
1. Introduction 
 
 
 
Bootstrapping has become very popular in stochastic claims reserving because of the simplicity and 
flexibility of the approach.  One of the main reasons for this is the ease with which it can be 
implemented in a spreadsheet in order to obtain an approximation to the estimation error of a fitted 
model in a statistical context. Furthermore, it is also straightforward to extend it to obtain the 
approximation to the prediction error and the predictive distribution of a statistical process by 
including simulations from underlying distributions. Therefore, bootstrapping is a powerful tool for 
the most popular subject for reserving purposes in general insurance, the prediction error of the 
reserve estimates. It should be emphasised that to obtain the predictive distribution, rather than just 
the estimation error, it is necessary to extend the bootstrap procedure by simulating the process error. 
It is also important to realise that bootstrapping is not a “model”, and therefore it is important to 
ensure that the underlying reserving models are correctly calibrated to the observed data. In this paper, 
we do not address the issue of model checking, but simply show how a bootstrapping procedure can 
be applied to the Munich chain ladder model. 
 
In the area of non-life insurance reserving, there are primarily two types of data used. In addition to 
the paid claims triangle, there is frequently a triangle of incurred data also available.  The traditional 
approach is to fit a model to either paid or incurred claims data, separately. One of the most popular 
methods used for reserving is the chain ladder technique. While we do not believe that this is the most 
appropriate approach for all data sets, it has retained its popularity for a number of reasons. For 
example, the parameters are understood in a practical context, it is flexible and it is easy to apply. This 
paper concentrates on methods which have a chain ladder structure, and in this context, two types of 
approaches exist: deterministic methods such as chain ladder, and the recently developed stochastic 
chain ladder reserving models. When the chain ladder technique is used (either as a deterministic 
approach or using a stochastic model), one set of data will be omitted - either the paid or the incurred 
data can be used, but not both at the same time. Obviously, this does not make full use of all the data 
available and results in the loss of some information contained in those data. 
 
This leads us to consider whether it is possible to construct a model for both data sets, and to a 
consideration of the dependency between the two run-off triangles, which is not straightforward.  This 
issue also arises when traditional methods are applied separately to each triangle, which produces 
inconsistent predicted ultimate losses. In response to this issue, Quarg and Mack (2004) proposed a 
different approach within a regression framework, considering the likely correlations between paid 
and incurred data. Quarg and Mack (2004) called this new method as the Munich chain ladder (MCL) 
model. It is this model that is the subject of this paper, and we show how the predictive distribution 
may be estimated using bootstrapping. Thus, in this paper an adapted bootstrap approach is described, 
combined with simulation for two dependent data sets. The spreadsheets used in this paper can be 
used in practice for any data sets, and are available on request from the authors. 
 
The paper is set out as follows. Section 2 briefly describes the MCL model using a notation 
appropriate for this paper. In section 3, the basic algorithm and methodology of bootstrapping is 
explained. Section 4 shows how to obtain the estimates of the prediction errors and the empirical 
predictive distribution using the adapted bootstrapping and simulation methods. In Section 5, two 
numerical examples are provided including the data from Mack and also some real London market 
data. Finally, section 6 contains a discussion and conclusion.  
 
 
 
 
 
 



2. The Munich chain ladder method  
 
 
 
The MCL model aims to produce a more consistent ultimate loss prediction when modelling both paid 
and incurred claim data. It is specially designed to deal with the correlation between paid and incurred 
claims as the traditional models, such as chain ladder model, sometimes produce unsatisfactory results 
by ignoring this dependence. It should be emphasized that the paid and incurred claims from the same 
calendar years are not correlated.  It is that the paid claims (incurred claims) are correlated to the 
incurred claims (paid claims) from the next (previous) calendar year. 
 
The fundamental structure of the MCL model is the same as Mack’s distribution-free chain ladder 
model. In the other word, the chain ladder development factors in the MCL model are obtained by 
Mack’s distribution-free approach. More details of Mack’s model are contained in Mack (1993).  
 
Moreover, the MCL model adjusts the chain ladder development factors using the correlations 
between the observed paid and incurred claims. The adjusted chain ladder development factors 
therefore become individual not only for different development years but also for different accident 
years. The correlation adjustment is carried out within a linear modelling framework. This is 
explained in more detail in the sections 2.1 and 2.2. 
 
 
2.1 Notation and Assumptions 
 
For ease of notation, we assume that we have a triangle of data. Although the data could be classified 
in different ways, we refer to the rows as “accident years” and the columns as “development years”.  
Denote  as cumulative paid claims and  as cumulative incurred claims occurred in accident 
year i, development year j, where 1  a  for the observed data. The aim of the 
chain ladder technique and of MCL is to estimate the data up to development year n. This produces 
estimates for 1  a , and we therefore refer to the complete rectangle of data 
in the assumptions: . 
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Furthermore, define the observed data up to calendar year k as { }kjiCP P
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Assumptions A (Expectations) 
 
(A1)  For 1  there exists a constant  such that (for j n≤ ≤ P

jf ni ,...,1= ) 
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This assumption is for paid claims. It is necessary to make another analogous assumption for incurred 
claims since both data sets are taken into account.  
 
(A2)  For 1 , there exists a constant  such that (for j n≤ ≤ I

jf ni ,...,1= ) 
 

1
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In order to analyse the two run-off triangles dependently, the following assumptions are also required. 
  
(A3)  For 1 , there exists a constant  such that (for j n≤ ≤ 1−

jq ni ,...,1= ) 
 

1 1
1ij j jE Q P q− −
−

⎡ ⎤ =⎣ ⎦ . 

 
(A4)  For 1 , there exists a constant  such that (for j n≤ ≤ jq ni ,...,1= ) 
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Assumptions B (Variances) 
 
(B1)  For 1 , there exists a constant  such that (for j n≤ ≤ P

jσ ni ,...,1= ) 
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Again, the analogous assumption for the incurred claims is made as follows. 
 
(B2)  For 1 , there exists a constant  such that (for j n≤ ≤ I

jσ ni ,...,1= ) 
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Also, for the ratios of incurred to paid and vice versa, the following variance assumptions are made. 
 
(B3)  For 1 , there exists a constant  such that (for j n≤ ≤ P

jτ ni ,...,1= ) 
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(B4)  For 1 , there exists a constant  such that for (j n≤ ≤ I

jτ ni ,...,1= ) 
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Assumptions C (Independence) 
 
(C1) The random variables pertaining to different accident years for paid claims, i.e.  
{ }njC P

j ,...,2,11 = , … ,{ }njC P
nj ,...,2,1= , are stochastically independent.  

(C2) The random variables pertaining to different accident years for incurred claims, i.e.  
{ }njC I

j ,...,2,11 = , … ,{ }njC I
nj ,...,2,1= , are stochastically independent.  

 
Using assumptions A to C, the Pearson residuals used in MCL model can be defined as shown in 
equations (4.1) to (4.4). These residuals are a crucial part of the bootstrapping procedures described in 
section 4. 
 

1

1

P P
ij ij jP

ij
P

ij j

F E F P
r

Var F P

−

−

⎡ ⎤− ⎣ ⎦=
⎡ ⎤⎣ ⎦

, 
 
 

(2.1)  

 

1
1 1

1

1
1

ij ij jQ
ij

ij j

Q E Q P
r

Var Q P

−

− −
−

−
−

⎡ ⎤− ⎣ ⎦=
⎡ ⎤⎣ ⎦

, 
 
 

(2.2)  

 

1

1

I I
ij ij jI

ij
I

ij j

F E F I
r

Var F I

−

−

⎡ ⎤− ⎣ ⎦=
⎡ ⎤⎣ ⎦

, 
 

(2.3)  

and 

1

1

ij ij jQ
ij

ij j

Q E Q I
r

Var Q I

−

−

⎡ ⎤− ⎣ ⎦=
⎡ ⎤⎣ ⎦

. 
 

(2.4)  

 
 
Assumptions D (Correlations) 
 
(D1)  There exists a constant  such that (for Pρ nji ≤≤ ,1 ) 
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The following equation states that the constant  is in fact the correlation coefficient between the 
residuals. Note that since the residuals have variance 1, the correlation is equal to the covariance. The 
proof can be found in Quarg and Mack (2004). 
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Quarg and Mack (2004) uses equation (4.5) to derive expected MCL paid development factors 
adjusted by the correlation as shown in equation (4.6).   
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(2.7)  

 
  
 
(D2)  Analogously to assumption (D1), for the incurred claims it is assumed that there exists a 
constant  such that (for )  Iρ nji ≤≤ ,1
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Similarly, the constant  measures the correlation coefficient or the covariance between the 
residuals. i.e. 
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(2.9) 
 
 
Hence, the expected MCL incurred development factors adjusted by the correlation can be derived 
from equation (4.7) as follows,   
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(2.10) 
 
 
2.2 Unbiased Estimates of the Parameters 
 
In this section, we summarise the unbiased estimates of the parameters derived by Quarg and Mack 
(2004). For the paid data, estimates are required for the parameters of the development factors, the 
variance constants and also the correlation coefficient.   
 
The estimates of the paid development factor parameters can be interpreted as weighted averages of 
the observed development factors  or  , using P
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The unbiased estimates of the variance constants coefficient are as follows: 
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Hence the Pearson residuals are 
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Finally, the estimate of the correlation coefficient is given in equation (4.15). 
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Similarly, for incurred data, the estimates of the development factor parameters can be interpreted as 
weighted averages of the development factors  or  , using  as the weights: I
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Also the unbiased estimates for the variance parameters are defined as follows: 
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Hence the Pearson residuals are    
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And finally, the estimate of the correlation coefficient is given in equation (2.24). 
 

( )
,

2

,

ˆ

Q I
ij ij

i jI

Q
ij

i j

r r

r
ρ =

∑

∑
. 

 
 

(2.24)  
 

 
 
Assumptions A in section 2.1 have defined the expectations of the development factors, given just the 
data in the respective triangles. In order to produce a single estimate based on the data from both paid 
and incurred data, Quarg and Mack (2004) also considers the expectations of the development factors 
given both triangles and define P P

ij ij ijE F B⎡ ⎤ = λ⎣ ⎦  and I
ij ij ijE F B⎡ ⎤ I= λ⎣ ⎦ . Using plug-in estimates 

from equations (4.9) to (4.15), the estimates of the paid MCL development factors are calculated 
using equation from (4.6): 
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Similarly, plug-in estimates from equations (4.16) to (4.22) are used in equation (4.8) so that the 
estimates of the incurred development factors are   
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3. Bootstrapping and Claims Reserving  
 
 
 
Bootstrapping is a simulation-based approach to statistical inference.  It is a method for producing 
sampling distributions for statistical quantities of interest by generating pseudo samples, which are 
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obtained by randomly drawing, with replacement, from observed data. In simple terms, bootstrapping 
is a re-sampling procedure and all the pseudo samples generated by bootstrapping are subsets of the 
observed sample or identical to the observed sample.   
 
It should be emphasized that bootstrapping is a method rather than a model. Bootstrapping is useful 
only when the underlying model is correctly fitted to the data, and bootstrapping is applied to data 
which are required to be independent and identically distributed. The bootstrapping method was first 
introduced by Efron (1979) and a good introduction to the algorithm can be found in Efron and 
Tibshirani (1993). 
 
For the purpose of clarity we begin by giving a general bootstrapping algorithm and briefly reviewing 
previous applications of bootstrapping to claims reserving. In section 4, we show how an algorithm of 
this type can be applied to the MCL.  Suppose we have a sample X  and we require the distribution of 
a statistic . The following three steps comprise the simplest bootstrapping process:  θ̂
 

1 Draw a bootstrap sample { }1211 ,...,, B
n

BBB XXXX =  from the observed data 

{ }nXXXX ,...,, 21= . 

2 Calculate the statistic interest  for the first bootstrap sample B
1̂θ { }1211 ,...,, B

n
BBB XXXX = . 

3 Repeat steps 1 and 2 N times. 
 
By repeating steps 1 and 2 N times, we obt in a sample of the unknown statistic , calculated from N 
pseudo samples, i.e. 

a θ̂
{ }B

N
BBB θθθθ ˆ,...,ˆ,ˆ
21= . When , the empirical distribution constructed 

from 

1000≥N

{ }B
N

BBB θθθθ ˆ,...,ˆ,ˆ
21=  can be taken as the approximation to the distribution for the statistic 

interest .  Hence all the quantities of the statistic interest  can be obtained since such a distribution 
contains all the information related to . 

θ̂ θ̂
θ̂

 
The above bootstrapping algorithm can be applied to the prediction distributions for the best estimates 
in stochastic claims reserving subject.  England and Verrall (2007) contains an excellent review on the 
application.  In addition, Lowe (1994), England and Verrall (1999) and Pinheiro (2003) are also good 
resources for more details. England and Verrall (2007) showed how bootstrapping can be used for 
recursive models, following on from the earlier papers (England and Verrall, 1999 and England 2002) 
which applied bootstrapping to the over-dispersed Poisson model. 
 
It should be noted here that the Pearson residuals are commonly used rather than the original data in 
the Generalized Linear Model (GLM) framework. The Pearson residuals are required in order to scale 
the response variables in the GLM so that they are identically distributed. This is necessary because 
the bootstrap algorithm requires that the response variables are independent and identically 
distributed.   
 
To our knowledge, there has not been any consideration of bootstrapping for dependent data in the 
actuarial literature.  It should be noted here that a model taking account of all information available 
could be potentially very valuable, even when the data is dependent in practice.  The dependence 
makes it even difficult to calculate the prediction error theoretically.  For these reasons, we believe 
that adopting bootstrap method for these models is worthy of investigation, particularly in order to 
obtain the predictive distribution of the estimates of outstanding liabilities.   
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4. Bootstrapping the Munich chain ladder model 
 
 
 
This section considers bootstrapping the MCL model. In section 4.1 we describe the methodology and 
in section 4.2 we give the algorithm that is used. 
 
 
4.1 Methodology  
 
The method of bootstrapping stochastic chain ladder models can be seen in a number of different 
contexts. England and Verrall (2007) categorize the models as recursive and non-recursive and show 
how bootstrapping methods can be applied in either case. Since we are dealing with recursive models 
here, we follow England and Verrall and consider the observed development link ratios rather than the 
claims data themselves. In other words, for Mack’s distribution-free chain ladder model the link 

ratios, , are randomly drawn against , noting that ijF ijC [ ] ijjij
ij

ji
ijij CfC

C
C

ECFE =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= +1, . For this 

reason, the bootstrap estimates of the development factors  which are obtained by taking weighted 

averages of the bootstrapped observed link ratios, , use  rather than  as the weights.  

B
jf

B
ijF ijC B

ijC
 
However, this method cannot be simply extended to the MCL model, since this model is designed for 
dealing with two sets of correlated data, the paid and incurred claims.  This means that it is not 
possible to use the normal bootstrap approach: the independence assumption cannot be met any more. 
 
In order to address the problem of how to adapt the existing bootstrap approach in order to cope with 
the MCL model for dependent data sets, the consideration of the correlation is crucial. It should be 
noted that the correlation which is observed in the data represents real dependence between the paid 
and incurred data, and the model is specifically designed because of this dependence. Therefore, it 
should remain unchanged within any re-sampling procedure. The straightforward solution is to draw 
samples pairwise so that the correlation between the two dependent original data sets will not be 
broken when generating a sampling distribution for a statistic interest. 
 
Obviously, when bootstrapping the recursive MCL model, the residuals of the paid and incurred link 
ratios are required instead of the raw data. The question arises of how to deal with these residuals in 
order to meet the requirement of not breaking the observed dependence between paid and incurred 
claims,  
 
The answer is to group all the four sets of residuals calculated in the MCL model, i.e. the paid and 
incurred development link ratios, the ratios of incurred over paid claims from the previous years and 
its reverse, individually. This is because that the paid claims (incurred claims) are correlated to the 
incurred claims (paid claims) that are from only the next (previous) year and doing this will preserve 
the required dependence. And also the correlation coefficient of paid and incurred claims is equal to 
the correlation coefficient of those residuals, as stated in equations (2.6) and (2.9). 
 
In fact, in the case of the paid claims data, the triangle containing the residuals of the observed paid 
link ratios and the triangle containing the residuals of the ratios of incurred over paid (except the first 
column), are paired together, individually, with the same dimensions. And it is the same procedure for 
the incurred claims data. However, note that the ratios of the paid over incurred claims and the 
reverse, indicate the same information. Therefore, the ratios should remain unchanged when pairing 
them with paid and incurred claims with the same dimensions. The consequence of this is that all the 
four sets of residuals for paid, incurred link ratios and the ratios of incurred over paid claims and the 
reverse should all be grouped together. 
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Note here that an alternative approach would be to group three sets of residuals: the residuals of the 
paid and incurred link ratios and either the residuals of the paid over incurred ratios or the reverse. 
This would produce the same results as grouping four sets of residuals as the residuals of paid over 
incurred ratios and the reserve can always be calculated from each other. However, it is simpler to 
group all the four sets as the calculation of the fourth set of residuals is naturally skipped in this case.  
 
Obviously, this combines the four residuals triangles into one new triangle that consists of these 
grouped residuals and we name it as the grouped residual triangle. In each unit from this grouped 
residual triangle, the residuals are from the same accident and development year and correspond to 
paid and incurred claims. Therefore, the new grouped residual triangle contains all the information 
available and meanwhile maintains the observed dependence.   
 
When applying bootstrapping, this grouped triangle is considered as the observed sample. And the 
new generated pseudo samples are obtained by random drawing, with replacement, from this grouped 
triangle.  
 
The re-sampled incurred and paid triangles can be obtained by separating the pairs in the pseudo 
sample generated as above and backing out the residual definition. The MCL approach can then be 
applied to calculate all the statistics of interest for the re-sampled paid and incurred triangles. i.e. the 
correlation coefficient for paid and incurred, the paid and incurred development factors, the ratios of 
paid over incurred or the inverse, and the variances. Finally, adjusting the paid and incurred 
development factors by the correlation coefficient using the MCL approach, the bootstrapped MCL 
reserve estimates are obtained.  This completes a single bootstrap iteration.   
 
Again, the bootstrap method provides only the estimation variance of the MCL model. In order to 
include the prediction error and estimate the predictive distribution for the MCL estimates of 
outstanding liabilities, an additional step is added at the end of each of the bootstrap iteration, which is 
to add the process variance to the estimation variance. In the context of bootstrapping, the way to do 
this is to simulate new observations from an assumed process distribution with the mean and variance 
obtained in the same bootstrap iteration.  In this paper, an underlying normal distribution is assumed 
for both the cumulative paid or incurred claims and more details are given in the section 4.2. 
 
In order to obtain a reasonable approximation to the predictive distribution, at least 1000 pseudo 
samples are required. For each of the pseudo samples, the row totals and overall total of outstanding 
liabilities are stored so that the sample means, sample variances and the empirical distributions can be 
calculated and plotted.  They are taken as the approximations to the best estimates of outstanding 
liabilities, the prediction errors and the predictive distributions of the outstanding liabilities. Also, an 
estimate of any required percentile and confidence interval can be calculated from the predictive 
distribution. 
 
In order to satisfy the assumption that the sample is identically distributed in the bootstrapping 
procedure, the Pearson residuals are calculated and used. As in England and Verrall (2007), we use 
the Pearson residuals of the observed development factors rather than those for the actual claims, 
since we are using recursive models.  Note that a bootstrap bias correction is also needed, and the 

simplest way to do this is to multiply the residuals by ( )pn
n

− , where p is the number of 

parameters estimated in the model and n is the number of residuals. 
 
In addition to drawing the grouped sample for bootstrapping correlated data sets, there are also two 
other practical points that should be mentioned.  The first is to note that the fitted values are obtained 
by starting from the final diagonal in each triangle and working backwards, by dividing by the 
development factors.  The second is that the zero residuals which appear in both triangles are also left 
out.   
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4.2 Algorithm 
 
 
This section provides the algorithm, step by step, which is needed in order to implement the bootstrap 
process introduced in section 4.1,  
 
- Apply the MCL model to both the cumulative paid and incurred claims data to obtain the 

residuals for all the four sets ratios, the paid, incurred link ratios, the paid over incurred ratios and 
the reverse. They can be obtained from following equations:  

 
ˆ

ˆ

P P
ij jP

ij P
j

F f
r

σ
−

= , 
1

1 1ˆij jQ
ij P

j

Q q
r

τ
−

− −−
= , 

ˆ

ˆ

I I
ij jI

ij I
j

F f
r

σ
−

=  and 
ˆij jQ

ij I
j

Q q
r

τ
−

= . 

 

- Adjust the Pearson residual estimates by multiplying ( )pn
n

−  to correct the bootstrap bias, 

where p is the number of parameters estimated in the model and n is the number of residuals. 
 
- Group all the four residuals, i.e. P

ijr , 
1Q

ijr
−

,  and  together. We write this as I
ijr Q

ijr

( ) ( ) ( ) ( ){ }1

, , ,P Q I Q
ij ij ij ij ijU r r r r

−

= .  

 
- Start the iterative loop to be repeated N times ( ). This consists of the following steps: 1000≥N
 

1. Randomly sample from the grouped residuals with replacement, denoted as  

( ) ( ) ( ) ( ){ }1

, , ,
BB BB P Q I Q

ij ij ij ij ijU r r r r
−

=
B

, from the grouped triangle so that a pseudo sample of 

the grouped residuals is created. 
 
2. Calculate the MCL reserves for the pseudo samples of paid and incurred claims by fitting the 

MCL model, as shown below. 
 

 Calculate the corresponding correlation coefficient for the re-sampled data using the 

pseudo residuals , ( ) , ( )BP
ijr

1 B
Q

ijr
− ( )BI

ijr  and ( )BQ
ijr  as follows,  

 

( )
( ) ( )

( )

1

1

,
2

,

ˆ

B BQ P
ij ij

B i jP

B
Q

ij
i j

r r

r
ρ

−

−

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑
 and ( )

( ) ( )

( )( )
,

2

,

ˆ

B BQ I
ij ij

B i jI

BQ
ij

i j

r r

r
ρ =

∑

∑
. 

 

where , ,  and ( )BP
ijr ( )1 B

Q
ijr

− ( )BI
ijr ( )BQ

ijr  denote the re-sampled residuals, which are 

obtained by simply separating ( ) ( ) ( ) ( ){ }1

, , ,
BB BB P Q I Q

ij ij ij ij ijU r r r r
−

=
B

. 

 
 Calculate the pseudo samples of the four triangles for the paid, incurred link ratios, the 

ratios of paid over incurred and the reverse by inverting the Pearson residuals definition 
as follows: 
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and 

( ) ( ) ˆ ˆ
BI I

B ij jI I
ij jI

ij

r
F f

C

σ
= + , ( ) ( ) ˆ

ˆ
BQ I

B ij j
ij jI

ij

r
Q q

C

τ
= + . 

 
 Calculate the weighted and weighted average of the bootstrap paid and 

incurred development factors as follows: 
−P

ijC −I
ijC
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Note that the weights used here are from the original data sets and not from the pseudo 
samples. 

 
 Calculate the bootstrap development factors adjusted by the correlation coefficient 

between the pseudo samples as follows: 
 

( ) ( ) ( ) ( )( )1 1ˆˆˆ ˆ ˆ
ˆ

PBB B BjP P P
ij j ij jP

j

f Q
σ

λ ρ
τ

− −= + − q  

and 

( ) ( ) ( ) ( )( )ˆˆˆ ˆ ˆ
ˆ

IBB B BjI I I
ij j ij jI

j

f Q
σ

λ ρ
τ

= + − q , 

 
for the re-sampled bootstrap paid and incurred run-off triangles, respectively. 

 
 Calculate the future cumulative payment using the following equations  

 

( ) ( ) P
ini

BP
in

BP
ini CfC 1,12, *ˆˆ

+−+−+− =  and ( ) ( ) ( )BP
ij

BP
j

BP
ji CfC ˆ*ˆˆ

1, =+  
and 

( ) ( ) I
ini

BI
in

BI
ini CfC 1,12, *ˆˆ

+−+−+− =  and ( ) ( ) ( )BI
ij

BI
j

BI
ji CfC ˆ*ˆˆ

1, =+ , 
 

where . 1+−> inj
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3. Simulate a future payment for each cell in the lower triangle for both paid and incurred 
claims, from the process distribution with the mean and variance calculated from previous 
step. To do this, the following steps are required:  

 
 For the one-step-ahead predictions from the leading diagonal, a normal distribution is 

assumed. i.e. for , ni ≤≤2
 

( ) ( )( )2

, 2 , 1 , 1 1 , 1
ˆ ˆ~ ,

B BP P P P
i n i i n i i n i n i i n iC Normal C Cλ σ− + − + − + − + − +

⎛ ⎞
⎜ ⎟
⎝ ⎠

P  for paid claims 

and 

( ) ( )( )2

, 2 , 1 , 1 1 , 1
ˆ ˆ~ ,

B BI I I I
i n i i n i i n i n i i n iC Normal C Cλ σ− + − + − + − + − +

⎛ ⎞
⎜ ⎟
⎝ ⎠

I  for incurred claims. 

 
 For the two-step-ahead predictions up to the n-step-ahead predictions, normal 

distributions are still assumed, but with the mean and variance calculated from previous 
prediction instead of the observed data. i.e. for nk ≤≤3  and njkn ≤≤+− 3 , 

 

( ) ( )( )2

, 1 , 1 1 , 1
ˆ ˆ ˆˆ~ ,

B BP P P P
kl k l k l l k lC Normal C Cλ σ− − − −

⎛ ⎞
⎜ ⎟
⎝ ⎠

P  for paid claims, 

and 

( ) ( )( )2

, 1 , 1 1 , 1
ˆ ˆ ˆˆ~ ,

B BI I I I
kl k l k l l k lC Normal C Cλ σ− − − −

⎛ ⎞
⎜ ⎟
⎝ ⎠

I  for incurred claims. 

 
- Sum the simulated payments in the future triangle by origin year and overall to give the origin 

year and total reserve estimates respectively. 
 
- Store the results, and return to the start of the iterative loop. 
 
 
 
 

5. Examples 
 
 
 
This section illustrates the bootstrapping approach to the MCL and uses two numerical examples to 
assess the results. The first example uses the data from Quarg and Mack (2004). Example 2 uses 
market data from Lloyd’s which have been scaled for confidentiality reasons. These data relate to 
aggregated paid and incurred claims for two Lloyd’s syndicates, categorized at risk level. 
 
Example 1 is included in order to illustrate the results for the original set of data used by Quarg and 
Mack (2004). The purpose of example 2 is to illustrate that the MCL model does not necessarily 
provide better results in all situations. The indications from our results that it performs better when the 
data have less inherent variability and are less “jumpy”.  
 
 
5.1 Example 1 
 
In this section, we use the data from Quarg and Mack (2004). 10,000 bootstrap simulations were 
carried out, and the data and results are shown in Tables 1 to 5.  
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Table 1. Paid Claim Data from Quarg and Mack (2004) 
 

576 1,804 1,970 2,024 2,074 2,102 2,131 
866 1,948 2,162 2,232 2,284 2,348  
1,412 3,758 4,252 4,416 4,494   
2,286 5,292 5,724 5,850    
1,868 3,778 4,648     
1,442 4,010      
2,044       

 
 
 

Table 2. Incurred Claim Data from Quarg and Mack (2004) 
 

978 2,104 2,134 2,144 2,174 2,182 2,174 
1,844 2,552 2,466 2,480 2,508 2,454  
2,904 4,354 4,698 4,600 4,644   
3,502 5,958 6,070 6,142    
2,812 4,882 4,852     
2,642 4,406      
5,022       

 
 
 
Tables 1 and 2 show the data, and in order to observe the run-off nature of the data in a 
straightforward way, figures 1 and 2 show plots of the data from table 1 and 2, respectively. From 
figures 1 and 2, it can be seen that the data are stable and not too much spread out. 
 
 
 
 

Figure 1. Paid Claims  
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Figure 2. Incurred Claims  
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The bootstrap methodology described in this paper has been applied, and the results are shown in 
Tables 3 and 4. Table 3 simply shows that the theoretical MCL reserves (from Quarg and Mack) and 
the mean of the bootstrap distributions are close to each other in both cases of paid and incurred 
claims. Table 4 displays the bootstrap prediction error of the MCL reserves projected by both paid and 
incurred claims. These are displayed both in absolute terms, and as a percentage of the Reserves. 
 
 
 
 

Table 3. Bootstrap Reserves and MCL Reserves 
 

Bootstrap 
Reserves 

MCL Reserves   
  

Paid  Incurred Paid  Incurred
Year 1 0 43 0 43 
Year 2 35 95 35 96 
Year 3 106 128 103 135 
Year 4 275 317 269 326 
Year 5 294 287 289 302 
Year 6 672 649 646 655 
Year 7 5,512 5,655 5,505 5,606 
Total 6,893 7,175 6,846 7,163 
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Table 4. Bootstrap Prediction Error  
 

Prediction Error Prediction Error %   
  Paid Incurred Paid Incurred 
Year 1 0 0  0% 
Year 2 5 5 14% 5% 
Year 3 44 67 42% 52% 
Year 4 57 84 21% 26% 
Year 5 69 99 24% 35% 
Year 6 207 204 31% 31% 
Year 7 723 695 13% 12% 
Total 755 762 11% 11% 

 
 
 

It is interesting to compare the results with those from the chain ladder model. For this, we used the 
bootstrap results based on the over-dispersed Poisson or over-dispersed negative binomial models 
described in England and Verrall (2007). Since the purpose of the MCL model is to use more data to 
improve the estimation of the reserves, it is expected that the prediction errors should be lower than 
the straightforward CL model. This is confirmed for these data by Table 5, which shows that the 
prediction error of the MCL reserves is lower than the prediction error of CL reserves. As has been 
said above, this should not be surprising since the MCL reserves use more information than the CL 
reserves.  
 
 
 

Table 5. Bootstrap Predictions of CL and MCL Models 
 

Bootstrap CL 
Prediction Error % 

Bootstrap MCL 
Prediction Error %   

  Paid Incurred Paid Incurred 
Year 1 - 0% - 0% 
Year 2 45% 9% 14% 5% 
Year 3 33% 96% 42% 52% 
Year 4 21% 38% 21% 26% 
Year 5 18% 62% 24% 35% 
Year 6 31% 47% 31% 31% 
Year 7 22% 14% 13% 12% 
Total 16% 13% 11% 11% 

 
 

 
In figure 3, the distributions of the MCL and CL reserve projections for paid and incurred, are plot 
respectively in order to compare the results more straightforwardly. Figure 3 shows that the paid and 
incurred best reserve estimates are very close when using MCL approach. And on the contrast, the 
paid and incurred best reserve estimates, projected by CL method, are much further compared with 
the MCL case. More importantly, the CL method provides a much more spread out PDF graph than 
the MCL approach, both in paid and incurred cases. This means that the MCL is a better method as it 
not only bridge the gap between paid and incurred best reserves estimates, but also produces a smaller 
uncertainty around the best reserve estimates.      
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Figure 3. Predictive Distributions of Overall Reserves  
A comparison between CL and MCL projections 
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5.2 Example 2 
 
 
In this section, a set of aggregate data from Lloyd’s syndicates are considered. In this case, the data 
are not as stable or well-behaved and the results are quite different. Tables 6 and 7 show the data, 
which are plotted in figures 4 and 5. It can be seen from these figures that the data are much more 
unstable and more spread out compared with the previous two examples.  
 
 
 

Table 6. Scaled Aggregate Paid Claims at Risk Level from Lloyd’s  
  

184 1,845 3,748 5,400 6,231 9,006 9,699 10,008 10,035 10,068
155 1,483 3,768 7,899 8,858 13,795 15,360 15,895 19,333  
676 2,287 10,635 16,102 22,177 28,825 29,828 30,700   
67 367 2,038 2,879 6,329 14,366 16,201    
922 1,693 3,523 4,641 6,431 8,325     
22 488 3,424 5,649 7,813      
76 435 1,980 5,062       
24 1,782 3,881        
39 745         
306          
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Table 7. Scaled Aggregate Incurred Claims at Risk Level from Lloyd’s  
 

1,530 8,238 10,564 12,332 12,173 10,576 10,630 10,316 10,325 10,280
1,505 6,247 8,728 10,500 15,241 16,720 16,845 16,829 19,675  
2,505 6,150 17,937 22,143 29,511 33,336 32,162 31,500   
204 2,748 9,984 13,167 16,523 17,807 18,959    
2,285 4,361 6,432 8,834 12,092 15,309     
269 5,549 7,214 12,422 13,581      
1,271 2,657 6,187 11,004       
298 3,533 6,423        
2,023 5,415         
1,779          

 
 
 

Figure 4. Scaled Paid Claims from Lloyd’s Market 
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Figure 5. Scaled Incurred Claims from Lloyd’s Market 
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The MCL model still produces consistent ultimate loss predictions for this data set, as shown in table 
8. However, the prediction error contained in table 9, estimated by the bootstrap MCL approach, 
appears to be much higher than for the previous examples. 

 
 

Table 8. Bootstrap Reserves and MCL Reserves 
 

Bootstrap 
Reserves 

MCL Reserves   
  

Paid Incurred Paid Incurred 
Year 1 0 212 0 212 
Year 2 48 255 46 258 
Year 3 4,177 3,945 3,197 3,974 
Year 4 7,319 4,548 6,692 4,306 
Year 5 18,366 9,007 17,223 8,200 
Year 6 10,708 8,492 10,456 8,314 
Year 7 14,291 11,553 14,430 11,219 
Year 8 9,670 8,845 9,004 9,051 
Year 9 23,980 19,987 23,584 19,185 

Year 10 27,901 24,542 28,190 24,633 
Total 116,459 91,386 112,822 89,351 

 
 
 

Table 9. Bootstrap Prediction Error 
 

Prediction Error Prediction Error %   
  Paid Incurred Paid Incurred 
Year 1 0 0 - 0% 
Year 2 55 234 113% 92% 
Year 3 3,489 3,693 84% 94% 
Year 4 5,630 3,059 77% 67% 
Year 5 18,102 6,905 99% 77% 
Year 6 16,346 5,831 153% 69% 
Year 7 18,711 7,320 131% 63% 
Year 8 17,507 9,291 181% 105% 
Year 9 31,947 14,192 133% 71% 
Year 
10 51,698 36,989 185% 151% 

Total 86,509 47,804 74% 52% 
 

 
 

This becomes even clearer when comparing with the chain ladder technique. Table 10 shows that the 
MCL model produces a higher prediction error than the CL model. The conclusion from this is that 
although the MCL model uses more data, and should be expected to produce lower prediction errors, 
this is not always the case in practice. We believe that the reason for this is that the assumptions made 
by the MCL model – the specific dependencies assumed – are not as strong as expected in this case. A 
conclusion from this is that the data have to be examined carefully before the MCL model is applied.  
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Table 10. Bootstrap Predictions of CL and MCL Models 
 

Bootstrap CL 
Prediction Error % 

Bootstrap MCL 
Prediction Error %   

  Paid Incurred Paid Incurred 
Year 1 - 0% - 0% 
Year 2 148% 164% 113% 92% 
Year 3 102% 88% 84% 94% 
Year 4 99% 57% 77% 67% 
Year 5 92% 28% 99% 77% 
Year 6 71% 37% 153% 69% 
Year 7 72% 36% 131% 63% 
Year 8 62% 49% 181% 105% 
Year 9 97% 55% 133% 71% 

Year 10 185% 103% 185% 151% 
Total 66% 36% 74% 52% 

 
 
 

Again, in figure 6, a more straightforward comparison is provided. It can be seen that the CL model 
produces less variable forecasts than the MCL model for this set of data: the uncertainty or the 
prediction variance are relatively smaller than the MCL approach.  

 
 

Figure 6. Predictive Distributions of Overall Reserves  
A comparison between CL and MCL projections 
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6. Conclusion 

 
This paper has shown how a bootstrapping approach can be used to estimate the predictive 
distribution of outstanding claims for the MCL model. The model deals with two dependent data sets, 
i.e. the paid and incurred claims triangles, for general insurance reserving purposes.  We believe that 
bootstrapping is well-suited for these purposes from a practical point of view, since it avoids 
complicated theoretical calculations and is easily implemented in a simple spreadsheet. This paper 
adapts the method by taking account of the dependence observed in the data and maintaining it by re-
sampling pairwise.   
 
A number of examples have been given, which show that the MCL model does not always produce 
superior results to the straightforward chain ladder model. As a consequence, we believe that it is 
important for the data to be carefully checked to test whether the dependency assumptions of the 
MCL model are valid for each data set before it is applied. 
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