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An Example : which event is rarest?

@ Returns of daily exchange rates of yen-dollar and pound-dollar from
1999 to 2009.

@ Which one is the most extreme among those marked with solid circles?
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Introduction

o Let Z be a random vector on R (d > 2).

@ A risk region is a set @ such that P(Z € Q) = p, extremely small.

o & = E A
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o Let Z be a random vector on R? (d > 2).
@ A risk region is a set @ such that P(Z € Q) = p, extremely small.

@ Events in @ hardly happen. The interest of these events originates
from their potential large consequences.
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@ Suppose Z has probability density f. Denote the corresponding
probability measure with P.

@ The risk regions of interest are defined in this form:

Q={zeR": f(z) < B},

where [ is an unknown number such that PQ = p.
o Q°={zcRe: f(z) > B}.

@ ( is the set of less likely points.
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@ The goal is to estimate () based on a random sample from Z. The
sample size is n.

e For asymptotics, we consider p = p(n) — 0, as n — oc.

o We write:

Qn={z¢€ R? . f(z) < Bn}.
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Main Results

Multivariate Regular Variation

There exist a positive number o and a positive function ¢, such that

P Z > t)
1 e
oo P(|Z [[>1)

, forall x>0,
and f(tz)
. z
tli)r(r)lo R Z > q(z), forall z#0,
where || - || denotes the Ly norm.

o & E DA
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N UL, TR Main Assumption

Multivariate Regular Variation
There exist a positive number o and a positive function ¢, such that

e PUZI> ),

_ forall 2> 0
S AR s

and f(t2)
zZ
lim ——————— = for all
Mgz sg W fralero
where || - || denotes the Ly norm.

© Examples: Cauchy distributions and all elliptical distributions with a
heavy tailed radius.
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UL A
Some results from the assumption

@ The distribution of the radius has a right heavy tail. « is the tail
index.

e ¢ is homogenous: ¢(az) = a=%¢(z).

o Define v(B) = [ q(z)dz. Then, for a Borel set B with positive
distance from the origin,

. P(ZctB) _,
S AT
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Main Results

@ Recall that we try to estimate

Qn={z €R": f(2) < Bu},
such that P(Z € Q,,) =p

o & = E A
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Main Results

@ Recall that we try to estimate

Qn={z €R": f(2) < Bu},
such that P(Z € Q,,)

o Link Q, to S={zcR?:q(z) <1}
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(\VEINEETIEM  Estimation

@ Recall that we try to estimate

Qn:{ZERd:f(Z)S/Bn},

such that P(Z € Q) =p
o Link Q, to S={zcR?:q(z) <1}

o Inflate S with the factor u,: Q, := u,S, where w,, is such that
P(||Z]] > up) = 42,
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(\VEINEETIEM  Estimation

@ Recall that we try to estimate
Qn:{ZERd:f(Z)S/Bn},

such that P(Z € Q) =p
o Link Q, to S={zcR?:q(z) <1}

o Inflate S with the factor u,: Q, = u,S, where u, is such that
P(||Z]] > up) = 42,

@ (O, is a good approximation of Q,,.
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Main Results

@ Suppose we have Zq, .

, Ly, i.i.d copies of Z.
o Put ©:={z:||z|=1}. Then W; €0,i=1,2,...,n.

o & = E DA
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(\VEINEETIEM  Estimation

Estimation of u,,

o Note that u, is the tail quantile of Ry: P(Ry > uy) = 420,

@ Suppose that we know v(S). Applying the univariate extreme value
technique, we define the estimator given by

kv(S)\ Ve
np ’

Up = Rn—k,n <

where k = k(n) such that k¥ — oo and k/n — 0, as n — oo and
R,,_jn is the (n — k)-th order statistics of {R;,i=1,...,n}.
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(\VEINEETIEM  Estimation

Estimation of u,,

o Note that u, is the tail quantile of Ry: P(Ry > uy) = 420,

@ Suppose that we know v(S). Applying the univariate extreme value
technique, we define the estimator given by

ky(5)>1/&7

np

Up = Rn—k,n <

where k = k(n) such that k¥ — oo and k/n — 0, as n — oo and
R,,_jn is the (n — k)-th order statistics of {R;,i=1,...,n}.

@ We need to estimate v(S). It is sufficient to estimate ¢, the density
of v.
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(\VEINEETIEM  Estimation

Estimation of ¢

For a Borel set A € O, lim;_,oo P(W; € A|R; > t) =: ¥(A) exists.
The density of ¥, ¢)(w) = 1¢(w), w € ©.

The estimation of ¢ is based on W(;), where the corresponding radius
R(i) > Rn—k,n-

We propose a kernel density estimator 121

Then § = d1p. The estimation of S and v(S) follow directly.
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We obtain our estimator:
Qn = 71nS = Rn—k,n

1/a
kv(s) /
np

o & = E A
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(\VEINEETIEM  Estimation

We obtain our estimator:

—_

)
np

~

1/&
n=0nS = Ry pn ( ) {z:4(z) < 1}.

Theorem

Under some regular conditions, we have, as n — oo,

) (QHAQ"> %o
5 :

Here A denotes the symmetric difference. AAB = (A\ B)U (B \ A).
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Simulation

Bivariate Cauchy Distribution

Cauchy Density, n=5000
o
g |
S
@ Data are simulated from the bivari-
o . . .
8 ate Cauchy distribution. n = 5000.
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Bivariate Cauchy Distribution

Cauchy Density, n=5000

g | —o

S
@ Data are simulated from the bivari-

o . . .

8 ate Cauchy distribution. n = 5000.
@ The area outside the solid line is the

° o true risk region. PQ =107* .
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2l Sl [z
Bivariate Cauchy Distribution

Cauchy Density, n=5000
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@ Data are simulated from the bivari-
ate Cauchy distribution. n = 5000.
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@ The area outside the solid line is the
true risk region. PQ =107* .
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@ The area outside the dotted curve
corresponds to the estimated risk
region.
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2l Sl [z
Bivariate Cauchy Distribution

Cauchy Density, n=5000, p=1/2000, 1/5000, 1/10000
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Clover Density
o & = E A
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Simulation

Clover Density

Clover Density, n=5000
8 -
@ n = 5000.
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Clover Density

Clover Density, n=5000
8 -
@ n = 5000.
2 @ The area outside the solid line is
the true risk region, Q.
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2l Sl [z
Clover Density

Clover Density, n=5000
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n = 5000.

The area outside the solid line is
the true risk region, Q.
PQ=10"%.

@ The area outside the dotted curve
corresponds to the estimated risk
region.
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1

Elliptical Density, n=5000, p=1/2000, 1/10000
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0 i [ Baplkis
Competitor |

A “Parametric”’ estimator
@ The method works for bivariate distributions only.

@ Estimate v(S) and S by assuming a parametric model to g¢:
q(w) = q(cos 8, sin0) = a(4r) (2 + sin(2(0 — p))), 6 € [0,27] .
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0 i [ Baplkis
Competitor Il

A non-parametric estimator
@ Compute the smallest ellipsoid containing half of the data, the
so-called MVE.
@ Inflate this ellipsoid such that largest observation lies on its boundary.

@ It works for p = 1/n only.
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@ We simulate 100 data sets from four bivariate distributions and the
trivariate Cauchy distribution. Each data set is of size 5000.

@ The main theorem states that W E) 0.
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0 i [ Baplkis
o ecpr = T19nBEn) ) — 1/5000 and py = 1/10000.

o ey = PB4y — 1 /5000.
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0 i [ Baplkis
o ecpr = T19nBEn) ) — 1/5000 and py = 1/10000.

o ey = PB4y — 1 /5000.
o ey = LQearfQn) Wy /5000 and py = 1/10000.
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0 cour = PQeA) ) — 175000 and py = 1/10000.

o ey = PB4y — 1 /5000.

o epor = D@ 29n) 1 — 15000 and py = 1/10000.

Asymmetric Shifted Density
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We apply our method to foreign exchange rate data.

@ Data: daily exchange rates of yen-dollar and pound-dollar, dating
from 4 Jan 1999 to 31 July 2009. n = 2665.

@ We consider the log-return.

Y .
Xt,i = lOg Y, Lt 3

t—1,

where t =1,...,2664, ¢ = 1,2 and Y} 1 is the daily exchange rate of
yen-dollar and Y; o pound-dollar.
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6,;,p:1/2000,1/5000,1/10000
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6,;,p:1/2000,1/5000,1/10000
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Thank you very much for your attention!

o & = E A
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