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Equilibrium Pricing of Contingent Claims in
Tradable Permit Markets

Abstract. In this paper, we construct a permit market model to derive a

pricing formula of contingent claims traded in the market in a general equi-

librium framework. It is shown that prices of contingent claims exhibit sig-

nificantly different properties from those in the ordinary financial markets. In

particular, if the social cost function kinks at some level of abatement, the

forward price as well as the spot price can be subject to the so-called price

spike. However, this price-spike phenomenon can be weakened if the system

of banking and borrowing is properly introduced.

JEL classification: Q56, G13, G38.
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1 Introduction

The idea that market-based instruments (MBIs) are to be used for environmental policies

has been popular in many developed countries as well as at the arena of international

policy negotiations. In particular, the use of tradable permits was first proposed by Dale

(1968) and has long histories of both academic studies and practices. Its well-known

application to a nation-wide environmental problem includes the sulfur dioxide permit

trading that was established by the Acid Rain Program of The Title IV of The 1990 U.S.

Clean Air Act Amendments, and was made operational in 1995. Many economic analyses

have been done, among which Ellerman et al. (2000) showed a comprehensive study on

the assessment of the system.

The creation of an international market for greenhouse gas (GHG) permit was pro-

posed in the course of negotiations for the Kyoto protocol and was concluded as the

so-called Kyoto mechanisms in the protocol. Together with the international market for

GHGs, European countries are making efforts to create domestic or regional GHG mar-

kets; the United Kingdom created its domestic market in 2002 as a part of UK’s national

climate policy; the European Union (EU) started the first phase of the EU Emissions

Trading System (EU-ETS) in 2005.

Some reports provide concise surveys of the current situation in emission permit mar-

kets. Røine and Hasselknippe (2007) reported that the trading volume and the transaction

amount of the EU-ETS was doubled in 2006 compared to the previous year, and is ex-

pected to be growing in 2007. Figure 1.1 in their report shows that non-emitters, who

are not required to meet regulations, are also interested in carbon markets. In European

Climate Exchange (ECX), the trades of futures and options were started in 2006, and

their volumes are increasing rapidly. With these backgrounds, it becomes more and more

important to understand how prices of permit market products are formed.

A first rigorous treatment of the theory of tradable permits was shown by Mont-

gomery (1972). His seminal work was followed by many researches thereafter. Tietenberg

(1985) summarized findings from studies that appeared until early 1980s. Stavins (2000)

highlighted several important papers that have contributed to the academic literature.

It is worth pointing out that most of the past studies on tradable permits explored the

mechanism, design, and policy implications of markets in which permits are physically

traded and contracts are physically settled. Markets in the real world, however, do not

restrict themselves to engaging in such spot trades and physical settlements. In fact,

forward contracts, futures, options, etc. are available for future vintage permits in the
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real world. With these derivative products at hand, paper (non-physical) trades with cash

settlements are possible, which enlarges the whole range of permit trades. Also, derivative

products provide market participants with financial instruments that are used to hedge

various risks. Derivative products or, more generally, contingent claims in permit markets

are expected to be growing and become more important in the near future, as the system

of tradable permits becomes mature.

Regardless of the usefulness of contingent claims in permit markets, there are quite

few studies in the academic literature that explore the financial aspect of permit markets

and derivative products. Of course, there are a lot of papers that study how the prices of

contingent claims are determined in financial and commodity markets (see, for example,

Duffie (2001)). However, these results cannot be used directly for the pricing of contingent

claims traded in permit markets because of the special features.

In the microeconomic theory, the marginal cost of production determines the spot

price of any goods in a market. Similarly, in permit markets, the current spot price

is theoretically equal to the marginal cost of abatement. In contrast, when contingent

claims are considered in permit markets, it is necessary to consider the so-called state price

density, that is affected not only by the cost function to reduce the emission but also by

the real (physical) probability measure and the utility functions of market participants.1

Also, since permit markets are purely artificial and depend much on the design and

implementation of regulations, prices in the markets have some specific characteristics

that are not observed in the ordinary financial and commodity markets. It is therefore

of great interest to investigate how the prices of contingent claims in permit markets are

determined.

Analysis of financial aspects in permit markets is fairly new; see e.g., Benz and Trück

(2008), Fehr and Hinz (2006), Seifert et al. (2008). Also, most of the existing papers

examine only the properties of spot prices with no attention to the analysis of contingent

claims. An exception is Maeda (2004), who examined a permit market in which all

agents have mean-variance utilities, the cost function of emission abatement is quadratic,

and future uncertainty is represented by Gaussian random variables. In this setting, he

derived a pricing formula of forward contracts and illustrated the impact of banking and

borrowing on the spot and forward prices. However, Maeda (2004) considered the forward

1In such previous papers as Rubin (1996) or Cronshaw and Kruse (1996), there is no uncertainty

in the model and the effect of banking on the spot price is mainly studied. On the other hand, our

model explicitly examines the properties of contingent claims by modeling market participants and the

uncertainty in the economy.
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price only, and other contingent claims cannot be priced in his setting.

Recently, Daskalakis et al. (2007) considered the pricing of options written on the spot

price of emission permits; however, the spot price is exogenously given and the resulting

formulas are of the Black–Scholes type in the ordinary financial markets. On the other

hand, Chesney and Taschini (2008) assumed that the instantaneous emission rate Qt in

a CO2 market follows a geometric Brownian motion, as given, and derived the spot price

of emission permits based on the comparison of Qt and penalty P . In these papers, an

underlying asset in permit markets is given exogenously and important characteristics

that are special to permit markets are not used explicitly.

In this paper, we take the line of Maeda (2004) and extend it to construct a permit

market model by which any contingent claims can be priced. To this end, we assume

that all agents have exponential (CARA) utilities with distinct risk-aversion coefficients.

The state price density of each future state is derived for any probability distribution and

any cost function, whereby providing a fairly general formula that is used to price any

contingent claims in the market. To our best knowledge, this paper is the first to study

the pricing of contingent claims in permit markets in a general equilibrium framework.

A major contribution of this paper is as follows. First, our pricing formula depends

on important features of permit markets, allowing us to analyze the qualitative properties

of the pricing. More specifically, it depends on the probability distribution of the future

abatement target, the aggressiveness of market participants, the social cost function to

reduce pollutant emission, and the correlation between future emission amount and the

aggregated exogenous income of agents. For example, if the future emission amount and

the exogenous income are positively correlated, the price of forward contracts is lower

than that with no correlation.

Next, through comparative statics studies, we find that the change of an exogenous

parameter has two effects on the price of contingent claims. The first one is the direct

effect caused by the change in the payoff, while the second one is the indirect effect that

arises from the change in the state price density. In the ordinary financial markets, the

state price density is exogenously given, and the change of exogenous parameters has no

impact on the state price density. This is not the case in our permit market model, and

in fact the two effects need to be considered simultaneously for the pricing of contingent

claims traded in a permit market.

We also discuss some related topics that are specific to permit markets. One interesting

finding is that if the social cost function kinks at some level of abatement, the forward price

as well as the spot price may change drastically even when the probability distribution of
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the future abatement target is slightly updated. It is widely recognized in energy markets

that the so-called price spike is often observed, i.e., the price dramatically changes due to

the shortage of capacity to produce energy. Our observation indicates that similar price

spikes can happen in permit markets, implying that the prices in permit markets may

have some instability that cannot be overlooked. However, interesting enough, the price-

spike phenomenon can be weakened if the system of banking and borrowing is properly

introduced.

This paper is organized as follows. In the next section, we construct a permit market

model in which regulated emitters and financial traders participate. Section 3 derives

a pricing formula in a general equilibrium framework to evaluate any contingent claims

traded in this market. In Section 4, we consider the case that all uncertainty is modeled by

normal random variables, and analyze the properties of the pricing formula with numerical

examples. Section 5 is devoted to the discussions of some related topics that are specific

to permit markets, and Section 6 concludes this paper.

2 A Permit Market Model

We consider a single-period economy in which time 0 represents the present time and time

1 a future time. These two times mean the compliance deadlines for permit regulations.

That is, emissions from regulated emitters who must obey the environmental legislation

are measured and monitored at times 0 and 1. A regulatory authority imposes emission

targets to which emitters are required to reduce their emission amount. Our model can

be easily extended to a multi-period setting.

We assume that in the market there are two types of economic agents, regulated emit-

ters and unregulated financial traders. While regulated emitters need emission permits

for their own business activities, unregulated financial traders do not need to follow the

regulation but can participate in the permit market. Each agent has no market power,2

and behaves as a price taker. We denote the sets of emitters and financial traders by ME

and MS, respectively, and define M := ME ∪MS. Each agent has an exogenous income

at each time, and we denote by Rkt the income for agent k ∈M at time t.

At time 0, there are two markets in the economy, the spot market and the contingent

claims market. In the spot market, permits of time 0 are traded. On the other hand, the

contingent claims market allows all the agents to trade contingent claims written on the

2In this paper, we only consider competitive markets for all types of trades. For discussions about the

influence of market power, we refer to, e.g., Hahn (1994).

6



Equilibrium Pricing of Contingent Claims in Tradable Permit Markets

permits at time 1. It is assumed that the contingent claims market is complete in the

sense that any contingent claim whose payoff realizes at time 1 is tradable. At time 1,

all uncertainty reveals, all contingent claims traded at time 0 are settled, and only spot

permits of time 1 are traded among emitters. We denote by St the spot price at time

t. The risk-free interest rate is denoted by r, which is exogenously determined in the

financial market, and measurable at time 0.

Let Eit be the amount of business-as-usual emission minus the initial permit endow-

ment for emitter i ∈ME at time t. If Eit is positive, emitter i must reduce her emission by

her own effort and/or purchase some amount of spot permit in the market with price St.

If Eit is negative, emitter i can sell it in the spot market so as to earn extra money. The

current abatement target denoted by Ei0 is measurable at time 0, while Ei1 is uncertain

and is a random variable at time 0.3

We assume that the emission abatement effort is accompanied with some cost. The cost

function is denoted by cit(Xit), where Xit is the emission reduction amount by emitter i at

time t. If emitter i decides Xit not to satisfy the requirement for her own, i.e. Xit < Eit,

then she needs to buy the spot permit Eit − Xit with price St to meet the requirement.

This means that the total payment to comply the emission regulation is given by

cit(Xit) + (Eit −Xit)St.

Note that, when Xit > Eit, emitter i can sell the amount Xit−Eit with price St in the spot

market. Hence, the total payment can be negative, meaning that she earns the profit.

Suppose in addition that emitter i ∈ ME enters the contingent claims market to

purchase an ω-contingent claim Hi(ω) at time 0, which pays the amount Hi(ω) of cash

when state ω is realized. The price of the contingent claim Hi is given by

π(Hi) = E[H̃iφ̃],

where φ̃ is a state price density and E denotes the expectation operator associated with

the real probability measure P.

Denoting by Wk the final wealth of agent k ∈M, it then follows that

Wi(ω) =(1 + r)[Ri0 − (Ei0 −Xi0)S0 − ci0(Xi0)− π(Hi)]

+ Ri1(ω)− (Ei1(ω)−Xi1(ω))S1(ω)− ci1(Xi1(ω)) + Hi(ω), i ∈ME,
(1)

3In this paper, uncertainty is described on the probability space (Ω,F ,P). The realization of random

variable Y for ω ∈ Ω is denoted by Y (ω). Also, we use the notation Ỹ to emphasize that Y is a random

variable. Hence, we denote the time-1 amount by Ẽi1 rather than Ei1.
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for each state ω ∈ Ω, where the first line represents the cash flows at time 0 and the

second line those at time 1 for state ω. Note from the second line in (1) that each emitter

trades contingent claims to hedge not only the risk Ẽi1 of emission abatement, but also

the risk R̃i1 of exogenous income.4

On the other hand, financial trader j ∈MS has no incentive to enter the spot market

and trades only in the contingent claims market. Thus, her final wealth is expressed as

Wj(ω) = (1 + r)[Rj0 − π(Hj)] + [Rj1(ω) + Hj(ω)], j ∈MS. (2)

The term Rj1(ω) + Hj(ω) clearly illustrates the motivation of financial trader j to hedge

the risk in her exogenous income.

Suppose that both regulated emitters and financial traders are risk-averse and their

preferences are represented by negative exponential utility functions with absolute risk-

aversion coefficient γk for agent k. Hence, agent k maximizes the expected utility

E
[
−e−γkW̃k

]
, (3)

where W̃k is given by (1) for emitter i and by (2) for financial trader j. Note that the

control variables for emitter i are not only Hi(ω) but also {Xit}t=1,2, while financial trader

j maximizes (3) with respect to Hj(ω) only.

In order to guarantee the existence and uniqueness of equilibrium, the following as-

sumption is imposed.

Assumption 1 For each i and t, the cost function cit(·) is increasing, continuously dif-

ferentiable, strictly convex with c′it(0) = 0 and c′it(∞) = ∞.

3 The Pricing of Contingent Claims

This section derives a formula to price any contingent claim traded in the market within

an equilibrium framework.

To this end, we first consider an economy where banking and borrowing of permits

are not allowed (the definitions of banking and borrowing will be given later). By using

an arbitrage argument, we then examine how the introduction of banking and borrowing

influences the pricing formula.

4We assume that the exogenous income Rkt reflects the profit optimization of agent k. That is, Rkt

describes the profit after agent k has already taken optimal activities other than Xit.
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3.1 A general equilibrium pricing formula

Suppose that banking and borrowing of permits are not allowed. Then, the time-0 and

time-1 spot markets are completely separated, since different permits are traded and prices

in each market are independently determined.

The market clearing conditions of the two spot trades are described as

∑
i∈ME

(Ei0 −Xi0) = 0

and

∑
i∈ME

(Ei1(ω)−Xi1(ω)) = 0 for almost all ω, (4)

respectively. Also, since contingent claims are financial securities of zero supply, the

market clearing condition of ω-contingent claims is written as

∑

k∈M
Hk(ω) = 0 for almost all ω.

Recall that, for the pricing of contingent claims, it suffices to determine the state price

density in the contingent claims market. To this end, from (1), the optimal reduction

level at time t of emitter i satisfies

c′it(Xit)− St = 0. (5)

Since c′it(·) is strictly increasing by Assumption 1, denoting its inverse function by xit(·),
we have the expression Xit = xit(St) for the optimal reduction level of emitter i. Plugging

this expression into (4), we obtain

E0 =
∑

i∈ME

xi0(S0)

and

E1(ω) =
∑

i∈ME

xi1(St(ω)),

respectively, where Et denotes the time-t aggregated emission abatement target in the

economy. Note that, under Assumption 1, the variables Et and St are of one-to-one

correspondence. It follows that there exists some function st(·) for which St = st(Et) in

equilibrium for each time t. It is worth mentioning that the equilibrium spot price St
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depends only on the aggregated abatement target Et, and is independent of individual

emission amounts.

Substituting the spot prices St = st(Et) into (1), we obtain

(1 + r)[Ri0 − (Ei0 − xi0(s0(E0)))s0(E0)− ci0(xi0(s0(E0)))− π(Hi)]

+ Ri1(ω)− (Ei1(ω)− xi1(s1(E1(ω))))s1(E1(ω))− ci1(xi1(s1(E1(ω)))) + Hi(ω).
(6)

Let ct(·) be the aggregated cost function to abate emission at time t, i.e.,

ct(Et) :=
∑

i∈ME

cit(xit(st(Et))), (7)

and define

Rt :=
∑

k∈M
Rkt, γ :=

(∑

k∈M

1

γk

)−1

.

While Rt is the aggregated exogenous income of all market participants, γ represents the

absolute risk-aversion index of the representative agent in the permit market.

We then have the following.

Proposition 1 The state price density φ is given by

φ(ω) =
1

1 + r

eγ{c1(E1(ω))−R1(ω)}

E
[
eγ{c1(Ẽ1)−R̃1}

] , ω ∈ Ω. (8)

Hence, the contingent claim that pays C̃ at time 1 is evaluated as

π(C) =
E

[
C̃eγ{c1(Ẽ1)−R̃1}

]

(1 + r)E
[
eγ{c1(Ẽ1)−R̃1}

] . (9)

Proof In equilibrium, the final wealth of emitter i at the compliance time t = 1 is given

by (6) and that of financial trader j by (2). Then, applying the discussions given in

Section 5 of Bühlmann (1980), we can verify that the state price density φ satisfies

1

γ
log φ(ω) ={c1(E1(ω))−R1(ω)}+ K

for some constant K. Here, we have used the market clearing condition (4) for the equality.

By the definition of state price density, we have E[φ̃] = (1 + r)−1. Therefore,

eγKE
[
eγ{c1(Ẽ1)−R̃1}

]
=

1

1 + r
,

and the result follows at once. This completes the proof. ¤
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Let Z̃1 := c1(Ẽ1) − R̃1. We can regard Z̃1 as the aggregated risk associated with

the permit market participants (both emitters and financial traders) at time 1. Note

from Proposition 1 that the state price density is determined by Z̃1 and γ. The risk-

aversion parameter γ represents how the aggregated risk Z̃1 affects the pricing formula.

For example, if one of the market participants is risk-neutral, i.e. γk = 0 for some k,

then γ becomes zero and the pricing formula of any contingent claim is equivalent to the

so-called DCF method with no risk premium. On the other hand, when γk are all strictly

positive, the total risk Z̃1 in the market affects the price of each state.

The aggregated risk Z̃1 consists of c1(Ẽ1) and R̃1, the former being the risk of social

reduction cost and the latter being the risk of aggregated exogenous income. If the social

cost to reduce emission is large, the market evaluates the prices of such states high, because

emitters trade contingent claims to hedge the risk of abatement costs. This observation

is consistent with the results in the standard finance theory.

Recall that contingent claims are traded not only to hedge the risk of emission uncer-

tainty, but also to hedge the risk of income uncertainty. However, if R̃1 is independent of

Ẽ1 and C̃ in the pricing formula (9), we obtain

π(C) =
E

[
C̃eγc1(Ẽ1)

]
E

[
e−γR̃1

]

(1 + r)E
[
eγc1(Ẽ1)

]
E

[
e−γR̃1

] =
E

[
C̃eγc1(Ẽ1)

]

(1 + r)E
[
eγc1(Ẽ1)

] .

Hence, in this case, the aggregated income risk R̃1 has no impact on the prices in the

permit market.5

With the pricing formula (9), we can price any contingent claim in the permit market.

For later use, the next corollary provides the pricing formula of forward contracts.6

Corollary 1 Denote by F the forward price of future permits at time 0. Then, we have

F =
E

[
c′1(Ẽ1)e

γ{c1(Ẽ1)−R̃1}
]

E
[
eγ{c1(Ẽ1)−R̃1}

] . (10)

Proof It is well known (see, e.g., Example 13.6 in Kijima (2002)) that F satisfies

E
[
φ̃(S̃1 − F )

]
= 0.

5This pricing system is called the Esscher principle because of its formal connection with the Esscher

transform (see, for example, Bühlmann (1980) or Kijima (2006)).
6Because the risk-free interest rate is constant in our setting, the price of a forward contract is the

same as the price of the corresponding futures contract. See, e.g., Hull (2005).
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Hence, it is sufficient to show that St = c′t(Et). Differentiating the both sides of (7) with

respect to Et, we have

c′t(Et) =
∑

i∈ME

c′it(xit(st(Et)))x
′
it(st(Et))s

′
t(Et)

=st(Et)
dst

dEt

d

dst

∑
i∈ME

xit(st(Et)),

where we have used the relation c′it(xit(st(Et))) = st(Et) for all i ∈ ME. The result

follows at once from the fact that Et =
∑

i∈ME
xit(st(Et)) in equilibrium. ¤

In a similar manner, we can calculate the price of a call option with strike price K as

1

1 + r

E
[
{c′1(Ẽ1)−K}+eγ{c1(Ẽ1)−R̃1}

]

E
[
eγ{c1(Ẽ1)−R̃1}

] , (11)

where {x}+ = max{x, 0}.

3.2 Arbitrage with banking and borrowing permits

We next introduce banking and borrowing in our model, and examine their effects on

the pricing of contingent claims. Note that the existing literature such as Cronshaw and

Kruse (1996), Rubin (1996) and Schennach (2000) studies welfare effects of the banking

and borrowing. To our best knowledge, this paper is the first to analyze the impact on

the prices of contingent claims when banking and borrowing are introduced to the permit

markets in a general equilibrium framework.7

Banking in permit markets means that unused permits in one period can be saved

and used in later periods, whereas borrowing in the current period requires the reduction

of the same amount of permits in the future periods. When the banking and borrowing

are allowed, the current and future permits are regarded as the same good (perfect sub-

stitute). Therefore, the current and future spot markets are connected and can be seen

as an integrated market. Consequently, the prices of time-1 contingent claims have some

intertemporal relationship with the spot price at time 0.

Denote the banking at time 0 by Bi0. When Bi0 is positive, emitter i additionally

abates and banks her permit to time 1, while negative Bi0 means that emitter i borrows

her emission from time 1. Hence, the final wealth of emitter i changes from (1) to

Wi(ω) =(1 + r)[Ri0 − (Ei0 −Xi0 + Bi0)S0 − ci0(Xi0)− π(Hi)]

+ Ri1(ω)− (Ei1(ω)−Xi1(ω)−Bi0)S1(ω)− ci1(Xi1(ω)) + Hi(ω).
(12)

7See Maeda (2004) for related works on the banking.
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Let the aggregated amount of net banking by B0, i.e.,

B0 :=
∑

i∈ME

Bi0.

Then, the market clearing conditions of emission permits change from (4) to

∑
i∈ME

(Ei0 + B0 −Xi0) = 0

and

∑
i∈ME

(E1(ω)−B0 −Xi1(ω)) = 0,

respectively. Note that these two conditions are equivalently expressed as

1∑
t=0

∑
i∈ME

(Eit −Xit) = 0.

Hence, under the system of banking, the abatement target must be equal to the social

self-reduction over the whole periods.

As in Section 3, we obtain the spot prices in the permit market with banking and

borrowing as

S0 =s0(E0 + B0) = x−1
0 (E0 + B0)

and

S1(ω) =s1(E1(ω)−B0) = x−1
1 (E1(ω)−B0).

The aggregated risk of the market participants is given by

Z1(ω) = c1(E1(ω)−B0) + R1(ω).

Thus, the state price density of this market is obtained as

φWB(ω) =
1

1 + r

eγ{c1(E1(ω)−B0)+R1(ω)}

E
[
eγ{c1(Ẽ1−B0)+R̃1}

] .

Of course, when B0 = 0, the state price density φWB(ω) agrees with the one given in

Proposition 1. However, when banking and borrowing are allowed in the market, the

time-1 price system is connected with the time-0 price through the aggregated net banking

amount B0. Note that the aggregated amount B0 is not yet determined. Below, we shall

obtain B0 in equilibrium using the no-arbitrage argument.
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To this end, we denote by FWB the forward price of future permits at time 0 when

the system of banking and borrowing is introduced. Following the arguments in Section

4 of Maeda (2004), we have FWB = (1 + r)S0 from the no-arbitrage condition. To see

this, consider the contingent claim Hi(ω) = −S1(ω)Bi0. Then, from (12), the final wealth

becomes

Wi(ω) =(1 + r)

[
Ri0 − (Ei0 −Xi0)S0 − ci0(Xi0) + Bi0

{
FWB

1 + r
− S0

}]

+ Ri1(ω)− (Ei1(ω)−Xi1(ω))S1(ω)− ci1(Xi1(ω)),

where we have used the identity FWB = (1+ r)E[S̃1φ̃WB]. As a result, if FWB > (1+ r)S0,

emitter i can make an infinitely large profit with no risk from banking by setting Bi0 →∞.

If FWB < (1+r)S0, on the other hand, borrowing permits allows an arbitrage opportunity

for each emitter.

The no-arbitrage condition is expressed as S0 = E[S̃1φ̃WB]. It follows from the fact

st(E) = c′t(E) that

(1 + r)c′0(E0 + B0) =
E

[
c′1(Ẽ1 −B0)e

γ{c1(Ẽ1−B0)+R̃1}
]

E
[
eγ{c1(Ẽ1−B0)+R̃1}

] . (13)

The aggregated amount B0 of net banking in equilibrium is determined by (13). Note

that the solution in B0 always exists and is unique under Assumption 1.

4 The Case of Normally Distributed Risks

As mentioned in the introductory section, permit markets are rapidly growing. The

number of market participants is quite large, so that the social emission abatement Et

is given by the sum of a large number of relatively small Eit’s. The same argument can

apply to the aggregated income Rt. Therefore, due to the central limit theorem, it is

expected that (Ẽt, R̃t) can be approximated by a bivariate normal distribution. In this

section, we show that the pricing formula becomes significantly simpler when the risks of

emission abatement and exogenous income are normally distributed.

Throughout this section, we assume that banking and borrowing are not allowed. The

case of banking and borrowing can be treated in a similar manner.
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4.1 The pricing formula

Suppose that (Ẽ1, R̃1) follows a bivariate normal distribution with

(
Ẽ1 R̃1

)
∼ N

[(
µE µR

)
,

(
σ2

E ρσEσR

ρσEσR σ2
R

)]
. (14)

Under the normal setting, the pricing formula (8) can be simplified significantly and is

given by the Esscher transform as follows.

Proposition 2 Consider a contingent claim that pays g(S1) at time 1, and let h(·) =

g(c′1(·)). Then, the price of the claim is given by

π(g) =
E

[
h(Z̃∗)eγc1(Z̃∗)

]

(1 + r)E
[
eγc1(Z̃∗)

] , (15)

where Z̃∗ is a normal random variable with mean µZ := µE − γρσEσR and variance σ2
E.

Proof Let (X,Y ) be any bivariate normal variables, and let f(·) be any function for

which the following expectations exist. It is well known (see, e.g., Exercise 3.16 in Kijima

(2002)) that

E
[
f(X)e−Y

]
= E

[
e−Y

]
E[f(X − C[X, Y ])]. (16)

The proposition follows from simply substituting X = E1 and Y = γR1 into this equation.

¤

Proposition 2 illustrates how the exogenous income R1 affects the pricing formula in

equilibrium for the normal case. Consider, for example, the case that the correlation ρ

between Ẽ1 and R̃1 is positive. Then, the increase in correlation has the same influence

on the prices of contingent claims as the decrease in µE, the expected abatement level.

This result can be explained as follows. As noted earlier, contingent claims are traded

in the market not only to hedge the risk of abatement uncertainty, but also to hedge the

risk of her exogenous income. This means that, when the correlation ρ is positive, each

emitter or financial trader buys (sells, respectively) a contingent claim of event ω at which

her exogenous income will be low (high). Hence, in total, risks in the permit market are

priced as if the expected level of the abatement target µE fell to µZ . A similar argument

can be applied to the effect of σR to the pricing formula.

The pricing formula given in Proposition 2 provides the comparative statics results for

the price of any contingent claims with respect to the exogenous parameters. The next

15
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corollary can be proved by simply differentiating (15). For the state price density φ̃, the

probability measure

Pφ(A) = (1 + r)E[φ̃1A], A ∈ F

is called the risk-neutral measure, where 1A denotes the indicator function, meaning that

1A = 1 if ω ∈ A and 1A = 0 otherwise. We denote by Eφ and Cφ the expectation and

covariance operators under the risk-neutral measure, respectively.

Corollary 2 Let

∆1 :=Eφ[h
′(Z̃)] + γCφ[h(Z̃), c′1(Z̃)] (17)

and

∆2 :=Eφ

[
h′(Z̃)

Z̃ − µZ

σE

]
+ γCφ

[
h(Z̃), c′1(Z̃)

Z̃ − µZ

σE

]
. (18)

Then, we have

∂π(g)

∂µE

=
1

1 + r
∆1,

∂π(g)

∂ρ
= − 1

1 + r
γσEσR∆1,

∂π(g)

∂σR

= − 1

1 + r
γρσE∆1

and

∂π(g)

∂σE

=− 1

1 + r

(
γρσR∆1 +

1

1 + r
∆2

)
.

Suppose that the expected abatement level µE increases marginally. From the ex-

pression of ∆1, we find that the increase in µE has two effects. The first term of ∆1

represents how the expected payoff changes under the risk-neutral measure, whereas the

second term describes the effect of the change in the state price density, since the change

in µE induces the change of the risk-neutral measure. This effect can be written as the

correlation between the payoff and the spot price at time 1 (recall that the spot price is

the first-order derivative of the aggregated cost function). For example, when the price

of a call option is considered, both terms in ∆1 become positive. Therefore, the increase

in µE not only raises the price of a call option directly, but also raises the price by the

change of the state price density. Similar observations apply for the parameters ρ and σR.

On the other hand, the impact of σE can be divided into four terms. Equation (18)

describes the effect through the variable Ẽ1, while (17) shows the effect from the corre-

lation term γρσEσR. The first terms of ∆1 and ∆2 represent the marginal change in the

expected payoff under the risk-neutral measure, while the second terms are caused by the

change in the state price density.
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In the standard theory of financial contingent claims such as the Black–Scholes for-

mula, only the direct effect is considered. However, when prices of contingent claims

in a permit market are analyzed, the indirect effect should also be considered, because

the state price density depends much on the exogenous parameters that characterize the

permit market.

4.2 The case of quadratic cost function

In this subsection, we derive and analyze the forward price when the cost function is

quadratic.

Suppose that the cost function of each emitter at time t is given by

cit(x) =





ĉit

2
x2, x ≥ 0,

0, x < 0,

where ĉit is a positive constant. The parameter ĉit characterizes the marginal cost function.

Namely, a lower value of ĉit means that emitter i can abate her emission with a lower

cost.

Under this setting, the optimal emission of emitter i at time 1 is given by Xit(ω) = St(ω)
ĉit

as far as St is positive. From market clearing condition (4), we then obtain

st(Et) = ĉtẼt and ct(Et) =
1

2
ĉtẼ

2
t for Ẽt ≥ 0,

where

ĉt :=

( ∑
i∈ME

1

ĉit

)−1

.

When Et is negative, on the other hand, the spot price should be zero in equilibrium.

To see this, suppose that the total abatement target is negative, while some emitter must

reduce a positive amount of emission. Namely, Et ≤ 0 while Eit > 0 for some i ∈ ME.

An emitter with negative abatement target is willing to sell her permits, as long as the

spot price is strictly positive, because selling her permits always increases her utility. As

a result, since the total amount of sell orders surpasses that of buy orders, the spot price

should be zero in the competitive market.

From Proposition 1, the state price density in this market is given by

φ(ω) =
1

1 + r

eγ{ 1
2
ĉ1E2

1(ω)1{E1(ω)≥0}−R1(ω)}
E

[
eγ{ 1

2
ĉ1Ẽ2

11{Ẽ1≥0}−R̃1}] . (19)
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Note that the indicator function 1{E1(ω)≥0} explicitly appears in the formula. Any contin-

gent claim in this market can be priced by the state price density (19).

The next proposition provides the forward price in this market when the risks are

normally distributed.

Proposition 3 Let µZ := µE − γρσEσR and α := γĉ1σ
2
E, and suppose that the cost

function to reduce emission is quadratic. Then, the forward price F is given by

F =
ĉ1

(
µZ

1−α
N(d0) + σE√

1−α
n(d0)

)

N(d0) +
√

1− α exp
{
− αµ2

Z

2
√

1−α

}
N

(
−µZ

σE

) , (20)

where n(·) and N(·) denote the density and distribution functions of the standard normal,

respectively, and d0 := µZ

σE

√
1−α

.

Proof The formula (20) is fairly complicated and not easy to analyze. The reason for

the complicated form is due to the indicator function 1{E1(ω)≥0} in (19). However, when

µE is large enough, which is to be expected in practice, the effect from the indicator

function will disappear. In fact, for large µE, we have N(d0) ≈ 1 and the other terms are

approximately zero. It follows from (20) that

F =
ĉ1µZ

1− α
=

ĉ1 (µE − γρσEσR)

1− γĉ1σ2
E

(21)

for large µE. In what follows, we use the simplified formula (21) for the forward price

when the risks are normally distributed and the cost functions are quadratic.8

Before proceeding, we check the accuracy of the formula (21) by some numerical

example. Figure 1 compares the forward prices calculated from (20) and (21). It is

observed that the simplified formula (21) provides a very good approximation to the

exact formula for µE ≥ 0.3.

[Figure 1 is inserted here.]

Our important findings from the forward price (21) are the following. Note that the

expected value of S1 under the physical measure P is given by ĉ1µE. The term α = γĉ1σ
2
E

in the denominator characterizes the risk premium of the forward price. Hence, the more

8The formula (Equation (7)) obtained in Maeda (2004) is slightly different from (21), since Maeda

(2004) assumed that regulated emitters do not take into account their exogenous incomes in their decision

frame, that is, Rit = 0, i ∈ ME in our model. This is a matter of definition of agent types. Adjusting

this difference turns out that these formulas are basically the same.
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risk-averse traders in the market, or the more the variance of the future emission amount,

the higher the forward price. On the other hand, the term γρσEσR reflects the effect of the

correlation between the emission and the aggregated exogenous income. If the correlation

is positive, it decreases the forward price, because a short position of the forward contract

is used in order to hedge the risk of exogenous income.

Finally, by using a similar procedure to the derivation of (20), we can calculate the

price of options written on the spot price at time 1. The call option price with strike

K > 0 is given by

E
[
{ĉ1Ẽ1 −K}+eγ{ 1

2
ĉ1Ẽ2

11{Ẽ1≥0}−R̃1}]

(1 + r)E
[
eγ{ 1

2
ĉ1Ẽ2

11{Ẽ1≥0}−R̃1}]

=
1

1 + r

(
ĉ1µZ

(1−α)
−K

)
N(dK) + ĉ1σX√

1−α
n(dK)

N(d0) +
√

1− α exp
{
− αµ2

Z

2
√

1−α

}
N

(
−µZ

σE

) ,

(22)

where

dK =
µZ − (1−α)K

ĉ1

σE

√
1− α

.

Note the resemblance of formulas between (22) and (20). From (10) and (11), the forward

price can be considered as the (non-discounted) call option price with zero strike price.

5 Implications on Forward Contracts

Since permit markets are purely artificial, the design and implementation of such markets

are the most important issues. In particular, for regulated emitters, contingent claims

that are monotonically increasing in S1 are useful tools to hedge the risk of emission

abatement costs. In this section, we discuss about some topics that are specific in permit

markets by examining the price of forward contracts.

5.1 Price spikes

We first provide a numerical example to show that the so-called price spike often observed

in energy markets may happen even in permit markets.
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Assume that the cost function to reduce pollutant emission by emitter i is given by

cit(x) =





0, x ≤ 0,

ĉiL

2
x2, 0 < x ≤ X̄B,

ĉiH

2
x2 − (ĉiH − ĉiL)X̄Bx + ĉiH−ĉiL

2
X̄2

B, x > X̄B,

(23)

where ĉiL, ĉiH and X̄B are positive constants with ĉiL < ĉiH . For simplicity, we assume

that the kink point X̄B is common among all emitters.

Note that the cost function (23) is quadratic in the whole region, while the marginal

cost kinks at X̄B. The ratio ĉiH/ĉiL represents the magnitude of the kink at that point.

If ĉiL = ĉiH , the cost function is smooth in the whole region. Of course, the cost function

satisfies Assumption 1.

Let ĉL and ĉH be
(∑

i∈ME
1/ĉiL

)−1
and

(∑
i∈ME

1/ĉiH

)−1
, respectively, and define

κ := ĉH/ĉL. Then, the social cost function is obtained as

c1(E1(ω)) =ĉL ×





0, E1(ω) ≤ 0,

1

2
E1(ω)2, 0 < E1(ω) ≤ X̄B,

κ

2
E1(ω)2 − (κ− 1)X̄BE1(ω) +

κ− 1

2
X̄2

B E1(ω) > X̄B,

and the spot price at time 1 in equilibrium is given by

S1(ω) = ĉL ×





0, E1(ω) ≤ 0,

E1(ω), 0 < E1(ω) ≤ X̄B,

κE1(ω)− (κ− 1)X̄B, E1(ω) > X̄B.

The forward price for this case is expressed in terms of the standard normal density

and its cumulative distribution function,that can be calculated by standard numerical

methods with ease. Figure 2 illustrates the relationship between the forward price and

the expected emission abatement level. Here, we set the parameters as γ = 1.0, σE = 0.3,

ρ = 0, ĉL = 1.0, and X̄B = 3.0.

[Figure 2 is inserted here.]

It is explicitly observed that, when κ = ĉH/ĉL > 1, the forward price kinks around

µE = 2.2 and the kink level of the forward price is much lower than the kink level X̄B = 3.0

of the spot price. Also, as κ increases, the magnitude of kinks increases drastically.

The price kink also happens with respect to σE, the parameter that represents the

uncertainty of the future emission amount. Figure 3 shows how the forward price changes

in σE. Here, we set µE = 2 and the other parameters to be the same as in Figure 2.
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[Figure 3 is inserted here.]

It is well known that, in energy markets, the so-called price spike often appears,

meaning that the price dramatically rises due to the shortage of capacity to produce

energy. In our model, when the cost function is subject to a kink, such a price spike can

happen also in permit markets. For example, suppose that market participants slightly

update the probability distribution of the future emission and forecast either the mean

level µE or the uncertainty σE to become higher than before. Then, the forward price can

rise dramatically. That is, a small change in the forecast about the future emission may

lead to a big price change in forward contracts. Note from the above observation that the

price spike for the forward contract is more likely to occur than the spot price.

Next, we consider the case that the system of banking and borrowing is introduced

to the above model. Figure 4 depicts the relationship between the mean emission level

µE and the forward prices with and without banking. Here, we set κ = 3.0 and the level

of the current social abatement target E0 to be 2.11, at which B0 = 0 in equilibrium for

µE = 2.0. As a comparison, we also depict the future spot price in the case of no banking.

[Figure 4 is inserted here.]

It is observed that the forward price with banking is less sensitive to the expected abate-

ment target, meaning that the banking and borrowing eliminates most of the spike effect

on the forward price. This is so, because the change in the forward price is partly ab-

sorbed by the change in the spot price via the aggregated banking or borrowing. Note

from Figure 4 that, although the kink in the cost function has an impact on the forward

price with banking, the kink only appears around µE = 3.7, which is not only much higher

than that without banking, but also higher than X0, the level at which the future spot

price kinks.

These results have an important implication about the design of tradable permit mar-

kets. That is, in energy markets, the price spike is inevitable, because energy production

has an apparent capacity limitation and current energies are usually nonexchangeable

with future energies. In permit markets, on the other hand, current permits can be

stored and substituted for future permits through banking and borrowing. When effec-

tively implemented by regulated emitters, the system of banking and borrowing mitigates

the instability of both spot and forward prices, while not changing the total emission

abatement amount over the periods.

21



Equilibrium Pricing of Contingent Claims in Tradable Permit Markets

5.2 Contango vs. normal backwardation

In commodity markets, the relationship between spot and forward prices has been exten-

sively studied. When the forward price is greater than the expected future spot price, it

is called a contango market, while we say that the market shows a normal backwardation

when the forward price is smaller than the expected future spot price.9

In usual commodity markets, it is often said that market contango and backwardation

are attributed to properties of the traded commodity itself and economic environments

surrounding the commodity. For example, contango in gold markets is often referred

to the cost of carry, while backwardation often appears in oil markets because of the

convenience yield. Therefore, it is practically and economically important to find what

kind of factors are influential in creating contango or backwardation for the understanding

of commodity markets. Our forward price formula (21) provides an interesting implication

in this context.

Suppose first that the social emission amount Ẽ1 and the aggregated exogenous in-

come R̃1 are mutually independent. Then, from the discussions in Esary et al. (1967), the

forward price F (without banking) is always higher than E[S1], irrespective of the distri-

bution of Ẽ1. This means that the permit market will show contango when dependence

between Ẽ1 and R̃1 is not so strong. The difference between F and E[S1] is determined

by the risk premium α := γĉ1σ
2
E.

Next, let us consider a more general case that Ẽ1 and R̃1 are positively correlated.

From (21), it is readily verified that the market is contango (backwardation, respectively)

if

ρσR

σE

< (>)ĉ1µE ≡ E[S1].

Let R̃E1 :=
∑

i∈ME
Ri and R̃S1 :=

∑
j∈MS

Rj, so that R̃1 = R̃E1 + R̃S1. Then, we easily

see that

ρσR

σE

=
C[Ẽ1, R̃1]

σ2
E

=
C[Ẽ1, R̃E1] + C[Ẽ1, R̃S1]

σ2
E

. (24)

Note from the bilinearity of the covariance operator that C[Ẽ1, R̃1] increases as the number

of market participants increases, provided C[Ẽ1, R̃k] > 0 for k ∈ M. Of course, this

argument applies not only to regulated emitters but also unregulated financial traders.

9For definitions of these terms, see standard finance textbooks such as Hull (2005). These terms have

been used in several ways to describe characteristics of various futures markets. For a comprehensive

survey of the historic use of these terms, we refer to Duffie (1989).
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Hence, in particular, the permit market will become in normal backwardation if there

are many financial traders in the market. The property that the characteristic of market

participants determines the price structure of the market is quite unique and distinct from

other markets.

5.3 Risk sensitivity

In this subsection, we investigate the impact of σE, the risk parameter of the social

emission in the future, on the forward price F . Note that, in many commodity markets,

the forward price is monotonic with respect to the volatility of the spot asset price (see,

for example, Schwartz (1997)). However, as we shall show below, the monotonicity result

does not hold in our permit market.

Throughout this subsection, it is assumed that the correlation ρ is non-negative, which

is natural in reality. Then, as σE increases, both the numerator and the denominator in

(21) are monotonically decreasing. Note that, as σE ↗
√

1
γĉ1

, the denominator diverges

while the numerator stays finite, whence the decreasing effect of the denominator dom-

inates that of the numerator for σE large enough. In other words, as for the ordinary

commodity markets, the forward price F is monotonically increasing in σE large enough.

However, the behavior of F is not clear when σE is not large.

In fact, the forward price can be non-monotonic when Ẽ1 and R̃1 are positively corre-

lated. Figure 5 depicts a graph of the forward price with respect to σE when ρ = 0.5.

[Figure 5 is inserted here.]

It is observed that the forward price is initially decreasing and then increasing in σE.

The result is consistent with comparative statics results given in Corollary 2. The

corollary says that the marginal change in each parameter has two effects on the change

in the price of any contingent claim. The first effect is caused by the change in expected

payoff. Here, the increase in σE induces the decrease in µZ , meaning that the forward

price becomes lower. More precisely, as σE increases, the covariance C[E1, R1] increases,

so that market participants want to sell the asset to hedge the risk of income uncer-

tainty. Therefore, when the correlation is strongly positive and σE is small, this first

effect becomes significant.

The second effect appears in the change of risk premium α = γĉ1σ
2
E and is caused

by the change in the state price density. As σE increases, uncertainty in the spot price

of permits increases. Hence, since all market participants are risk-averse, they become
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more willing to hold the forward contract and the forward price becomes higher. Figure

5 indicates that the second effect dominates the first one when σE is large enough.

5.4 Sensitivity analysis of other parameters

Differentiating the simplified formula (21) of the forward price with respect to each pa-

rameter, we obtain the following results.

Corollary 3 1. The forward price is always increasing in ĉ1.

2. The forward price is always decreasing in ρ.

3. The forward price is decreasing in σR when ρ is positive.

4. The impact of γ is indeterminate.

These results also echo Corollary 2. The marginal change in each parameter yields

the marginal change in the expected payoff and that in the state price density. The

effect of correlation corresponds to the marginal change in the expected payoff, since the

correlation has a similar effect to µE. On the other hand, the effect of the risk-premium is

regarded as the marginal change in the state price density, because the state price density

determines the risk-premium.

The above analyses can be applied to the market design and other related problems.

Suppose, for example, that the government wants to prohibit financial traders from par-

ticipating in a permit market. Suppose that financial traders are less risk-averse than

general business firms and their incomes are less correlated with the emission amount.

Then, from Corollary 3, their impact on the forward price is not so simple, and the

government must take both the risk-premium and the correlation effects into account.

6 Concluding Remarks

In this paper, we construct a permit market model in which all agents have CARA utility

functions with distinct risk-aversion parameters. The state price density is derived for

any probability distribution and any cost function to price any contingent claims in the

permit market. To our best knowledge, this paper is the first to study the pricing of

contingent claims in permit markets in a general equilibrium framework.

The pricing formula depends on the probability distribution of the future abatement

target, the aggressiveness of market participants, the social cost function to reduce pol-
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lutant emission, and the correlation between future emission amount and the aggregated

exogenous income of agents. Using numerical examples, we illustrate how these parame-

ters change the price of forward contracts.

Through comparative statics studies, we find that the change of parameters has two

effects on the price of contingent claims. The first one is the direct effect caused by

the change in the payoff, while the second one is the indirect effect that arises from the

change in the state price density. In the ordinary financial markets, the state price density

is exogenously given, and the change of exogenous parameters has no impact on the state

price density.

We also discuss some related topics that are specific to permit markets. One interesting

finding is that if the social cost function kinks at some level of abatement, the forward

price as well as the spot price may be subject to the so-called price spike, whence the

prices in permit markets may have some instability that cannot be overlooked. However,

this price-spike phenomenon can be weakened if the system of banking and borrowing is

properly introduced.

Our model can also be used to study the effect of environmental taxes or subsidies on

the prices of contingent claims. Suppose that a government imposes regulated emitters on

an environmental tax τt(X) for the self-abatement effort X, where τt(X) is regarded as a

subsidy when it is negative. Then, the cost function for X after tax is described as cit(X)+

τt(X), and the first-order condition corresponding to (5) is given by c′it(Xit)+τ ′t(Xit) = St.

From the above discussions, when the government imposes the environmental tax in the

form of lump sum payment, it does not affect the self-effort abatement Xit, meaning that

the equilibrium prices of contingent claims are the same as those before the introduction of

tax. Hence, if the government wants to design the tax so as to affect the prices properly,

one possible way is to offer emitters some subsidy whose amount is dependent on the

self-effort abatement. This sort of investigation, among others, is our future works.

As permit markets are globally growing and developing, it becomes more and more

important to understand how prices of permit market products are formed. This study

provides new insights as a first step for the problem.
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Figures

Figure 1: The figure presents the comparison between (20) and (21) with various µE. We

set γ = 1, σE = 0.3, ρ = 0, and ĉ1 = 1.0. It is observed that the simplified formula

(21) can be regarded as a good approximation for the formal formula (20) under plausible

parameter settings.
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Figure 2: The relation between F and µE with different values of κ. The graph shows

that when κ > 1, the forward price kinks at around µE = 2.2. This figure effectively

illustrates how the probability distribution of Ẽ1 as well as the form of the cost function

c1(·) affects the pricing of contingent claims.
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Figure 3: The relation between F and σE with different values of κ. We here set µE = 2.0.

As in Figure 2, the price difference is notable when σE ≥ 0.3.
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Figure 4: The relation between the expected emission level and the forward price when

permit banking is introduced. We set ĉH = 1.0 and r = 0.05, and E0 = 2.11, at which

B0 = 0 in equilibrium for µE = 2.0. Other parameters are the same as in Figure 2. We

observe from the figure that the system of banking and borrowing lowers the sensitivity of

µE to the forward price. Also note that the effect of the kink appears at around µE = 3.5,

much higher than in the case of Figure 2 and X̄B.
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Figure 5: The relation between F and σE. We set ρ = 0.5 and σR = 0.5, and the values

of the other parameters are the same as in Figure 1. The figure shows that the forward

price is initially decreasing and then increasing at around σE = 0.06.
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