3 4 5 6 7 8

r̃
(2)
p 0.26 0.67 1.17 1.73 2.36 3.02 3.73 4.47

s̃
(2)
p 2.85 4.26 5.51 6.66 7.72 8.72 9.67 10.57

Comparison with tables 3 and 5 shows that choice (6.9) gives still too high
values. One likes to try now e.g.

1
5
· qp + 4

5
· wp , (6.10)

as estimator for E(R2
p) (in the bounding approach), denoted by r

(3)
p . Again

the author computed the values r̃
(3)
p = r

(3)
p /µ2, given in tables 8 and 9 (all in

percent of µ2). Also given is s̃
(3)
p , the rate corresponding to

s(3)
p = (r(3)

p −m2
p)

1/2 .

Table 8 case i)

p=1 2 3 4 5 6 7 8

r̃
(3)
p 0.66 1.34 2.14 2.99 3.88 4.80 5.77 6.77

s̃
(3)
p 5.85 7.85 8.76 10.06 11.25 12.35 13.40 14.44
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Table 9 case ii)

p=1 2 3 4 5 6 7 8

r̃
(3)
p 0.26 0.63 1.09 1.60 2.16 2.76 3.39 4.06

s̃
(3)
p 2.91 3.80 4.68 5.50 6.22 7.03 7.74 8.42

Comparison with tables 3 and 5 shows that choice (6.10) as estimate of E(R2
p)

is quite acceptable.

As consequence the author fully can recommend the method of section 2
(combined with (4.4)-(4.6)), with choice (6.10) as final estimate of E(R2

p),
when rating the (classical) largest claims reinsurance cover in motor-liability
insurance.

7 Final Remarks

The numerical investigations of section 6 show that the method of section 3
can be used in practice, when calculating a security loading. When applying
the method of section 5 one has to take a quite large K. Then, usually in
case of that method the computing times are quite large, often too large
for the taste of the practical actuary. The practical actuary surely is willing
to prefer the recursive method of section 3 (with in addition the recursions
(4.4)-(4.6)). Nevertheless, the method of section 5 can be used by him to find
out the adequate mixing coefficient α in the final estimate

α · qp + (1− α) · wp

of E(R2
p) in case of the recursive method.
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On the loading of the ECOMOR

1 Introduction

Recently the author investigated with bounds on the loading of the largest
claims reinsurance covers (see Kremer (2001),(2003)). Unfortunately, the the-
re given general bounds are not applicable to the ECOMOR-cover, though
this treaty is related to the largest claims covers. Clearly the results in Kre-
mer (1985), (2002) can be specialized also to the ECOMOR-cover. But those
specializations are too unhandy for practical, actuarial applications. One likes
to have further, more handy results. These are given in the following note.

2 The Set-Up

Consider a collective of risks of a first insurer and let N denote the random
variable of the number of claims. The corresponding claims amounts are
described by the (nonnegative) random variables X1, X2, X3, . . . . Suppose all
random variables are defined on one and the same probability space (Ω,A, P ).
Denote with

XN :1 ≥ XN :2 ≥ . . . ≥ XN :N

the claims ordered in nonincreasing size. In this context the classical largest
claims reinsurance cover (in short: L(p)) is defined with a given p ∈ N
through the reinsurer’s claims amount

RL(p) :=

p(N)∑
i=1

XN :i

where
p (n) = min(n, p) .

A related treaty is (for p ≥ 2) the so-called ECOMOR (= d’exédent du
coût moyen relativ) (in short: E(p)).

Its reinsurer’s claims amount is given as

RE(p) :=

p(N)∑
i=1

(XN :i −XN :p)
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(with XN :p = 0 for p > N). For both treaties one important topic is the
determination of a risk adequate premium, defined, when choosing the so-
called standard deviation principle (compare Kremer (1999)), as

π(T ) = ν(T ) + λ · η(T )

for T = RL(p) or T = RE(p) with the net premium

ν(T ) = E(T )

the (here given!) loading factor λ > 0, and the loading part

η(T ) = [V ar(T )]1/2 .

It is wellknown that
V ar(T ) = ρ(T )− (ν(T ))2 (2.1)

with
ρ(T ) = E(T 2) .

So, when having a result on the net premium, one needs in addition results
on ρ(T ). According to what was said in the introduction, the present paper
gives additional (additional to Kremer (1985), (2002)), more simple results
on ρ(RE(p)).

3 Exact Result

In Kremer (1990) it turned out that the concept of the so-called spacings
can be helpful in deriving handy results also on the ECOMOR-treaty. The
(normed) spacings ZN1, . . . , ZNN are defined as

ZNi = i · (XN :i −XN :(i+1)) for i = 1, 2, . . . , N − 1

ZNN = N ·XN :N

With these one has

Theorem 1

Given N = n let the spacings Zn1, . . . , Znn be independent with the same
mean µ and variance σ2. Then one has

ρ(RE(p)) = [E(p (N))− 1] · σ2 + V ar(p (N)) · µ2 + [ν(RE(p))]2
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Proof:

One knows from probability theory that

V ar(RE(p)) = E(V ar(RE(p)|N)) + V ar(E(RE(p)|N)) . (3.1)

Since

RE(p) =

p (N)−1∑
i=1

ZNi

one has

V ar(RE(p)|N) =

p (N)−1∑
i=1

V ar(ZNi)

= (p (N)− 1) · σ2

E(RE(p)|N) =

p (N)−1∑
i=1

E(ZNi)

= (p (N)− 1) · µ

From (3.1) one gets

V ar(RE(p)) = (E(p (N))− 1) · σ2 + V ar(p (N)) · µ2

and consequently by (2.1) the statement. 2

Remark 1

Note that

E(p (N)) =

p−1∑
n=1

P (N = n) · n + p · P (N ≥ p)

V ar(p (N)) = E[(p (N))2]− [E(p (N))]2

with

E((p (N))2) =

p−1∑
n=1

P (N = n) · n2 + p2 · P (N ≥ p)
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In case that P (N < p) is neglectably small, then one has

E(p (N)) ≈ p

V ar(p (N)) ≈ 0 ,

giving simply

V ar(RE(p)) ≈ (p− 1) · σ2 .

2

Remark 2

Furthermore note that the conditions of the Theorem hold in case that the
X1, X2, X3, . . . are i.i.d. with exponential-density

f(x) = α · exp(−α · x), x ≥ 0

(parameter α < 0). One can put

µ = 1/α , σ2 = 1/α2 .

For a proof, that the conditions are given, see David (1981), p. 20. 2

4 Bounding Results

As first trivial result one has

Theorem 2

It holds in general
ρ(RE(p)) ≤ ρ(RL(p)) .

Proof

One has
RL(p) = RE(p) + p (N) ·XN :p (4.1)

and consequently
(RL(p))2 = (RE(p))2 + Rest

with
Rest = 2 · p (N) ·RE(p) ·XN :p + (p(N))2 ·X2

N :p ≥ 0 .

2
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Furthermore less trivial

Theorem 3

It is valid in general

ρ(RE(p)) ≤ ρ(RL(p))− r1(p)

with
r1(p) = p2 · (up − up−1)

where
up = ν(Sp)

with

Sp =

p∑
i=1

X2
N :i .

Proof

Obviously because of (4.1)

(RE(p))2 =(RL(p))2 − 2 · p (N) · (RL(p) ·XN :p)+

+ (p (N))2 ·X2
N :p

(4.2)

in what
RL(p) ≥ p (N) ·XN :p ,

implying
(RE(p))2 ≤ (RL(p))2 − (p (N))2 ·X2

N :p .

The result follows since

p (N)2 ·X2
N :p = p2 ·X2

N :p (4.3)

and
X2

N :p · 1{N≥p} = Sp − Sp−1

2

Finally

Theorem 4

Suppose X1, X2, X3, . . . are i.i.d. with distribution function F , having density
f . Assume that f is continuous and strictly positive on

{x : 0 < F (x) < 1} .
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Finally suppose that N is independent of the X1, X2, . . . . Then one has

ρ(RE(p)) ≤ ρ(RL(p))− r2(p)

with
r2(p) = 2 · p ·mp · (mp −mp−1)− p2 · (up − up−1)

where up is defined like in Theorem 3 and

mp = ν(RL(p)) .

Proof

One takes the expectation from equation (4.2), what gives

ρ(RE(p)) ≤ ρ(RL(p))− Rest

with

Rest = 2 · E(p (N) · [RL(p) ·XN :p])− E((p (N))2 ·X2
N :p) . (4.4)

In the term “Rest” one has

E(p (N) · [RL(p) ·XN :p]) = p ·
p∑

i=1

E(XN :i ·XN :p) . (4.5)

In analogy to the proof of Theorem 3 in Kremer (2003) it holds

E(XN :i ·XN :p) ≥ E(XN :i) · E(XN :p)

what implies
p∑

i=1

E(XN :i ·XN :p) ≥ E
( p∑

i=1

XN :i

)
· E(XN :p)

= mp · (mp −mp−1) .

(4.6)

Finally one has according to (4.3)

E(p (N)2 ·X2
N :p) = p2 · (up − up−1) . (4.7)

(4.4) - (4.7) imply

Rest ≥ 2 · p ·mp(mp −mp−1)− p2(up − up−1) ,

what proves the statement. 2

Remark 3

As already mentioned, results on ρ(RL(p)) are given in Kremer (1985),
(2001), (2002), (2003). 2
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Remark 4

The superiority of one bound to the other of the bounds of Theorems 3 and
4 could not be proved. 2

Remark 5

On determining the mp, up in Theorems 3, 4 the following:

Let X1, X2, . . . be i.i.d. and independent of N . Assume N to be Poisson-
distributed with parameter λ = E(N) > 0

P (N = n) =
λn

n!
· exp(−λ), n = 0, 1, 2, 3, . . .

and Xi be Pareto-distributed with parameter α > 2 and start value a > 0,
i.e. for its distribution function F one has

F (x) = 1− (x/a)−α , x ≥ 0 .

Then one has

mp = λ1/α ·
p∑

i=1

(
Γλ(i− 1/α)

Γ(i)

)
· a (4.8)

up = λ2/α ·
p∑

i=1

(
Γλ(i− 2/α)

Γ(i)

)
· a (4.9)

with

Γ(i) = (i− 1)!

Γλ(s) =

λ∫
0

exp(−t) · ts−1 dt .

For larger λ one can replace Γλ by Γ = Γ∞, what gives then

mp ≈ λ1/α ·
(

α

α− 1

)
·
(

Γ(p + 1− 1/α)

Γ(p)

)
· a (4.10)

up ≈ λ2/α ·
(

α

α− 2

)
·
(

Γ(p + 1− 2/α)

Γ(p)

)
· a (4.11)

In case that the formulas (4.8) - (4.11) appear to be too unhandy or are in-
adequate, the author proposes to use the recursive method in Kremer (1994)
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for approximate computation of mp, up. So one has

mp ≈ mp−1 ·
[
2− k

p− 1

]
−mp−2 ·

[
1− k

p− 1

]
up ≈ up−1 ·

[
2− 2k

p− 1

]
− up−2 ·

[
1− 2k

p− 1

]
for p ≥ 3 and an adequate k > 0 (e.g. k = 0.3 in motor liability insurance).

The start values m1, m2, u1, u2 have to be computed from (4.8) - (4.11), or
in general from

mp =

p∑
i=1

1

Γ(i)
·

1∫
0

F−1(u) · (1− u)i−1 ·M (i)(u) du

up =

p∑
i=1

1

Γ(i)
·

1∫
0

[F−1(u)]2 · (1− u)i−1 ·M (i)(u) du

with
F−1(u) = inf{x : F (x) ≥ u}

and the i-th derivative M (i) of the probability generating function of N

M(u) =
∞∑

n=0

P (N = n) · un .

2

The paper shall be closed with a

Numerical Example

Consider the Poisson-Pareto-situation of Remark 5 with special

λ = 100, α = 2.5, a = 1 .

It is nearlying to consider instead of absolute just relative values. This means
one divides ρ(·), r1(p), r2(p), up by τ 2 and mp by τ with

τ = E(N) · E(Xi)

= λ · α

α− 1
· a .

The so calculated rates shall be denoted by ρ̃(·), r̃1(p), r̃2(p), ũp, m̃p. The com-
putations of ũp, m̃p were done with (4.8) and (4.9). The ρ̃p := ρ̃(RL(p)) was
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taken as r̃
(2)
p from table 1 in Kremer (2003). ρ̃p1, ρ̃p2 let denote the upper

bounds of Theorems 3, 4 for ρ(RE(p)). The results are given in the following
table. They are all in percent of τ 2 or τ .

Table 1

p=1 2 3 4 5 6 7 8

m̃p 5.64 9.02 11.73 14.07 16.18 18.12 19.94 21.65

ũp 0.66 0.79 0.87 0.93 0.97 1.01 1.04 1.07

ρ̃p 0.66 1.89 3.21 4.60 6.05 7.47 9.10 10.69

r̃1(p) — 0.52 0.72 0.95 1.00 1.44 1.47 1.92

r̃2(p) — 0.70 1.19 1.67 2.41 2.78 3.61 4.00

ρ̃p1 — 1.37 2.49 3.65 5.05 6.03 7.63 8.77

ρ̃p2 — 1.19 2.02 2.93 3.64 4.69 5.49 6.69

In this example the second bound is better (i.e. smaller) than the first bound.
As already mentioned the author did not succeed in proving this under the
general conditions of Theorem 4. Perhaps one of the readers likes to think
about this and can give a proof or just a counterexample. 2
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