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Abstract

We develop portfolio optimization problems to a non-life insurance company for finding the minimum capital

required, which simultaneously satisfy solvency and portfolio performance constraints. Motivated by standard

insurance regulations, we consider solvency capital requirements based on three criteria: Ruin Probability, Con-

ditional Value-at-Risk and Expected Policyholder Deficit ratio. We propose a novel semiparametric formulation

for each problem and explore the advantages of implementing this methodology over other potential approaches.

When liabilities follow a Lognormal distribution, we provide sufficient conditions for convexity for all our prob-

lems. Using different expected Return on Capital target levels, we construct efficient frontiers when portfolio

assets are modelled with a special class of multivariate GARCH models. We found that the correlation between

assets plays an important role in the behaviour of the optimal capital required and the portfolio structure. The

stability and out-of-sample performance of our optimal solutions are empirically tested with respect to both, the

solvency requirement and the portfolio performance, through a double rolling window estimation exercise. Our

results indicate that a time-varying correlation model outperforms the constant and no-correlation counterparts.
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1 Introduction

Insurance regulation has played an important role in securing policyholders and investors against various types

of risk. One of its primary objectives is the establishment of an initial capital amount required to be held by

insurance companies, in order to offer protection in the case of unexpected events. There has been an extensive

literature on capital adequacy and its relationship to risk measures. For example, the Value-at-Risk (V aR), one

of the most popular tools used in financial risk management, constitutes the basis for the Solvency II regulatory

standards which applies to insurance companies in European Union (EU) (e.g. Sandström, 2006). In order to

overcome some of the V aR pitfalls (e.g. V aR is not sub-additive), Artzner et al. (1999) introduced the notion of

coherent risk measures. A discussion about their applications to capital requirements in insurance is provided in

Artzner (1999). Amongst the coherent risk measures, an important special case is represented by the Expected

Shortfall (ES), which plays a crucial role for the development of the Swiss Solvency Test (SST) (FOPI, 2004). The

class of coherent measures has been further extended to convex measures by Föllmer and Schied (2002). For an

overview of theoretical properties of various well-known risk measures used as solvency capital requirements, we

refer to Dhaene et al. (2006). For a more recent survey on applications of risk measures in portfolio management

we refer to Krokhmal et al. (2011).

The standard approach used in connecting minimum capital standards to risk measures relies on the investment

of solvency capital into a single “eligible” security, often taken as a risk-free asset. However, if the regulator allows

the financial institution (e.g. insurance company in our case) to use a portfolio of such “eligible” assets, investing

only into the risk-free asset may not be efficient. For example, Balbas (2008) showed that the investment of the

capital requirement into a risk-free asset is not optimal in several important cases, and he provided an example

based on a Conditional Value-at-Risk (CV aR) (risk measure introduced by Rockafellar and Uryasev, 2000) and

Black-Scholes assumptions. Artzner et al. (2009) provided a brief discussion on the efficient use of capital and

risk measures in the case of multiple traded assets, while Farkas et al. (2012) gave a comprehensive theoretical

background on the same issue. However, none of the above studies provide empirical examples on how minimum

capital and its optimal allocation are obtained. Moreover, despite their popularity, these optimization problems

are typically treated separately in the actuarial literature. The use of both initial capital and portfolio weights as

decision variables for optimization problems has only been recently proposed. For example, Mankai and Bruneau
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(2012) introduced a joint optimization problem by maximizing the expected return on risk-adjusted capital subject

to a CV aR constraint, while Asimit et al. (2012) developed a minimum capital requirement problem based on

a Ruin Probability (RP ) constraint. However, both studies assumed a static setting and did not investigate the

behaviour of the optimal solutions and portfolio performance over time.

In this paper we introduce three joint optimization problems for a non-life insurance company in a dynamic

framework. Each problem is constructed by minimizing the initial capital subject to two types of constraints. The

first category is represented by solvency requirements according to a particular insurance regulation, while the

second constraint, which is the same for all problems, is given through a portfolio performance measure.5 Since

shareholders usually require a gain on their investment, we use the expected Return on Capital (ROC) as our

portfolio performance measure. Other choices for measuring performance are suggested in Cherny and Madan

(2009), among others.

Motivated by Solvency II and SST directives, the first two solvency criteria are based on a target value for

the RP and a negative CV aR of the insurer’s net loss, respectively, both computed over a predefined period of

time (e.g. one year horizon). Since the RP constraint is equivalent to a negative V aR, the two criteria considered

agree with the mathematical definition of a solvency requirement given by Djehiche and Hörfelt (2007) for a

general risk measure. The third solvency constraint uses an upper bound for the Expected Policyholder Deficit

(EPD), which was introduced by Bustic (1994) as a new measure of insolvency risk. The EPD criteria has played

an important role in establishing the US Risk-based Capital (RBC) regulatory system (e.g. see NAIC, 2009).

Analyses and comparisons of the three capital standards have been previously considered in the literature. For

example, Holzmüller (2009) and Cummins and Phillips (2009) provided detailed assessments of the RBC, SST and

Solvency II directives. Barth (2000) compared the RP and EPD approaches and found that the latter increases

the insolvency risk for larger insurers. Eling et al. (2009) investigated the RP , EPD and ES in a mean-variance

setup using data from a German non-life insurance company.

Our objective is to provide a detailed analysis of the optimal capital required and its portfolio allocation for all

5A conceptually similar problem has been very recently proposed in the financial literature by Santos et al. (2012). They develop

an optimization problem which minimizes the capital required subject to a Basel II criteria (i.e. a target number of V aR violations

within a year) and a lower bound for the expected portfolio return. However, their problem is constructed as a single optimization

problem (i.e. the only decision variable is the portfolio weight), since the capital requirement is given explicitly by the maximum

between current-day V aR and the average one-day-ahead V aR over the last 60 business days.
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three solvency criteria. In constructing the insurer net loss, we model only two sources of risk, namely the market

(assets) and insurance (liabilities) risks. The dynamical structure is introduced by assuming that the portfolio’s

assets follow a Multivariate Generalized Autoregressive Conditional Heteroskedastic (MV-GARCH) model. There

is a considerable number of MV-GARCH specifications proposed in the financial econometrics literature (e.g. VEC,

BEKK, CCC, DCC etc.), and for recent surveys we refer to Bauwens et al. (2006) and Silvennoinen and Terasvirta

(2009). In this study,I we focus on the class of Dynamic Conditional Correlation (DCC) models introduced by

Engle (2002). There are at least three important reasons for this choice. Firstly, these models are not heavily

parametrized and therefore, are appropriate for large scale estimation and risk management problems (e.g. see

Engle and Sheppard, 2008). Secondly, their forecasting performance is not significantly outperformed by more richer

competitors (e.g. see Laurent et al., 2012). Thirdly, we wish to analyze the effect of a time-varying correlation

matrix between portfolio’s assets on the optimal solutions, by comparing it with constant and zero correlation

cases. The insurance liability is modelled with a univariate random variable.

One of the major issues with implementing the proposed problems is related to their convexity. Since the

expected ROC constraint is linear in both capital and weights, the focus remains on the convexity of the solvency

constraints. The standard approach for dealing with CV aR optimization is based on a Monte-Carlo type of approx-

imation, and this leads to a linear programming (LP) reformulation for the initial problem (e.g. see Rockafellar and

Uryasev, 2000, 2002, and Krokhmal et al., 2002, among others). Tian et al. (2010) used the similar prescription

for solving asset-liability mean-variance portfolio optimization problems under CV aR constraints. Alexander et

al. (2006) pointed out that the LP reformulation becomes less efficient when the number of Monte-Carlo paths be-

comes large. For the RP problem, closed-form expression and/or convex reformulation are rarely available. There

are two streams of literature dealing with probability (chance) constraints. The first direction consists of using

Monte-Carlo type estimators based on indicator functions and performing further appropriate approximations (e.g.

see Boyd and Vandenbergue, 2004, for convex approximations by eliminating the indicator function, Nemirovski

and Shapiro, 2006, for Bernstein scheme convex approximation, Luedtke and Ahmed, 2008, for non-convex mixed-

integer programming (MIP) reformulation, among others). The second direction formulates and solves the chance

constraints as V aR-constrained optimization (e.g. see Larsen et al., 2002, for algorithms based on iterative CV aR

optimizations, Gaivoronski and Pflug, 2004, for scenario-based methods and Wozabal et al., 2008, for a difference

of convex functions reformulation).
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In order to avoid the above convexity issues, we propose a semiparametric approach for reformulating the

solvency constraints using the empirical distribution based on asset returns scenarios generated according to the

MV-GARCH models and the given parametric specification of the liability distribution. For the RP -constrained

optimization this methodology can be viewed as a generalization of the semiparametric algorithm proposed in

Asimit et al. (2012). When liabilities are Lognormal distributed, we derive sufficient convexity conditions for all

three solvency constraints. Our numerical examples are constructed based on 3-asset portfolios formed with one

“risk-free” asset (US T-Bills) and two risky assets (NASDAQ and NYSE). The parameters are estimated from daily

returns using the two-stage estimation methodology introduced by Engle and Sheppard (2001) for three covariance

specification: DCC-GARCH, CCC-GARCH (constant correlation) and UNI-GARCH (no-correlation). The liability

parameters are estimated based on monthly aggregate claim amounts from property insurance provided by a

Romanian insurance company. Using different level of shareholders’ expected ROC, we construct efficient frontiers

for a one-month horizon. All three solvency constraints indicate a similar type of behaviour in the sense that the

DCC-GARCH is the most conservative model in terms of capital requirements. The time-varying correlation plays

an important role in the portfolio structure. For example, the DCC-GARCH allocates nothing into the NYSE

index, while the corresponding weights for the other two covariance models are significantly different from zero.

Generally speaking, most of the initial wealth is allocated into the “risk-free” asset. We also notice that the 99%

CV aR optimization is more conservative then the corresponding V aR problem at 99.5% significance level. Finally,

we run a double rolling window estimation exercise (re-estimate asset and liability parameters over a given period)

to compare the out-of-sample performance of our models. The results indicate the DCC specification outperforms

the CCC and the no-correlation ones, in terms of both the solvency constraint and the portfolio performance. We

further found that the optimal capital and portfolio weights are very stable when only asset returns parameters are

re-estimated. However, this is no longer the case when we allow liability re-estimation at each step in the rolling

window experiment.

The rest of the paper is organized as follows. In the next section, we introduce the optimization problems

based on the solvency and expected ROC constraints and illustrate the semiparametric approach for solving them.

Models for both assets and liabilities and discussions on the convexity of the proposed methods are provided in

Section 3. An extensive empirical analysis is performed in Section 4. We conclude the paper in Section 5.
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2 Preliminaries and solvency constrained optimization

We consider a discrete-time framework with the set of trading dates indexed by T = {0, 1, . . . , T}. The market

consists of a portfolio of n assets with the gross return6 process over the period [t, t + 1] defined by Rt+1 =

(R1,t+1, . . . , Rn,t+1)T . We denote by Ft, the historical information on the asset return evolution up to time t, so

that Ft = σ(R1, . . . ,Rt). For convenience, we use the following notations for conditional probabilities, expectations

and variances: Pr(·|Ft) = Prt(·), E[·|Ft] = Et[·] and V ar[·|Ft] = V art[·]. Moreover, we use majuscules for random

variables (except for cases when un upper script associated to a random variable may be interpreted as a realization

of that random variable) and non-capital letters for deterministic quantities.

We introduce three optimization problems based on different solvency criteria for a non-life insurance company

within a one-period setting, [t, t + τ ], where τ is the solvency horizon satisfying τ ≤ T − t. First, we denote by

pt the aggregate premium available for investment at time t. In addition, we assume that shareholders provide a

regulatory initial capital of size ct. Without loss of generality, no other premiums are collected and no capital is

issued or retired between t and t+ τ , and therefore, the total invested amount is pt + ct. Let xt = (x1,t, . . . , xn,t)
T

be the portfolio weights whose components satisfy the standard budget constraint,
n∑
i=1

xi,t = 1 and the no short

sales constraint, xi,t ≥ 0, i = 1, . . . , n. Since our problem is designed as a single-period optimization, no rebalancing

is allowed during the solvency period.

To fully describe the setup, we let the insurer’s liability be modelled by a univariate random variable Yt+τ .

This represents the aggregate claim amount over the solvency horizon which is assumed to be paid at time t+ τ .

At this point, no particular assumptions regarding the conditional distributions of Rt+τ and Yt+τ are made, and

no premium calculation principle is assigned for pt. We define the insurer’s net loss as the difference between the

liability and portfolio value over the solvency horizon:

Lt,t+τ = Yt+τ − (pt + ct)R
T
t+τxt.

Since both the capital requirement and portfolio allocations are decision variables in our joint optimization problems,

we can view the net loss r.v. as a function of these quantities (i.e. Lt,t+τ := L(ct,xt)). For convenience, we assume

there are no other sources of risk other than the ones modelled through Y and R, and there are no transaction or

other friction costs.

6The gross return process is defined here as the ratio between the terminal and initial asset prices, and thus is non-negative.
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Each optimization problem proposed in the following subsections is characterized by minimizing the capital

requirement ct, subject to two key constraints. The first one consists of the solvency capital requirement imposed

by the insurer’s regulator, and is based on one of the following criteria: RP , CV aR and EPD. Next, we define

the gross ROC over the investment period:

ROCt,t+τ = −Lt,t+τ
ct

. (2.1)

Since shareholders typically require a rate of return on the provided capital, the second constraint is introduced

as a portfolio performance measure based on a target level for shareholders’ expected return. For each type of

solvency, we provide a novel a semiparametric approach, which allows us to reformulate the constraints and further

implement the optimization without costly computational effort.

2.1 Optimization with RP constraint

The use of ruin probability constraints is motivated by the Solvency II Regime, which applies to any EU based

insurance company, and consist of identifying the capital required to maintain a target level for the ruin probability

over a specified period of time. Thus, we define the RP -constrained problem as follows:

min
ct,xt

ct

s.t. Et
[
1{Lt,t+τ>0}

]
≤ 1− α,

Et
[
ROCt,t+τ

]
≥ ROCα,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.2)

Here, α represents the specified solvency level, 1{·} is the indicator function and ROCα is the lower bound for the

shareholders’ expected return on capital, which also depends on α. We notice that the solvency chance constraint in

(2.2) can be reformulated as a Value-at-Risk constraint, where the V aR of a loss random variable Z at a confidence

level α is defined by

V aRα(Z) := inf{z ∈ < : Pr(Z ≤ z) ≥ α}.

Indeed, it immediately follows that:

Et
[
1{Lt,t+τ >0}

]
≤ 1− α⇔ Prt

(
Lt,t+τ > 0

)
≤ 1− α⇔ V aRαt (Lt,t+τ ) ≤ 0,

where V aRαt is the value at risk conditional on the historical asset return evolution up to time t. The main difficulty

in dealing with this type of problems is the convexity of the chance constraint. Closed-form expressions for the
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ruin probability only exist in very few special cases. For example, if we assume that Lt,t+τ has a multivariate

Gaussian distribution, then (2.2) can be rewritten as a Second Order Cone optimization, which can be efficiently

implemented with appropriate solvers. Asimit et al. (2012) found a closed form expression for such a problem in

the absence of the short-sales and ROC constraints. However, when Yt+τ and Rt+τ do not belong to the same

family of distributions, we may not be able to even identify the distribution of  Lt,t+τ .

A standard approach in the chance constrained programming literature is to use a fully nonparametric method

for approximating the conditional expectation in (2.2). This can be done by using Monte-Carlo simulations for

both assets and liabilities. The solvency condition can be thus reformulated as:

1

m

m∑
j=1

1{Yt+τ (j)−(pt+ct)RT
t+τ

(j)xt>0} ≤ 1− α. (2.3)

Here, m is the number of Monte-Carlo simulations and Yt+τ (j) and Rt+τ (j) represent the jth generated path for

liabilities and assets conditional on Ft. Due to the presence of the indicator function, the optimization problem is

still non-convex. As it was already mentioned in the introduction, several approaches such as convex approximations

or non-convex Mixed Integer Programming (MIP) representations have been recently proposed in the literature

to handle the non-parametric constraint. In general, their implementation becomes less efficient when m is large,

which is generally required for a better accuracy of the Monte-Carlo estimator. Another alternative is to construct

an equivalent chance constrained to (2.3) by finding an appropriate confidence level which requires a reasonable

small value for the number of Monte-Carlo paths; however, this depends on the data used and requires a calibration

procedure. In order to avoid such issues, we use a conditional version of the semiparametric approach proposed in

Asimit et al. (2012). This methodology is based on a pre-specified parametric conditional liability distribution and

scenario-based asset returns. Using the notation, E
[
· |Ft

⋃
{Rt+τ = Rt+τ (j)}

]
= E

(j)
t

[
·
]
, and using the double

expectation rule, we reformulate the initial problem:

min
ct,xt

ct

s.t. 1
m

m∑
j=1

E
(j)
t

[
1{Yt+τ−(pt+ct)RT

t+τ
(j)xt>0}

]
≤ 1− α,

Et
[
ROCt,t+τ

]
≥ ROCα,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.4)

The expectation in the solvency constraint is taken with respect to the r.v. Y . A sufficient condition for the

convexity of (2.4) is that E
(j)
t

[
1{Yt+τ−(pt+ct)RT

t+τ
(j)xt>0}

]
is convex in (ct, xt), for any j = 1, . . . ,m. This is
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equivalent to having a conditionally convex survival function for the liability Yt+τ . Most of the survival functions

used for modelling claim data posses this property (some not on their entire domain) and all our empirical results

in Section 4 will be based on such a distribution.

2.2 Optimization with CV aR constraint

The CV aR was introduced by Rockafellar and Uryasev (2000) as an alternative coherent risk measure to V aR,

which quantifies the loss severity in the case of default. For general random variables, the CV aR is defined as

a weighted average of the corresponding V aR and conditional expected losses which strictly exceed V aR. When

losses have a continuous distribution function, CV aR coincides with ES (e.g. see Acerbi and Tasche, 2002, and

Hürliman, 2003), which constitute the basis for quantifying the target capital according to the Swiss Solvency Test

(EIOPA, 2011), that applies to all Swiss based insurance companies.

Following a similar approach as in the RP -constrained case, we define the following optimization problem with

a CV aR solvency constraint:

min
ct,xt

ct

s.t. CV aRβt
(
Lt,t+τ

)
≤ 0,

Et
[
ROCt,t+τ

]
≥ ROCβ ,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.5)

Here, β is the confidence level for CV aR and ROCβ is the associated lower bound for our performance measure.

CV aR is a more conservative measure of risk than V aR given the same confidence level. In the empirical analysis

from Section 4, we shall relate the confidence levels for each of the risk measures by, β = 1 − 2(1 − α), such that

V aRα is the median of the worst 1− β events. This is also satisfied by the values used in the Solvency II and SST

directives (α = 99.5% and β = 99%).

There are various ways of formulating CV aR in the literature. The most appropriate representation for our

context is the one provided by Pflug (2000) and Rockafellar and Uryasev (2000), who define CV aR as the solution

of an optimization problem. For a general loss r.v. Z we have:

CV aRβ(Z) = inf
s∈<

{
s+

1

1− β
E
[
(Z − s)+

]}
,
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where (Z − s)+ = max(Z − s, 0). Using the above definition, the optimization (2.5) becomes:

min
s,ct,xt

ct

s.t. s+ 1
1−βEt

[
(Lt,t+τ − s)+

]
≤ 0,

Et
[
ROCt,t+τ

]
≥ ROCβ ,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.6)

There are different potential strategies for reformulating the solvency constraint. The traditional method used in

the literature is based on approximating the above conditional expectation with a Monte-Carlo type estimator and

transforming (2.6) into a Linear Programming (LP) problem. Indeed, under a fully non-parametric prescription,

the CV aR constraint can be rewritten as:

s+
1

m(1− β)

m∑
j=1

(
Yt+τ (j)− (pt + ct)R

T
t+τ (j)xt − s

)
+
≤ 0,

which can be further reformulated as a system of linear inequalities by introducing m additional decision variables

(e.g., see Rockafellar and Uryasev, 2000). Despite the attractiveness of having the LP representation, the imple-

mentation of (2.6) with standard solvers becomes less efficient when the number of Monte-Carlo paths is large, since

the dimension of the problem increases with m. Therefore, alternative convex approximations for the conditional

expectation should be investigated to accommodate such scenarios. For example, Alexander et al. (2006) use a

continuously differentiable piecewise quadratic approximation. As in the RP -constrained optimization case, we

propose here a semiparametric approach which reformulates (2.6) as:

min
s,ct,xt

ct

s.t. s+ 1
m(1−β)

m∑
j=1

E
(j)
t

[
(Yt+τ − (pt + ct)R

T
t+τ (j)xt − s)+

]
≤ 0,

Et
[
ROCt,t+τ

]
≥ ROCβ ,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.7)

A sufficient condition which ensures the convexity of (2.7) is that E
(j)
t

[(
Yt+τ −(pt+ct)R

T
t+τ (j)xt−s

)
+

]
is a convex

function in s, ct and xt. This issue is discussed in Section 3, once the liability r.v. is fully specified.

2.3 Optimization with EPD constraint

The EPD concept was introduced by Bustic (1994) as an alternative method to the ruin probability for measuring

insolvency risk, and constitutes a useful tool in establishing the US RBC system. EPD is defined as the expected
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loss in the event of insolvency, and thus, it is similar to the ES concept (for a detailed discussion, see Cummins

and Phillips, 2009). Translating this definition into our setting, we write:

EPD(Lt,t+τ ) = Et
[
(Yt+τ − (pt + ct)R

T
t+τxt)+

]
. (2.8)

The solvency constraint based on this measure can be constructed by imposing a maximum allowance level for

EPD. However, since an a priori choice of such threshold is not straightforward and it depends on the insurer

expected liability, we introduce a solvency criteria based on a target level of a deficit ratio. Consequently, the EPD

constraint is defined as:

EPD
(
Lt,t+τ

)
Et
[
Yt+τ

] ≤ f.

Here, f is the maximum level for the EPD ratio with 0 ≤ f < 1. Since (2.8) contains a similar expectation term

as in the CV aR definition, the whole discussion on dealing with CV aR-constrained problems applies here as well.

For consistency, we only give the semiparametric representation for our EPD-constrained optimization problem:

min
ct,xt

ct

s.t. 1
m

m∑
j=1

E
(j)
t

[
(Yt+τ − (pt + ct)R

T
t+τ (j)xt)+

]
≤ fEt

[
Yt+τ

]
,

Et
[
ROCt,t+τ

]
≥ ROCf ,

1Txt = 1, xt ≥ 0, ct ≥ 0.

(2.9)

The convexity of the solvency constraint in (2.9) will be discussed in the same manner as in the CV aR case in

Section 3.

3 Modelling assets and liabilities

MV-GARCH processes are probably the most popular tools for modelling the variances and covariances of different

assets in discrete time. Depending of the conditional covariance matrix structure, a large number of MV-GARCH

models have been proposed in the literature. We consider here the class of DCC-GARCH models of Engle (2002),

for modelling the multivariate dynamic of the log-return process. Due to their relative simple estimation procedure,

the DCC framework is also convenient for large scale risk management problems.

We assume that the vector of asset log-returns are observed at a higher frequency than solvency is observed.
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In particular, we sample returns on a daily basis:

log Rt+1 = mt+1 + εt+1, εt+1|Ft ∼MVN(0, Ht+1). (3.1)

Here, mt+1 is the n-dimensional Ft-measurable conditional mean log-return vector and εt+1 = (ε1,t, . . . , εn,t)
T has

a conditionally multivariate Gaussian distribution with mean 0 and covariance matrix Ht+1.

One of the main features of the DCC structure is that it allows for separate dynamics for the individual

conditional variances and the time-varying conditional correlation matrix. In the following, we briefly illustrate

Engle’s (2002) formulation:

Ht+1 = D
1/2
t+1Σt+1D

1/2
t+1, (3.2)

Dt+1 = diag(h1,t+1, . . . , hn,t+1), (3.3)

Σt+1 = diag(q
−1/2
11,t+1, . . . , q

−1/2
nn,t+1)Qt+1diag(q

−1/2
11,t+1, . . . , q

−1/2
nn,t+1), (3.4)

Qt+1 = (1− θ1 − θ2)Q̄+ θ1utu
T
t + θ2Qt. (3.5)

Here, Dt+1 is the n × n diagonal matrix formed with the univariate conditional variances which are assumed to

follow a standard GARCH(1,1) process as below:

hi,t = ωi + αiε
2
t−1 + βihi,t−1, i = 1, . . . , n (3.6)

The time-varying conditional correlation matrix of Rt+1 is denoted by Σt+1 and its elements ρij,t+1 are of the

form ρij,t+1 = qij,t+1q
−1/2
ii,t+1q

−1/2
jj,t+1, for any 1 ≤ i, j ≤ n; qij,t+1 are the elements of Qt+1 and are assumed to follow

another GARCH(1,1) dynamic given in (3.5). The process ut represents the n × 1 vector of devolatilized, but

correlated innovations (i.e. ui,t = h
−1/2
i,t εi,t ) and Q̄ is the unconditional covariance matrix of ut. We assume

that all univariate GARCH parameters in (3.6), ωi, αi and βi, and the DCC parameters in (3.5), θ1, θ2, satisfy the

conditions required for covariance stationarity, and positive definiteness of Ht+1, for any t.

In order to investigate the effect of the time-varying conditional correlations between the portfolio’s assets, we

shall also look at two other models, which can be viewed as particular cases of the DCC-GARCH. The first one

is the Conditional Constant Correlation (CCC) model of Bollerslev (1990) that can be obtained by replacing the

time-varying correlation matrix by a symmetric positive definite matrix with constant elements (i.e. Σt = Σ).

The second alternative analyzed assumes the assets are uncorrelated, and this is immediately obtained by letting

Σt = In in (3.5), where In is the n× n identity matrix.
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Historical data for modelling claim amounts is commonly fitted using one-component parametric distributions

such as, Pareto, Lognormal, Gamma, Weibull etc., or more recently using composite distributions (see for example,

Scollnik and Sun, 2012, and the references therein for Pareto composite models). Since the objective of the paper is

not to investigate goodness-of-fit of different alternatives, we restrict our attention only to a one parametric family.

In particular, we consider that claims are modelled with a Lognormal distribution. Since our semiparametric method

requires the computations of various conditional expectations given historical information on the asset evolutions,

we further assume in our numerical examples that Yt+τ is independent of the enlarged filtration Ft
⋃
σ(Rt+τ ), for

any time t and a given solvency horizon τ . Although this allows us for a more convenient implementation, the

optimization problems can be solved under more general dependence structures between assets and liabilities, as

long as the resulting constraints are convex. Therefore, we let:

Yt+τ ∼ LGN(µt+τ , σt+τ ). (3.7)

The model parameters are assumed to be time-dependent as they will be re-estimated using a double rolling-

window exercise. In the remainder of this section, we discuss the convexity of the solvency constraints under the

lognormality assumption from (3.7).

First, we let zt = (pt + ct)xt in all three optimization problems (2.4), (2.7) and (2.9). With this notational

change, the new decision variables are ct and zt, and the budget constraint becomes 1T zt = pt + ct with zt ≥ 0.

Under the above assumption, the solvency constraint for the EPD problem can be rewritten as:

1

m

m∑
j=1

E
[
(Yt+τ −RT

t+τ (j)zt)+
]
≤ fE

[
Yt+τ

]
.

A sufficient condition for convexity is that E
[
(Yt+τ − RT

t+τ (j)zt)+
]

is convex for any j = 1, . . . ,m. We notice

that the quantity under the expectation represents the payoff of a European Call option written on Yt+τ . Under

the lognormality assumption of Yt+τ , we can write the above expectation as the present value at maturity of a

Black-Scholes Call price, erTBS(S,K, T, σ, r), with the following parameter matching:

S = 1, K = RT
t+τ (j)zt, T = 1, σ = σt+τ , r = µt+τ +

σ2
t+τ

2
.

Thus, the solvency constraint can be reformulated as:

m∑
j=1

ï
exp

(
µt+τ +

σ2
t+τ

2

)
Φ
(− log(RT

t+τ (j)zt) + µt+τ + σ2
t+τ

σt+τ

)
−RT

t+τ (j)ztΦ
(− log(RT

t+τ (j)zt) + µt+τ

σt+τ

)ò
≤ b. (3.8)
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Here, b = fm exp
(
µt+τ +

σ2
t+τ

2

)
and Φ(·) is the cumulative distribution function of a standard Gaussian random

variable. The convexity of (3.8) follows now from the convexity property of the European Call price with respect

to the strike price, which is itself an affine function of zt.

Using a similar prescription, we can show the convexity of the CV aR optimization problem (2.7) based on the

Black-Scholes formula. The only difference consists of having a different strike price K = RT
t+τ (j)zt + s, which is

a linear function of the decision variables s and zt.

We now turn our attention to the RP problem (2.4). The solvency constraint is equivalent to:

1

m

m∑
j=1

Φ
(− log(RT

t+τ (j)zt) + µt+τ

σt+τ

)
≤ 1− α. (3.9)

Since the standard Gaussian c.d.f. is convex only on its negative domain, a sufficient condition for the convexity

of (3.9) is the following:

min
1≤j≤m

RT
t+τ (j)zt ≥ expµt+τ . (3.10)

Thus, according to condition (3.10), convexity of (2.4) is satisfied when the terminal value of the total assets

investment in the worst case scenario is greater than the median of the liability distribution. Although this

requirement cannot be verified analytically as in the previous two cases, our numerical simulations from Section 4

indicate that (3.10) is never violated.

4 Empirical Analysis

In this section, we investigate the empirical performance of three MV-GARCH models for all optimization problem

considered. We provide two main numerical experiments. Firstly, for a specified solvency target, we construct

efficient frontiers for (2.4), (2.7) and (2.9) by varying the expected ROC. Secondly, the out-of-sample performance

analysis is carried out through a detailed double rolling window estimation exercise.

4.1 Data Description

We consider a 3-asset portfolio formed with two types of financial instruments: one ”risk-free” asset represented

by three month US T-Bills and two risky assets consisting of the NASDAQ and NYSE Composite indices. These

indices have been previously used for multivariate option pricing under various MV-GARCH models by Rombouts
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and Stentoft (2011). Both index series were observed on a daily basis from January 3, 2005 to July 29, 2011

for a total of l = 1, 656 observations. Descriptive statistics for NASDAQ and NYSE log-returns are provided in

Table 4.1.1. We notice that there are not significant differences between the two series in terms of the first two

Table 4.1.1: Descriptive statistics for NASDAQ and NYSE log-returns from January 3, 2005 - July 29, 2011 for a total of 1,656

observations.

Index Min Max Mean Std Skewness Kurtosis

NASDAQ -0.0959 0.1116 0.0001 0.0149 -0.1670 10.2725

NYSE -0.1023 0.1153 0.0001 0.0150 -0.3480 12.7329

moments. However, the NYSE log-returns have a more pronounced negative skewness (i.e. a higher chance chance

of extremely negative outcomes) and a greater kurtosis than the NASDAQ counterpart. The data set is divided into

two samples: Sample A consists of lA = 1, 259 daily observations for a 5-year period from January 3, 2005 through

December 32, 2009, and it is used for the in-sample estimation and analysis of the efficient frontiers. Sample B,

which covers the period from January 1, 2010 through July 29, 2011 with lB = 397 daily points, is used for testing

the out-of-sample performance in the rolling window exercise. The evolution of both indices over the entire period

is depicted in Figure 4.1.1. The most significant part of the financial crisis period is included into Sample A. Figure

4.1.1 also indicates a strong correlation between the two risky assets, with similar volatility clustering shapes.

For liabilities, we use a data set on property insurance claim amounts provided by a Romanian insurance

company for the same period used in the assets case. However, the main difference is that the sampling frequency

is different from the one used for assets. There are 79 observations representing aggregate monthly claim amounts,

which are divided into two samples according to a similar prescription (i.e. Sample A′ consist of lA′ = 60 monthly

observations and Sample B′ has lB′ = 19 data points which are used for the out-of-sample comparison). The main

characteristics of the entire sample are illustrated in Table 4.1.2.

4.2 Estimation results

We first estimate the parameters for the asset returns. There are various ways which one can specify the conditional

mean vector in the MV-GARCH log-return equation (3.1). For example, Rombouts and Stentoft (2011) use a
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Figure 4.1.1: Time series of log-returns for NASDAQ and NYSE over the period January 3, 2005 - July 29, 2011 for a total

of 1656 observations.

Table 4.1.2: Descriptive statistics for monthly claim amounts from January 3, 2005 - July 29, 2011 for a total of 79 observations (figures

are in thousands €).

Min Max Mean StDev Skewness Kurtosis

8.2465 2049.2119 603.2802 375.1311 1.2434 5.5068
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multivariate risk premium specification for mt when pricing options under a DCC-GARCH model, while Hlouskova

et al. (2009) consider an autoregressive structure for deriving multistep predictions with applications in risk

management. Since our objective is to analyze the conditional correlation effect to the optimal capital and its

allocation, we perform our estimation ignoring the mean effect.

The estimation procedure follows the two-stage Maximum Likelihood Estimator (MLE) algorithm proposed by

Engle and Sheppard (2001). In the first stage, the univariate GARCH parameters are estimated by replacing the

conditional correlation matrix of Rk, Σk, with the identity matrix in the log-likelihood function below:

logL = −1

2

l∑
k=1

(
log(|Hk|) + ε′kH

−1
k εk

)
,

where l represents the number of observations in the dataset. Given the parameters estimated in the first stage,

the DCC and CCC parameters are estimated based on the correct log-likelihood specification with Σk and Σ,

respectively. Thus, at the second stage only θ1 and θ2 for DCC, and ρ for CCC are estimated. The results are

reported in Table 4.2.1. According to all three selection criteria, the DCC specification is preferred to the CCC

Table 4.2.1: Parameter estimates (with corresponding asymptotic variances reported the brackets) using log-returns for NAS-

DAQ and NYSE during January 3, 2005 - July 29, 2011 for a total of 1656 observations. AIC and BIC are the

Akaike and Bayesian Information Criteria.

Estimation Stage Model parameters Selection criteria

Index ωi αi βi

NASDAQ 2.0E-06 0.0736 0.9146

1 (5.06E-13) (1.35E-04) (1.40E-04)

NYSE 1.4E-06 0.0856 0.9061

(3.99E-13) (1.46E-04) (1.41E-04)

Covariance model

DCC θ1 θ2 logL AIC BIC

0.0432 0.9409 11,630 -23,245 -23,201

2 (5.58E-05) (9.28E-05)

CCC ρ logL AIC BIC

0.9061 11,574 -23,134 -23,096

(1.64E-05)

one. The parameter estimates for the DCC-GARCH are in the same range with the values obtained in other

previous studies. Each univariate series is characterized by a high degree of persistence (i.e., α1 + β1 = 0.988

for NASDAQ, and α2 + β2 = 0.992 for NYSE). Similar persistence can be observed in the conditional correlation

dynamic, since θ1 + θ2 = 0.984. The value of ρ = 0.91 in the CCC case suggests a high degree of positive
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correlation over the considered period. The implied univariate GARCH conditional variances and conditional

correlation between the two assets are illustrated in Figure 4.2.1. We notice the conditional correlation implied

by the DCC-GARCH structure has a minimum value of around 0.7 ( reached at the beginning of 2007), while its

maximum is approximately 0.95 (reached at the beginning of 2009).

Next, we use the MLE to fit a Lognormal distribution on the monthly claim amounts for the same period. The

results are reported in Table 4.2.2. The Kolmogorov-Smirnov test indicates that a Lognormal distribution cannot

be rejected at 5% significance level.

Table 4.2.2: Parameter estimates (with corresponding asymptotic variances reported the brackets) for Lognormal distribution

using monthly claim amounts for property insurance during January 3, 2005 - July 29, 2011 for a total of 79

observations. KStest stands for the Kolmogorov-Smirnov test and its p-value is reported in the brackets.

µ̂ σ̂ Log L KStest

6.160460 0.829457 584.00 0.1297

(0.0087) (0.0044) (0.1279)

4.3 Implementation of solvency constrained optimization

All three optimization problems (2.4), (2.7) and (2.9), combined with the convex reformulations for the solvency

constraints from Section 3, are implemented using Matlab’s non-linear optimization routine fmincon based on

interior-point algorithms. The solvency targets are fixed as follows: α = 99.5% (the standard value imposed by

Solvency II) for the RP -constrained problem, β = 99% (the standard value imposed by SST) for the CV aR-

constrained problem and f = 0.25% (arbitrarily chosen) for the EPD-constrained problem. Since losses are

sampled on a monthly basis, we let the solvency horizon τ = 21 days. Given al the information up to time t, each

optimization is implemented according to the following algorithm:

1. Estimate the asset and liability parameters according to the methodology described in Section 4.2.

2. Compute the insurance premiums using the expected premium principle, so pt = (1 + η)E[Yt+τ ], where η is

the relative security loading factor fixed at 0.1.
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Figure 4.2.1: Conditional variances and correlations for the DCC-GARCH models based on the MLE estimates over the

period January 3, 2005 - July 29, 2011 for a total of 1656 observations.
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3. Generate m = 10, 000 Monte-Carlo paths, Rt+τ (j), j = 1, . . . ,m, for the asset returns, according to the

corresponding covariance structure from equations (3.1)-(3.5). For the T-Bill rate, we use the three month

rate corresponding to the period [t, t+ τ ].

4. Solve each optimization problem and find the optimal capital required c∗t , and the optimal portfolio allocation

(x∗i,t, i = 1, . . . , 3).

When liabilities are Pareto distributed, Asimit et al. (2012) showed that the differences between the semiparametric

approximation implemented with Matlab and the SOC representation under Mosek are insignificant when m =

10, 000. Moreover, in the Gaussian case, this solution converges to the theoretical one.7 Our analysis is based on

three covariance models: DCC-GARCH, CCC-GARCH and UNI-GARCH (which is the no-correlation model and

is obtained from the CCC specification by letting ρ = 0).

4.3.1 Efficient Frontier Analysis

Efficient frontiers are constructed by running the above algorithm for different expected return on capital targets.

The minimum levels for the expected ROC are obtained by solving the unconstrained version of each optimization

(i.e. we discard the performance measure constraint). All parameters are estimated from Sample A data.

The behaviours of (c∗t ) and (x∗i,t, i = 1, . . . , 3) are analyzed for all three covariance specifications. First, we plot

the efficient frontiers in Figure 4.3.1. We notice that all efficient frontiers are smooth for all three optimizations.

Moreover, the same pattern can be observed for each of the covariance model considered. On the one hand, the

DCC-GARCH, which captures the best the correlation dynamic, is the most conservative model in the sense that

it requires the highest minimum optimal capital for the same level of expected ROC. On the other hand, c∗t has

the smallest values for UNI-GARCH, as this model totally ignores the strong positive correlation between the two

risky assets. The correlation dynamic seems to have a strong impact on the structure of the optimal portfolio. This

is depicted in Figure 4.3.2. The optimal allocation into NASDAQ increases with the expected ROC level for all

three models and for all problems considered, while the optimal allocation in T-Bills decreases in a similar fashion.

Indeed, when no expected ROC is imposed, the optimal allocations are around 20% in NASDAQ, and 70% (UNI)

7In an unreported numerical exercise, we tested the accuracy for the Monte-Carlo approximation when m− 10, 000 for the CV aR

and EPD problems; our results suggested that the standard errors of the optimal solutions are in the same range as the ones obtained

in the RP case.
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Figure 4.3.1: Efficient frontiers for DCC, CCC and UNI-GARCH models under the RP , CV aR and EPF -constrained prob-

lems. Solvency constraints are approximated based on 10,000 Monte-Carlo paths and scenarios are generated

based on Sample A estimates.

and 80% (CCC and DCC) in T-Bills. When the shareholders’ expected ROC approaches its maximum feasible

value, the optimal portfolios are constructed based almost solely on the NASDAQ index. Interestingly, the optimal

allocation in the riskiest asset (NYSE) is almost zero for the DCC-GARCH, while for the other two dynamics it

first increases until a maximum is reached, and after that decreases approximately to zero as well.

4.3.2 Out-of-Sample Performance

In this section, we carry out an out-of-sample analysis for the optimal portfolios based on RP , CV aR and EPD

constraints. Our approach is similar to the standard rolling window methodology proposed in the portfolio op-

timization literature (e.g., see Santos et al., 2012). However, since we have two main sources of risk, we further

propose and analyze the effect of a double rolling window estimation on our optimal solutions.

We set the length of the rolling window lA = 1, 259 for asset returns estimation and lA′ = 60 observations for

liability estimation. First, we compute the optimal solutions (c∗t ,x
∗
t ) for period [t, t+ τ ] using data from Samples

A and A′. Next, we construct a new sample for assets by dropping the first τ = 21 observations from Sample A

and adding the same number of data points from Sample B. This corresponds to a monthly portfolio rebalancing.
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2274 2276 2278 2280 2282 2284 2286 2288 2290 2292 2294
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal Capital

O
p
t
im

a
l 
A

s
s
e
t
 
A

ll
o
c
a
t
io

n
 
−

 
N

a
s
d
a
q

 

 

DCC GARCH

CCC GARCH

UNI GARCH

(c) EPD-constrained optimization
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(e) CV aR-constrained optimization
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(f) EPD-constrained optimization
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(h) CV aR-constrained optimization
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Figure 4.3.2: Optimal asset allocation for different levels of expected ROC for DCC, CCC and UNI-GARCH models under

the RP , CV aR and EPF -constrained problems. Solvency constraints are approximated based on 10,000 Monte-

Carlo paths and scenarios are generated based on Sample A estimates.
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Similarly, we construct the new sample for liabilities by discarding the first observation from Sample A′ and adding

the first observation from Sample B′. With this new data set, we recompute the next period optimal solutions

(c∗t+τ ,x
∗
t+τ ) based on Step 1 - 4. We repeat this sampling procedure and the corresponding optimization steps

until the end of Sample B/Sample B′ is reached. In other words, we have computed (c∗t+(k−1)τ ,x
∗
t+(k−1)τ ), with

k = 1, . . . , lB′ , optimal solutions for each solvency constrained problem and MV-GARCH model. The effect of the

liability estimates is investigated by comparing the optimal solutions obtained under the double rolling window

experiment with the ones calculated from a single rolling window exercise (i.e. when only asset returns re-estimation

is performed). In the latter case, all optimizations are solved based on liability parameters obtained from Sample

A′. In order to avoid potential feasibility issues created by the expected return on capital constraint under liability

re-estimation, all optimization problems are implemented without a lower bound for the expected ROC. The

results illustrated in Figures 4.3.3-4.3.5.

Figure 4.3.3 plots the evolution of the total optimal assets invested (pt + c∗t ) into the optimal portfolio under

the two exercises. A comparison only between optimal capital requirements would have been misleading, since

insurance premiums change at each step under the double rolling window (they are linear functions of expected

severity), and this may also cause changes in c∗t . First, we notice that there are no significant differences among the

covariance models. Under the single rolling window scenario, the optimal capital required remains unchanged for all

three solvency constrained problems. This is no longer the case when we allow re-estimation for Yt. The variation

in total assets invested is quite large, ranging from 1,887 to 2,728 for RP , 1,986 to 2,949 for CV aR and 1,868 to

3,222 for EPD; thus, the EPD problem has the largest fluctuation, while RP is the smallest. Figures 4.3.4-4.3.5

suggest that the differences between the optimal portfolio allocations with and without liability re-estimation are

much less pronounced. The portfolio structure also depends on the choice of the MV-GARCH model. For example,

for the RP and CV aR problems, the variation in optimal allocations for NASDAQ and NYSE are smaller for the

UNI-GARCH when compared to the DCC and CCC counterparts. The double rolling window exercise indicates

that the optimal investment is very sensitive to the liability parameters; however, this may also be attributed to a

much smaller sample size used for liability estimation. Finally, we notice that most portion of amount investment

is typically allocated to the T −Bills, the minimum value of approximately 70% corresponds to the UNI-GARCH

for each problem.

In the remainder of this section, we compute a variety of out-of-sample indicators to provide a comparison
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(c) CV aR-constrained and single rolling window
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(d) CV aR-constrained and double rolling window
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Figure 4.3.3: Comparison of optimal total assets invested, pt + c∗t , with single and double rolling window.
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(b) RP -constrained and double rolling window
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(c) CV aR-constrained and single rolling window
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(d) CV aR-constrained and double rolling window
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(e) EPD-constrained and single rolling window
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Figure 4.3.4: Comparison of optimal portfolio allocation in NASDAQ, with single and double rolling window.
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(c) CV aR-constrained and single rolling window

Jan−10 Apr Jul Oct Jan−11 Apr Jul
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Month of Investment

O
p
ti
m

a
l 
A

s
s
e
t 
A

ll
o
c
a
ti
o
n
 −

 N
Y

S
E

 

 

DCC GARCH

CCC GARCH

Univariate GARCH

(d) CV aR-constrained and double rolling window
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Figure 4.3.5: Comparison of optimal portfolio allocation in NYSE, with single and double rolling window.
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between the covariance models relative to the solvency and portfolio performances. In order to measure the

solvency requirement performance of the optimal solutions, we consider three metrics: the average assets invested,

the average solvency value and the maximum solvency value. All averages are computed over the rolling window

period, with and without re-estimation. Depending on the solvency criteria, the average solvency values are

computed based on the following expressions:

R̂P =
1

lB′

lB′∑
k=1

Φ
(
dt+kτ

)
,

ĈV aR =
1

lB′

lB′∑
k=1

(E[Yt+kτ ]

1− β
Φ
(
σt+kτ − Φ−1(β)

)
−RT

t+kτz
∗
t+(k−1)τ

)
,

ÊPD =
1

lB′

lB′∑
k=1

ï
E[Yt+kτ ]Φ

(
dt+kτ + σ2

t+kτ

)
−RT

t+kτz
∗
t+(k−1)τΦ

(
dt+kτ

)ò
.

Here,

z∗t+(k−1)τ = (pt+(k−1)τ + c∗t+(k−1)τ )x∗t+(k−1)τ ,

dt+kτ =
− log RT

t+kτz
∗
t+(k−1)τ + µt+kτ

σt+kτ
,

where (c∗t+(k−1)τ ,x
∗
t+(k−1)τ ) and Rt+kτ represents the optimal solution and the gross return vector, respectively,

over the period [t + (k − 1)τ, t + kτ ], for any k = 1, . . . , lB′ . The average assets invested are calculated by taking

averages of all pt+(k−1)τ + c∗t+(k−1)τ over the rolling period. The results are reported in the first panel of Tables

4.3.1 and 4.3.2.

For all models and for both rolling window exercises the average total investment is almost the same across each

covariance model. We notice that the CV aR optimization at 99% requires a higher initial optimal capital than the

corresponding V aR at 99.5% problem. The EPD-constrained optimization based on a ratio f = 0.25% is the most

conservative method. The mean out-of-sample ruin probability is around 0.497 for both experiments. However, we

observe scenarios under which the ruin solvency constraint is violated. Although not reported in the tables, the

number of violations is the same across all models and typically corresponds to a negative monthly rate of return

for both risky assets. More specifically, the maximum values for the ruin probabilities are attained when the asset

monthly rate of returns are −11% and −12%, respectively. Potential improvements for reducing the number of

constraint violations could be obtained using a more sophisticated conditional mean return (e.g. an autoregressive

structure) and estimating the model parameters based on lower frequency data (e.g. weekly or monthly). The
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Table 4.3.1: Solvency and portfolio out-of-sample performance under the single rolling window exercise.

Solvency Performance Portfolio Performance

Avg. Assets Avg. Solvency Max. Solvency Avg. Std. Sharpe Turnover

invested Value Value AROC (%) AROC Ratio

Problem 1. Avg. Max.

Ruin Constraint Ruin Probability (%) Ruin Prob (%)

Covariance Model

DCC 2581.30 0.497 0.543 3.67 1.15 3.18 0.013

CCC 2580.77 0.498 0.550 3.66 1.25 2.92 0.018

UNI 2581.13 0.497 0.585 3.78 2.07 1.83 0.005

Problem 2. Avg. Max.

CVaR Constraint CVaR CVaR

Covariance Model

DCC 2782.24 -3.665 46.718 3.32 1.07 3.11 0.013

CCC 2782.06 -3.236 53.702 3.31 1.16 2.85 0.018

UNI 2781.69 -5.220 87.822 3.42 1.92 1.79 0.005

Problem 3. Avg. Max.

EPD Constraint EPD Ratio (%) EPD Ratio (%)

Covariance Model

DCC 2982.54 0.248 0.272 3.06 1.13 2.71 0.014

CCC 2982.33 0.249 0.275 3.05 1.22 2.49 0.019

UNI 2981.90 0.248 0.292 3.17 2.02 1.57 0.005
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Table 4.3.2: Solvency and portfolio out-of-sample performance under the double rolling window exercise.

Solvency Performance Portfolio Performance

Avg. Assets Avg. Solvency Max. Solvency Avg. Std. Sharpe Turnover

invested Value Value AROC (%) AROC Ratio

Problem 1. Avg. Max.

Ruin Constraint Ruin Probability (%) Ruin Prob (%)

Covariance Model

DCC 2129.17 0.497 0.546 5.08 1.46 3.46 0.019

CCC 2129.06 0.497 0.553 5.06 1.56 3.24 0.021

UNI 2128.81 0.496 0.589 5.17 2.25 2.29 0.020

Problem 2. Avg. Max.

CVaR Constraint CVaR CVaR

Covariance Model

DCC 2258.85 -1.773 28.645 4.67 1.38 3.38 0.018

CCC 2258.75 -1.319 32.857 4.65 1.47 3.16 0.020

UNI 2258.48 -2.114 58.813 4.75 2.11 2.25 0.018

Problem 3. Avg. Max.

EPD Constraint EPD Ratio (%) EPD Ratio (%)

Covariance Model

DCC 2222.25 0.248 0.273 4.92 1.67 2.95 0.019

CCC 2222.15 0.249 0.276 4.91 1.77 2.77 0.022

UNI 2221.86 0.248 0.294 5.03 2.46 2.05 0.019
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latter reduces the number of simulation steps and thus improves the GARCH forecasting performance. The DCC-

GARCH is the best in the sense that it gives the lowest maximum ruin probability of 0.543% (0.546% for liability

re-estimation), as opposed to 0.585% (0.589% for liability re-estimation) observed in the no-correlation case. A

similar pattern can be observed for the maximum levels of CV aR and EPD ratio. For example, the CV aR under

the UNI-GARCH case is almost twice as large as the DCC-GARCH counterpart.

We now analyze the out-of-sample portfolio performance by computing averages, standard deviations and Sharpe

ratios based on an adjusted rate of return on capital defined below:

AROCt,t+τ =
(pt + c∗t )R

T
t+τx

∗
t − E[Yt+τ ]

ct
− 1.

The following quantities are calculated and reported in the second panel of Tables 4.3.1 and 4.3.2:

µ̂AROC =
1

lB′

lB′∑
k=1

AROCt+(k−1)τ,t+kτ ,

σ̂AROC =

Ã
1

lB′

lB′∑
k=1

(AROCt+(k−1)τ,t+kτ − µ̂AROC)2,”SRAROC =
µ̂AROC
σ̂AROC

,

Turnover =
1

lB′ − 1

lB′−1∑
k=1

n∑
i=1

|x∗i,t+kτ − x∗i,t+(k−1)τ |.

DeMiguel and Nogales (2009) interpret the portfolio turnover as the average percentage of wealth traded in each

period. From Table 4.3.1, we observe the no-correlation GARCH model outperforms the other two covariance

specifications in terms of the average AROC. The DCC and CCC-GARCH models have slightly lower and approx-

imately equal values for for ˆAROC. The risk-return trade-off is also visible from the fact that the average AROC

is a decreasing function of capital invested. The DCC-GARCH provides the highest values of Sharpe Ratio in all

situations. For example, for the RP -constrained optimization ”SRAROC = 3.18, for the CV aR is 3.11 and for the

EPD is 2.71. The smallest Sharpe Ratios are recorded for the no-correlation dynamic with values of 1.83, 1.79 and

1.57, respectively. Thus, we can conclude that the incorporation of a dynamic correlation increases the portfolio

performance as measured by the Sharpe Ratio. However, the UNI-GARCH model provides the smallest portfolio

turnover value. Similar patterns can be observed by examining the results from Table 4.3.2. Under the double

rolling window exercise, the average values for the AROC increase across all models and optimization problems.

This is a direct consequence of the fact that the optimal asset invested decreases due to changes in the liability
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parameters. The Sharpe Ratio values indicate that DCC-GARCH is the best model for all three problems, the

highest value being obtained for the RP constrained optimization (3.46) and the lowest for the EPD. Unlike in

the single rolling exercise, the turnover ratios have now similar values for the DCC and no-correlation models. We

further notice that the turnovers are higher when we re-estimate liability parameters.

5 Conclusions

In this paper we propose three problems to jointly solve for the optimal capital requirement and its optimal portfolio

allocation. Each problem is constructed based on two types of constraints. The first set of constraints are dictated

by standard solvency insurance requirements such as V aR, CV aR and EPD calculated for a specified horizon

and for a given confidence level. The second constraint represents a performance measure constraint based on a

lower bound for the shareholders’ expected ROC. We provide a novel semiparametric approach for solving these

problems based on a parametric distribution of the liability random variable and the empirical distribution for asset

returns. In particular, we assume claim amounts follow a Lognormal distribution and portfolio’s asset returns are

generated according to a Dynamical Conditional Correlation multivariate GARCH model. We provide sufficient

conditions such that each solvency constraint admits a convex representation; these are further implemented using

the non-linear optimization Matlab solver based on interior-point algorithms. We examine optimal solutions for

3-asset portfolios (two indices and one risk-free asset) through two numerical experiments.

In the first numerical example, we construct efficient frontiers for the optimal capital based on different levels of

expected ROC. The efficient frontiers have the same pattern for all constraints and covariance models considered.

The correlation between the two entities plays an important role in the behaviour of the optimal capital required

and the portfolio structure. For the same level of expected ROC, the minimum value of c∗t is obtained for the no-

correlation model, while DCC-GARCH is the most conservative model. Furthermore, the portfolio weights behaves

differently; for example, DCC-GARCH allocates nothing to the NYSE index, while the optimal weights are non-zero

for the other covariance specifications. When the shareholders increase their expected ROC, the optimal allocation

in the T-Bills decreases from almost 70% (for UNI-GARCH) and 80% (for CCC and DCC-GARCH) to zero.

The out-of-sample performance of our portfolio is tested in a second detailed numerical example using a double

rolling window estimation for both assets and liabilities. On the one hand, we found that the optimal required
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capital is very stable when the liability parameters remain constant over the rolling horizon; however, the variation

is substantial when the liability is re-estimated at each step. On the other hand, the differences between the optimal

portfolio weights are not as pronounced for the single versus double rolling exercises. We compute two types of

indicators for assessing the solvency and return on capital performances. Our results suggest that the DCC model

outperforms the other candidates under both scenarios. More specifically, the DCC-GARCH has the smallest value

of the maximum RP , CV aR and EPD, and provides the highest out-of-sample Sharpe Ratio. Several extensions

to our models can be further investigated by including more complex models for assets and liabilities, as well as by

extending this work to allow for multiple business lines, friction costs and possibly a multiperiod setting.
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