Estimation of Extreme Risk Regions Under Multivariate Regular Variation

Juan-Juan Cai¹ John H. J. Einmahl² Laurens de Haan³

¹Technology University of Delft

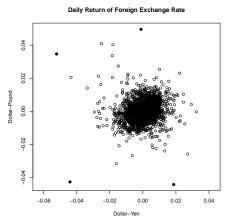
²Tilburg University

³University of Lisbon and Erasmus University Rotterdam

The Hague, May 22, 2013

An Example: which event is rarest?

- Returns of daily exchange rates of yen-dollar and pound-dollar from 1999 to 2009.
- Which one is the most extreme among those marked with solid circles?



- Let **Z** be a random vector on \mathbb{R}^d $(d \geq 2)$.
- A risk region is a set Q such that $\mathbb{P}(\mathbf{Z} \in Q) = p$, extremely small.

- Let \mathbf{Z} be a random vector on \mathbb{R}^d $(d \geq 2)$.
- ullet A risk region is a set Q such that $\mathbb{P}(\mathbf{Z} \in Q) = p$, extremely small.
- ullet Events in Q hardly happen. The interest of these events originates from their potential large consequences.

- Let \mathbf{Z} be a random vector on \mathbb{R}^d $(d \geq 2)$.
- ullet A risk region is a set Q such that $\mathbb{P}(\mathbf{Z} \in Q) = p$, extremely small.
- ullet Events in Q hardly happen. The interest of these events originates from their potential large consequences.

- Suppose **Z** has probability density f. Denote the corresponding probability measure with P.
- The risk regions of interest are defined in this form:

$$Q = \{ \mathbf{z} \in \mathbb{R}^d : f(\mathbf{z}) \le \beta \},\$$

where β is an unknown number such that PQ = p.

- $Q^c = {\mathbf{z} \in \mathbb{R}^d : f(\mathbf{z}) > \beta}.$
- Q is the set of less likely points.

- The goal is to estimate Q based on a random sample from ${\bf Z}$. The sample size is n.
- For asymptotics, we consider $p = p(n) \to 0$, as $n \to \infty$.
- We write:

$$Q_n = \{ \mathbf{z} \in \mathbb{R}^d : f(\mathbf{z}) \le \beta_n \}.$$

Multivariate Regular Variation

There exist a positive number α and a positive function q, such that

$$\lim_{t\to\infty}\frac{\mathbb{P}(\parallel\mathbf{Z}\parallel>tx)}{\mathbb{P}(\parallel\mathbf{Z}\parallel>t)}=x^{-\alpha}, \quad \text{ for all } x>0,$$

and

$$\lim_{t \to \infty} \frac{f(t\mathbf{z})}{t^{-d} \mathbb{P}(\|\mathbf{Z}\| > t)} = q(\mathbf{z}), \quad \text{ for all } \mathbf{z} \neq 0,$$

where $\|\cdot\|$ denotes the L_2 norm.

Multivariate Regular Variation

There exist a positive number α and a positive function q, such that

$$\lim_{t\to\infty}\frac{\mathbb{P}(\parallel\mathbf{Z}\parallel>tx)}{\mathbb{P}(\parallel\mathbf{Z}\parallel>t)}=x^{-\alpha}, \quad \text{ for all } x>0,$$

and

$$\lim_{t \to \infty} \frac{f(t\mathbf{z})}{t^{-d} \mathbb{P}(\|\mathbf{Z}\| > t)} = q(\mathbf{z}), \quad \text{ for all } \mathbf{z} \neq 0,$$

where $\|\cdot\|$ denotes the L_2 norm.

 Examples: Cauchy distributions and all elliptical distributions with a heavy tailed radius.

Some results from the assumption

- The distribution of the radius has a right heavy tail. α is the tail index.
- q is homogenous: $q(a\mathbf{z}) = a^{-d-\alpha}q(\mathbf{z})$.
- Define $\nu(B)=\int_B q(\mathbf{z})d\mathbf{z}$. Then, for a Borel set B with positive distance from the origin,

$$\lim_{t \to \infty} \frac{\mathbb{P}(\mathbf{Z} \in tB)}{\mathbb{P}(\|\mathbf{Z}\| \ge t)} = \nu(B).$$

• Recall that we try to estimate

$$Q_n = \{ \mathbf{z} \in \mathbb{R}^d : f(\mathbf{z}) \le \beta_n \},$$

such that $\mathbb{P}(\mathbf{Z} \in Q_n) = p$.

Recall that we try to estimate

$$Q_n = \{ \mathbf{z} \in \mathbb{R}^d : f(\mathbf{z}) \le \beta_n \},$$

such that $\mathbb{P}(\mathbf{Z} \in Q_n) = p$.

• Link Q_n to $S = \{\mathbf{z} \in \mathbb{R}^d : q(\mathbf{z}) \leq 1\}.$

Recall that we try to estimate

$$Q_n = \{ \mathbf{z} \in \mathbb{R}^d : f(\mathbf{z}) \le \beta_n \},$$

such that $\mathbb{P}(\mathbf{Z} \in Q_n) = p$.

- Link Q_n to $S = \{\mathbf{z} \in \mathbb{R}^d : q(\mathbf{z}) \leq 1\}.$
- Inflate S with the factor u_n : $\bar{Q}_n:=u_nS$, where u_n is such that $\mathbb{P}(||\mathbf{Z}||>u_n)=\frac{\nu(S)}{p}$.

Recall that we try to estimate

$$Q_n = \{ \mathbf{z} \in \mathbb{R}^d : f(\mathbf{z}) \le \beta_n \},$$

such that $\mathbb{P}(\mathbf{Z} \in Q_n) = p$.

- Link Q_n to $S = \{ \mathbf{z} \in \mathbb{R}^d : q(\mathbf{z}) \leq 1 \}.$
- Inflate S with the factor u_n : $\bar{Q}_n:=u_nS$, where u_n is such that $\mathbb{P}(||\mathbf{Z}||>u_n)=\frac{\nu(S)}{p}$.
- \bar{Q}_n is a good approximation of Q_n .

- Suppose we have $\mathbf{Z}_1, \dots, \mathbf{Z}_n$ i.i.d copies of \mathbf{Z} .
- Write $R_i = \parallel \mathbf{Z}_i \parallel$ and $\mathbf{W}_i = \frac{\mathbf{Z}_i}{R_i}$, $i = 1, 2, \dots, n$.
- Put $\Theta := \{ \mathbf{z} : || \mathbf{z} || = 1 \}$. Then $\mathbf{W}_i \in \Theta, i = 1, 2, ..., n$.

Estimation of u_n

- Note that u_n is the tail quantile of R_1 : $\mathbb{P}(R_1 > u_n) = \frac{\nu(S)}{p}$.
- ullet Suppose that we know u(S). Applying the univariate extreme value technique, we define the estimator given by

$$\hat{u}_n = R_{n-k,n} \left(\frac{k\nu(S)}{np} \right)^{1/\hat{\alpha}},$$

where k=k(n) such that $k\to\infty$ and $k/n\to 0$, as $n\to\infty$ and $R_{n-k,n}$ is the (n-k)-th order statistics of $\{R_i, i=1,\ldots,n\}$.

Estimation of u_n

- Note that u_n is the tail quantile of R_1 : $\mathbb{P}(R_1 > u_n) = \frac{\nu(S)}{n}$.
- Suppose that we know $\nu(S)$. Applying the univariate extreme value technique, we define the estimator given by

$$\hat{u}_n = R_{n-k,n} \left(\frac{k\nu(S)}{np} \right)^{1/\hat{\alpha}},$$

where k = k(n) such that $k \to \infty$ and $k/n \to 0$, as $n \to \infty$ and $R_{n-k,n}$ is the (n-k)-th order statistics of $\{R_i, i=1,\ldots,n\}$.

• We need to estimate $\nu(S)$. It is sufficient to estimate q, the density of ν .

Estimation of q

- For a Borel set $A \in \Theta$, $\lim_{t\to\infty} \mathbb{P}(W_1 \in A|R_1 > t) =: \Psi(A)$ exists.
- The density of Ψ , $\psi(\mathbf{w}) = \frac{1}{\alpha}q(\mathbf{w})$, $\mathbf{w} \in \Theta$.
- The estimation of ψ is based on $W_{(i)}$, where the corresponding radius $R_{(i)}>R_{n-k,n}.$
- ullet We propose a kernel density estimator $\hat{\psi}.$
- Then $\hat{q} = \hat{\alpha}\hat{\psi}$. The estimation of S and $\nu(S)$ follow directly.

We obtain our estimator:

$$\widehat{Q}_n = \widehat{u}_n \widehat{S} = R_{n-k,n} \left(\frac{k\widehat{\nu(s)}}{np} \right)^{1/\widehat{\alpha}} \{ \mathbf{z} : \widehat{q}(\mathbf{z}) < 1 \}.$$

We obtain our estimator:

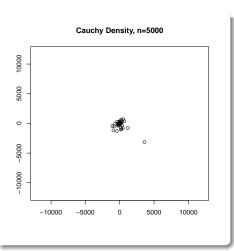
$$\widehat{Q}_n = \widehat{u}_n \widehat{S} = R_{n-k,n} \left(\frac{k\widehat{\nu(s)}}{np} \right)^{1/\widehat{\alpha}} \{ \mathbf{z} : \widehat{q}(\mathbf{z}) < 1 \}.$$

Theorem

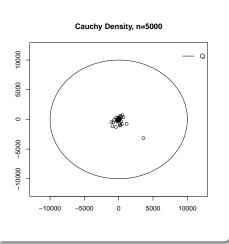
Under some regular conditions, we have, as $n \to \infty$,

$$\frac{P\left(\hat{Q}_n \triangle Q_n\right)}{p} \stackrel{\mathbb{P}}{\to} 0,$$

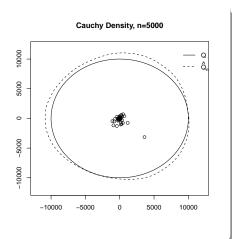
Here \triangle denotes the symmetric difference. $A \triangle B = (A \setminus B) \cup (B \setminus A)$.



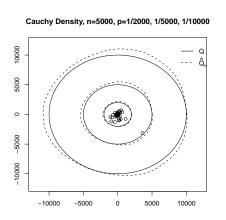
• Data are simulated from the bivariate Cauchy distribution. n=5000.



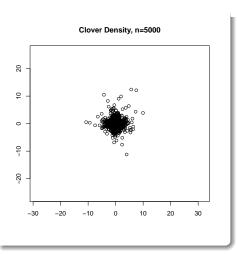
- Data are simulated from the bivariate Cauchy distribution. n=5000.
- The area outside the solid line is the true risk region. $PQ = 10^{-4}$.



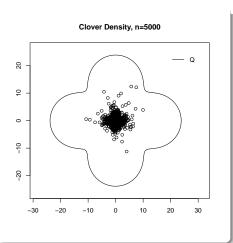
- Data are simulated from the bivariate Cauchy distribution. n=5000.
- The area outside the solid line is the true risk region. $PQ=10^{-4}$.
- The area outside the dotted curve corresponds to the estimated risk region.



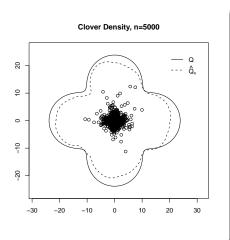
- Data are simulated from the bivariate Cauchy distribution. n=5000.
- The area outside the solid line is the true risk region. $PQ=10^{-4}$.
- The area outside the dotted curve corresponds to the estimated risk region.



• n = 5000.

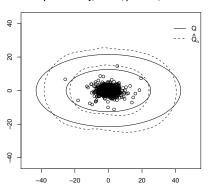


- n = 5000.
- The area outside the solid line is the true risk region, Q. $PQ = 10^{-4} \; .$

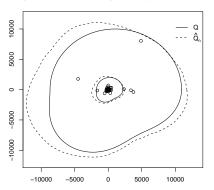


- n = 5000.
- The area outside the solid line is the true risk region, Q. $PQ = 10^{-4} \; .$
- The area outside the dotted curve corresponds to the estimated risk region.

Elliptical Density, n=5000, p=1/2000, 1/10000



Asymmetric Shifted Density, n=5000, p=1/2000, 1/10000



Competitor I

A "Parametric" estimator

- The method works for bivariate distributions only.
- Estimate $\nu(S)$ and S by assuming a parametric model to q: $q(\mathbf{w}) = q(\cos\theta,\sin\theta) = \alpha(4\pi)^{-1}(2+\sin(2(\theta-\rho))), \ \theta \in [0,2\pi]$.

Competitor II

A non-parametric estimator

so-called MVE.

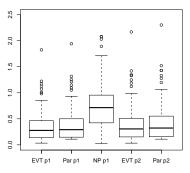
Compute the smallest ellipsoid containing half of the data, the

- Inflate this ellipsoid such that largest observation lies on its boundary.
- It works for p = 1/n only.

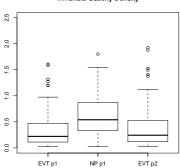
- We simulate 100 data sets from four bivariate distributions and the trivariate Cauchy distribution. Each data set is of size 5000.
- The main theorem states that $\frac{P(\hat{Q}_n \triangle Q_n)}{p} \stackrel{\mathbb{P}}{\to} 0.$

- $\begin{array}{l} \bullet \ e_{evt} = \frac{P(\hat{Q}_n \triangle Q_n)}{p}, \ p_1 = 1/5000 \ \text{and} \ p_2 = 1/10000. \\ \bullet \ e_{np} = \frac{P(\hat{Q}_{np} \triangle Q_n)}{p}, \ p_1 = 1/5000. \\ \bullet \ e_{par} = \frac{P(\hat{Q}_{par} \triangle Q_n)}{p}, \ p_1 = 1/5000 \ \text{and} \ p_2 = 1/10000. \end{array}$

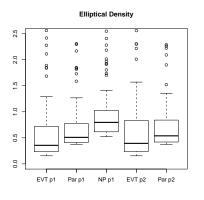
Bivariate Cauchy Density

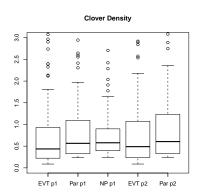


Trivariate Cauchy Density



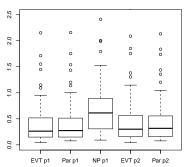
- $\begin{array}{l} \bullet \ e_{evt} = \frac{P(\hat{Q}_n \triangle Q_n)}{p}, \ p_1 = 1/5000 \ \text{and} \ p_2 = 1/10000. \\ \bullet \ e_{np} = \frac{P(\hat{Q}_{np} \triangle Q_n)}{p}, \ p_1 = 1/5000. \\ \bullet \ e_{par} = \frac{P(\hat{Q}_{par} \triangle Q_n)}{p}, \ p_1 = 1/5000 \ \text{and} \ p_2 = 1/10000. \end{array}$





- $\begin{array}{l} \bullet \ e_{evt} = \frac{P(\hat{Q}_n \triangle Q_n)}{p}, \ p_1 = 1/5000 \ \text{and} \ p_2 = 1/10000. \\ \bullet \ e_{np} = \frac{P(\hat{Q}_{np} \triangle Q_n)}{p}, \ p_1 = 1/5000. \\ \bullet \ e_{par} = \frac{P(\hat{Q}_{par} \triangle Q_n)}{p}, \ p_1 = 1/5000 \ \text{and} \ p_2 = 1/10000. \end{array}$

Asymmetric Shifted Density

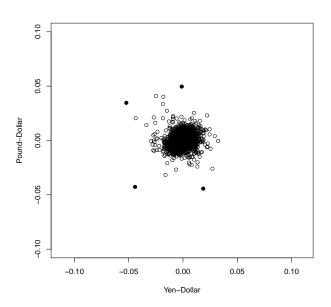


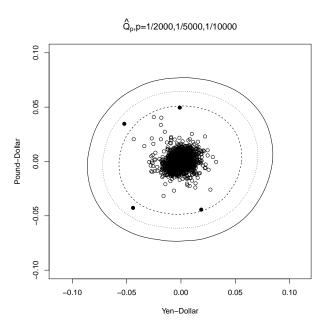
We apply our method to foreign exchange rate data.

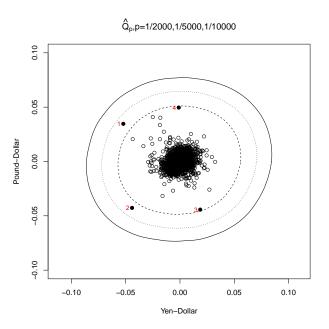
- Data: daily exchange rates of yen-dollar and pound-dollar, dating from 4 Jan 1999 to 31 July 2009. n=2665.
- We consider the log-return.

$$X_{t,i} = \log \frac{Y_{t,i}}{Y_{t-1,i}},$$

where $t=1,\ldots,2664$, i=1,2 and $Y_{t,1}$ is the daily exchange rate of yen-dollar and $Y_{t,2}$ pound-dollar.







Thank you very much for your attention!