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Abstract 
 
An upper bound of the expected excess claim is deduced depending on the following parameters: the 
expected number of victims per accident, the minimum number of victims, the maximum number of 
victims, the market share of the cedant, the expected indemnity per victim, the maximum indemnity per 
victim. If in addition the cedant’s expected loss ratio is given then an upper bound of the reinsurance risk 
rate can be calculated.  
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1. Introduction 
Insurers are confronted with the problem of unknown accumulations mainly in air crashes 
and seek reinsurance protection against the risk of having a high number of their insured 
among the victims. Using some results of Bühlmann, Gagliardi, Gerber and Straub (1977) an 
upper bound of the expected excess claim and consequently also of the risk premium is 
deduced. 
 
2.  The number of customers among the number of victims 
Consider an insurer with market share p. If for every plane passenger the probability of being 
a customer of the insurer is equal to p then the number K of customers among n passengers 
follows a binomial distribution with probabilities Prob(K = k) = pk(n): 

 
If the plane crashes, the number K of customers among the victims follows the same binomial 
distribution. The expected number of customers in excess of a threshold s ≥ 0 is given by 
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where [s] is the highest integer that is smaller or equal to s. Formally, (2) is a stop loss risk 
premium.  
 
3. An upper bound of E[(K – s)+] 
In this paragraph we use the concept of dangerous distribution in the terminology of 
Bühlmann et. al.: If for two risks X and Y with distribution functions FX(x) and FY(x) a real 
number c ≥ 0 exists such that  
 
FX(x) ≤ FY(x)   for 0 ≤ x < c 
FX(x) ≥ FY(x)   for c ≤ x   
 
and moreover E[X] ≤ E[Y], 
 
then  X precedes Y in the stop-loss order and is called less dangerous than Y. 
 
Normally, the number n of passengers and thus of potential victims in a crash is not known in 
advance. What is given in practice are estimates for the minimum number of passengers, u, 
and the maximum number of passengers, t, where u ≤ n ≤ t. 
We show that the mixture of two binomial distributions with probabilities defined as 
 

 
is more dangerous than the distribution given by (1). If that is true then E[(K – s)+] for the 
distribution (3) is an upper bound of E[(K – s)+] for the distribution (1).  
Proof: 
 

 
where pk(n) and bk(n) are the probabilities defined by  (1) and (3). For u = n and for  t = n we 
have pk(n) = bk(n) so that there is nothing to prove. We therefore assume u < n < t. Likewise 
we exclude the simple case p = 0 and assume p > 0. 
 
Since pk(n) and bk(n) define the same expected value, E[K] = n ⋅ p,  G is a more dangerous 
distribution than F if  the following three conditions hold: 
 
• G(n) < F(n) 
• G(0) > F(0) 
• There is exactly one j such that F(k) < G(k) for k = 0, ...., j-1, and F(k) ≥ G(k) for k ≥ j. 
 
To simplify the notation we write pk and bk instead of pk(n) and bk(n) where no confusion is 
possible. 
 
1) G(n) < F(n) = 1 follows from n < t.  
2) In order to prove G(0) > F(0) define 
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If p = 0 then α0 = 1. For 0 < p < 1 we have α0 <  1 since the  derivative of α0  with respect to 
p is equal to 

 
3) To prove assertion 3 define for k =  0, 1, ... , t      
 

 
Using the notation (n)0 = 1 and (n)k = n⋅(n – 1)⋅...........⋅ (n – k + 1)  for k > 0 we can rewrite 
αk in the form 

 
If  k > n then αk = 0 because  in this case (n)k = 0. Hence 
 
(4) αn + 1 = αn + 2 = ......... = αt = 0. 
 
Consider now the ratio 
 

 
 
for k =  0, 1,  ..., n - 1. 
 

 
 
If  k > u  then (u)k = 0 and therefore  
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Hence 
 
(5) αu + 1 > αu + 2 > ......... > αn. 
 
If k ≤ u we have 
 

where in the denominator there is a weighted average of (t – k) and (u – k) with weights  
 

The weight wk increases as k increases, ie wk < wk+1 because 
 

 
Depending on p two cases have to be distinguished: 
 
1st  case: for all k = 0, 1, ..., u  the weighted average wk ⋅ (t – k) + (1 – wk) ⋅ (u – k) is smaller 
than (n – k). Consequently, using (4) and (5)   
 
(6a)  α0 < α1 < ...< αu + 1 > αu + 2 >....> αn > αn + 1 = ...........= αt. 
 
2nd case: There exists k0, 0 ≤ k0 ≤ u so that  
wk ⋅ (t – k) + (1 – wk) ⋅ (u – k) < (n – k)  for all k < k0, 
wk ⋅ (t – k) + (1 – wk) ⋅ (u – k) ≥ (n – k) for  all k = k0 and  
wk ⋅ (t – k) + (1 – wk) ⋅ (u – k) > (n – k) for  all k > k0.  Consequently  
 
(6b)  α0 < .... < αk0 ≥ αk0 + 1>.... > αu + 1 > αu + 2 >....> αn > αn + 1 = ...........= αt. 
 
Calling  k0 = u + 1 in (6a)  we can summarise (6a) and (6b) in 
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(6)  α0 < .... < αk0 ≥ αk0 + 1>.... > αn > αn + 1 = ...........= αt. 

 
Since G(0) > F(0)  and G(n) < F(n) there is a j such that F(k) < G(k) for k = 0, 1, ..., j-1 and  
F(j) ≥ G(j).  From pj =  F(j) – F(j – 1) > G(j) – G(j – 1) = bj  follows αj > 1. 
The general case F(j) > G(j) and the special case F(j) = G(j) are analysed separately. 
 
General case F(j) > G(j): 
F(k) > G(k) for all  k,  j < k ≤ t – 1. Otherwise there would exist a first k > j for which  
F(k) ≤ G(k). From pk =  F(k) – F(k – 1) < G(k) – G(k – 1) = bk  would follow αk < 1. 
Because αj > 1, αk < 1, and the fact that αi increase for i ≤ k0 it follows that k > k0. Hence 
αi ≤ αk  for all i > k, therefore pi ≤ bi for all i > k  F(n) ≤ G(n) which contradicts  
F(n) = 1 >G(n). 
 
Special case F(j) = G(j): 
As in the general case  we can exclude that there is a k > j for which F(k) < G(k). However, it 
might be that F(j+1) = G(j+1). This means pj+1 = bj+1, αj+1 = 1, αi ≤ 1 for all i > j+1 
because αi decrease for i > k0, pi ≤ bi and F(n) ≤ G(n) which again contradicts the 
assumption F(n) = 1 > G(n). 
 
4. The expected distribution of n 
We now assume the number of passengers n is a random variable and call it N,  u ≤ N ≤ t. 
Define pk(N)  and bk(N) as in (1) and (3) for any value of N. Since the distribution F 
precedes G  in the stop-loss order, according to Lemma 1 in Bühlmann et. al. also the 
expected distribution defined by the expected probabilities E[pk(N)] will precede the 
distribution  defined by 

(7) can be used to calculate E[(K – s)+] in practice. 
  
5. On the distribution of the indemnity  
 Let I be the indemnity of a victim with distribution function F, expected value m and a 
maximum value M, ie I ≤ M.  
Define a random variable S with distribution function G given by  
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Clearly, S is more dangerous than I. In Bühlmann et. al. it is shown that consequently the 
distribution 

 
This means that – provided the indemnities of victims are independent of each other – the 
expected total indemnity in excess of any threshold  can be estimated by the following upper 
bound: 
 
The market share p in (1) is replaced by  

and every indemnity is replaced by its maximum value, M. 
 
6. A numerical example 
Assumptions: 
Number of passengers: 
Expected number E[N] = 100 
minimum number u = 40 
maximum number t = 200 
market share p = 5% 
expected loss ratio of the ceding company lr = 50% 
expected indemnity per victim m = 200 000 
maximum indemnity per victim M = 1 000 000 
maximum indemnity per accident t ⋅ M = 200 000 000 
reinsurance deductible d = 2 500 000 
reinsurance cover t ⋅ M – d = 197 500 000 
 
Results: 
expected number of insured victims per accident p⋅ E[N] = 5  
expected indemnity per accident  p ⋅ E[N] ⋅ m = 1 000 000 
modified market share according to (8)  a = p ⋅ m / M = 1% 
threshold s = d / M =2.5 
 [s] = 2 
 
E[(K – s)+] is calculated using (1) and (2).  
For the binomial distribution with parameters u and a E[(K – s)+] = 0.0044865 
                                                with parameters t and a E[(K – s)+] = 0.3769647 
For the mixture according to (7)                                   E[(K – s)+] = 0.1441658 
expected reinsured indemnity per accident            M ⋅ E[(K – s)+] =  144 165.8 
 

reinsurance risk rate                 M ⋅ E[(K – s)+] / (p ⋅ E[N] ⋅ m) ⋅ lr = 7.2%. 
 
7. Reference 
Bühlmann H., Gagliardi B., Gerber H., Straub E. (1977): Some inequalities for stop-loss 
premiums. ASTIN bulletin, Vol. IX, 75-83.  
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