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Abstract

This paper proposes a multivariate model, which is a variant of the one introduced
by Picard et al. (2003).
The evolution of this model is in discrete time where the premium incomes are
arbitrary, and the successive claim amounts remain independent between periods
but may be mutually dependent inside each period. Multirisks models can arise in
various insurance contexts.
In this work we present some applications like the reinsurance to describe the surplus
processes of the cedent and the reinsurers. The ceding and reinsurance companies
are jointly liable for covering losses generated by the total mass of claims; hence
their risks are mutually dependent.
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1 Introduction

In this paper, we examine a multirisks generalization of a discrete time risk model with
non-homogeneous conditions (Castañer et al. (2011)). Thus, the insurance portfolio is
now assumed to cover not just a single risk, but several risks that may be interdependent.
This multivariate model is a variant of the one introduced by Picard et al. (2003); see
also Denuit et al. (2007).

Multirisks models can arise in various insurance contexts. A typical situation is with
certain damages or catastrophic events that often cause losses in several branches. An-
other application is in reinsurance to describe the surplus processes of the cedent and the
reinsurers. The ceding and reinsurance companies are jointly liable for covering losses
generated by the total mass of claims and hence, their risks are mutually dependent.
Kaishev et al. (2008) investigated a bivariate model of this type under an excess of loss
reinsurance treaty, and assuming Poisson claim arrivals, any premium income function
and arbitrary joint distributions of the claims; see also the references in that paper and
e.g. Avram et al. (2008) for a model with proportional reinsurance that may be reduced
to a univariate case.

The multivariate model considered here has the same general structure as in Picard et
al. (2003). It describes the evolution in discrete-time of r (∈ IN0) risk processes where the
(deterministic) premium incomes are arbitrary, and the successive claim amounts remain
independent between periods but may be mutually dependent inside each period. The
vectors of the r claim amounts per period have again non-stationary joint distribution
functions that are continuous with a positive probability for no claim.

The paper is organized as follows. In Section 2, the multirisk discrete model is intro-
duced. In Section 3 we make an application of the model in the bivariate case when insurer
and reinsurer make a limited stop-loss reinsurance treaty. Some numerical examples of
the joint ruin probability of the cedent and the reinsurer are included and commented.

2 Model

In the notation used below, bold letters indicate r-dimensional vectors. So, x = (x1, . . . , xr),
0 = (0, . . . , 0), x + y = (x1 + y1, . . . , xr + yr) and x ≤ y means (x1 ≤ y1, . . . , xr ≤ yr).
The initial reserves are u = (u1, . . . , ur). During (t, t + 1], the fixed vector of premiums
is ct = (c1,t, . . . , cr,t), and the random vector of claim amounts is Xt = (X1,t, . . . , Xr,t),
with distribution function Ft. The cumulated premiums and claim amounts for the first
t periods are denoted c(t) and S(t) (with distribution function FS(t)). Thus, the joint
surplus at time t is given by U(0) = u and

U(t) = u+ c(t)− S(t), t ∈ IN0. (2.1)

Various definitions of ruin are possible. One could consider that ruin occurs as soon as
one of the r surplus process is insolvent, or 2 of them . . . or all the r processes. Another



Multirisks models in discrete time 3

possible definition could be that the sum of the r surpluses must become negative (this is
basically a single risk case). For the sequel, we say that there is ruin at time T if at least
one of the r processes then runs insolvent, i.e. T = min(T1, . . . , Tr) where Ti denotes the
ruin time for risk i. This classical choice is reasonable in many applications.

Inside the model (2.1), consider the probability

φ(t,x) ≡ P [T > t and U(t) ≥ x], t ∈ IN and 0 ≤ x ≤ u+ c(t).

Associated with any s ∈ IRr,+, define the (integer) times vs = 0 if s ≤ u, and

vs = sup{t ∈ IN : ul + cl(t) < sl for some risk l = 1, . . . , r} if s � u.

So, vs is the last time where a claim amounts vector of s would lead to ruin for at least
one risk, if ever; otherwise, it is equal to 0.

Proposition 2.1

φ(t,x) = FS(t)(0) +

∫

u+c(t)−x

w=0

bw FS(t)(u+ c(t)− x−w) dw, (2.2)

where bw, w ∈ IRr,+, is a real function (with a r-dimensional index) defined by

0 =

∫

s

w=0

bs−w dFS(vs)(w), s ∈ IRr,+. (2.3)

For numerical calculations claim amounts are discretized as in Castañer et al. (2011).

3 Limited Stop-Loss reinsurance application

As a specific example, we now explicitly formulae the model for a limited stop-loss reinsur-
ance contract. Let U1(t) and U2(t) be the surplus process of the cedent and the reinsurer,
respectively. The global claim amounts during the successive periods (t, t + 1] form a
sequence of independent random variables Xt, possibly with different distributions. Sup-
pose that for each Xt both companies agree to fix a retention level dt > 0 and a limiting
level mt > dt to the cedent. So, the risk covered by the cedent is

X1,t = min (Xt, dt) + max (Xt −mt, 0) ,

and for the reinsurer,

X2,t = Xt −X1,t = min {mt − dt,max (Xt − dt, 0)} .

The corresponding surpluses are then given by

Ul(t) = ul + cl(t)− Sl(t), l = 1, 2,



Multirisks models in discrete time 4

where cl(t) = cl,1 + . . . + cl,t and Sl(t) = Xl,1 + . . . + Xl,t. Note that X1,t and X2,t

being interdependent, this is also true, of course, for U1(t) and U2(t). The ruin time
T = min (T1, T2) is the first instant when the cedent (at time T1) or the reinsurer (at time
T2) become insolvent.

In the present application we consider only the joint probability of ruin of cedent and
reinsurer, that is

ψ(t) = 1− φ(t,0).

We consider that claim amounts (Xt), deductible (dt) and limit (mt) do not change from
one period to another. Insurer and reinsurer use the expected value principle to calculate
the premiums with safety loading factors θ1 and θ2 respectively, c2 = E[X2] (1 + θ2) and
c1 = E[X] (1 + θ1)− c2.

The first question is how to calculate the stop-loss premium, πX(d). In general

πX(d) =

∫

∞

d

(X − d) dFX(x).

Then the premium of this limited stop-loss can be calculated from the premium of a
stop-loss non limited,

E[X2] = πX(d)− πX(m).

Explicit expressions of πX(d) are only available for some distributions of X (e.g. exponen-
tial, lognormal, gamma, normal and normal-power). If X follows a compound distribution
and the Panjer recursion can be applied, it is possible also to easily calculate the stop-loss
premium (see Kaas et al. (2008), Mikosch (2004)).

Let us suppose in this application that the claim amount in one period can be ap-
proached by a translated gamma distribution. Let G be a gamma random variable with
(positive) parameters (α,β); its distribution function is given by

Ga(x;α, β) = P (G ≤ x) =
βα

Γ(α)

∫ x

0

yα−1e−βydy, x > 0.

Then, the total claim amount X is approximated by a translated gamma random variable
G+ x0 such that the first three central moments coincide. This implies that

α = 4σ6(X)/{E[X − E(X)]3}2,

β = 2σ2(X)/E[X − E(X)]3, (3.4)

x0 = E(X)− α/β.



Multirisks models in discrete time 5

In this case the stop-loss premium is

πX(d) =
α

β
(1−Ga(d− x0;α + 1, β))− (d− x0) (1−Ga(d− x0;α, β)) .

If X is continuous it will be discretized using a span of h, X(h). The parameters of
stop-loss treaty must be also expressed in the new units, D =

⌊

d
h

⌋

and M =
⌊

m
h

⌋

. With
the limited stop-loss the bivariate discret distribution P [X1 = x1h,X2 = x2h] is

P [X1 = x1h,X2 = x2h] =















P [X(h) = 0], x1 = x2 = 0,
P [X(h) = x1h], 0 < x1 ≤ D, x2 = 0,
P [X(h) = (x2 +D)h], x1 = D, 0 < x2 ≤M −D,
P [X(h) = (x1 +M −D)h], x1 > D, x2 =M −D,

and the other combinations are zero. This can be expressed in matrix form as follows,

x1\x2 0 · · · x2 · · · (M −D)

0 P [X = 0h] · · · 0 · · · 0
...

...
...

...
x1 P [X = x1h] · · · 0 · · · 0
...

...
...

...
D P [X = Dh] · · · P [X =(x2+D)h] · · · P [X =Mh]
...

...
...

...
x1 0 · · · 0 · · · P [X = (x1 +M −D)h]
...

...
...

...

Let us consider a numerical example. In this example, X is modeled by a translated
gamma random variable with parameters (α = 8/9, β = 2/3, x0 = −1/3). These values
are obtained from (3.4) if a compound Poisson distribution with parameter λ = 1 and
i.i.d. exponential individual claim amounts with mean 1 is approximated by a translated
gamma. Table 1 includes the periodic premiums of insurer and reinsurer (net and with
safety loading) for different values of deductible and limit and different safety loadings.
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d m E[X2] c2 c1 θ

0.8 1 0.077457 0.085202 0.964798 0.045802
0.8 1.5 0.228983 0.251881 0.798119 0.035151
0.8 2 0.335434 0.368978 0.681022 0.024763
0.8 3 0.463465 0.509812 0.540188 0.006809
1 2 0.257977 0.283775 0.766225 0.032617
1 3 0.386009 0.424610 0.625390 0.018566
2 3 0.128031 0.140834 0.909166 0.042658
2 4 0.192114 0.211325 0.838675 0.038110
2 100 0.257324 0.283056 0.766944 0.032676

Table 1: Premiums of insurer and reinsurer with θ1 = 0.05, θ2 = 0.1

Following with the same example, now in Table 2 we show for diferent initial levels of
reserves of the insurer and the reinsurer both the individual ruin probability for each one
and the joint ruin probability, taking a time horizon t = 2 when d = 0.8, m = 1.5 and
considering a discretized span h = 0.01.

u1\u2 0 0.25 0.5 0.75 1

Insurer (0.5143, 0.5177) (0.5143, 0.5177) (0.5143, 0.5177) (0.5143, 0.5177) (0.5143, 0.5177)
0 Reinsurer (0.5360, 0.5392) (0.3209, 0.3234) (0.1072, 0.1087) (0.0773, 0.0784) (0, 0)

Joint (0.5845, 0.5878) (0.5143, 0.5177) (0.5143, 0.5177) (0.5143, 0.5177) (0.5143, 0.5177)
Insurer (0.3698, 0.3724) (0.3698, 0.3724) (0.3698, 0.3724) (0.3698, 0.3724) (0.3698, 0.3724)

0.1 Reinsurer (0.5360, 0.5392) (0.3209, 0.3234) (0.1072, 0.1087) (0.0773, 0.0784) (0, 0)
Joint (0.5360, 0.5392) (0.4169, 0.4199) (0.3756, 0.3783) (0.3712, 0.3738) (0.3698, 0.3724)
Insurer (0.3384, 0.3409) (0.3384, 0.3409) (0.3384, 0.3409) (0.3384, 0.3409) (0.3384, 0.3409)

0.25 Reinsurer (0.5360, 0.5392) (0.3209, 0.3234) (0.1072, 0.1087) (0.0773, 0.0784) (0, 0)
Joint (0.5360, 0.5392) (0.4074, 0.4103) (0.3488, 0.3514) (0.3418, 0.3443) (0.3384, 0.3409)
Insurer (0.2920, 0.2941) (0.2920, 0.2941) (0.2920, 0.2941) (0.2920, 0.2941) (0.2920, 0.2941)

0.5 Reinsurer (0.5360, 0.5392) (0.3209, 0.3234) (0.1072, 0.1087) (0.0773, 0.0784) (0, 0)
Joint (0.5360, 0.5392) (0.3936, 0.3964) (0.3100, 0.3124) (0.2994, 0.3017) (0.2920, 0.2941)
Insurer (0.2518, 0.2537) (0.2518, 0.2537) (0.2518, 0.2537) (0.2518, 0.2537) (0.2518, 0.2537)

0.75 Reinsurer (0.5360, 0.5392) (0.3209, 0.3234) (0.1072, 0.1087) (0.0773, 0.0784) (0, 0)
Joint (0.5360, 0.5392) (0.3820, 0.3848) (0.2776, 0.2799) (0.2639, 0.2660) (0.2518, 0.2537)
Insurer (0.2171, 0.2188) (0.2171, 0.2188) (0.2171, 0.2188) (0.2171, 0.2188) (0.2171, 0.2188)

1 Reinsurer (0.5360, 0.5392) (0.3209, 0.3234) (0.1072, 0.1087) (0.0773, 0.0784) (0, 0)
Joint (0.5360, 0.5392) (0.3723, 0.3751) (0.2504, 0.2526) (0.2341, 0.2361) (0.2171, 0.2188)

Table 2: Probabilities of ruin with t = 2, d = 0.8, m = 1.5, θ1 = 0.05, θ2 = 0.1, h = 0.01
where the stop-loss premium is 0.228983

In Figures 1 and 2 we plot the data obtained in Table 2 in order to better analyze
the behaviour of the ruin probabilities. In Figure 1 all the data are presented jointly and
Figure 2 shows the individual and joint ruin probabilities for both the insurer and the
reinsurer.
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Figure 1: Probabilities of ruin (upper bound) with t = 2 as a function of initial reserves
of reinsurer (u2) and insurer (u1): Reinsurer (blue), Insurer (black) and joint probability
(green)

Figure 2: Probabilities of ruin (upper bound) with t = 2 as a function of initial reserves of
reinsurer (u2) and insurer (u1): Left Graph(Insurer (black) and joint probability (green))
and Right Graph (Reinsurer (blue) and joint probability (green))

An interesting question related with reinsurance and joint survival of the cedent and
reinsurer is analized in Ignatov et al. (2004). In that paper they propose to use the joint
survival of the cedent and the reinsurer and the probability of survival of the reinsurer
given the cedent’s survival as two criteria for finding the optimal excess of loss treaty.
As a first approach to this question in the stop-loss treaties, we consider here one of the
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two optimal reinsurance problems that can be defined when we use the joint survival
probability as optimality criterion

max
c2
P (T1 > t, T2 > t) .

So, we are interested in finding the constant premium (c2) that the reinsurer must earn in
order to maximize the joint survival probability given that the other variables are fixed.

Let us consider a horizon of t = 2. In Table 3 we show the premium that reinsurer must
earn and the maximum joint survival probability that can be attained in that case, for
different values of the initial reserves of the cedent and the reinsurer.

u1\u2 0 0.25 0.5 0.75

0 c2 0.25 0.25 0.2 0.01
Joint survival 0.463902 0.576772 0.618062 0.654511

0.25 c2 0.37 0.36 0.2 0.01
Joint survival 0.558611 0.597721 0.659904 0.687004

0.5 c2 0.5 0.45 0.2 0.07
Joint survival 0.580630 0.646240 0.694899 0.715798

0.75 c2 0.56 0.45 0.2 0.13
Joint survival 0.600992 0.688630 0.724202 0.742955

Table 3: Optimal joint survival (upper bound) with t = 2, d = 0.8, m = 1.5, θ1 = 0.05,
h = 0.01

The maximum joint survival probability increases with the initial reserves of insurer
and/or reinsurer. As regards the optimal reinsurer premium, Table 3 shows that for
a fixed value of u1 the optimal premium decreases with respect to u2, and on the other
hand for a fixed value of u2 the optimal premium is increasing or constant with respect
to u1.
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