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Abstract 

In applications of the collective risk model, significantly more attention is often given to 

modelling severity than modelling frequency. Sometimes, frequency modelling is neglected to 
the extent of using a Poisson distribution for the number of claims. The Poisson distribution has 

variance equal to mean, and there are multiple reasons why this is almost never appropriate when 
forecasting numbers of non-life insurance claims. 

The inappropriateness of the Poisson distribution for forecasting has long been recognised by 
many, and collective risk algorithms (Panjer (1980), Heckman & Meyers (1983)) have been 
developed that work just as well with other frequency distributions, in particular the Negative 
Binomial. However, to calibrate a Negative Binomial model requires two parameters, equivalent 
to specifying both mean and variance. The author believes that one reason for the prevalence of 
Poisson models is lack of knowledge about how to objectively quantify the variance as well as 

the mean. This paper aims to contribute in this area. 

The main reasons why the variance should exceed the expected number of claims are identified 
as parameter estimation error, heterogeneity, contagion, and future exposure uncertainty. While 
all these factors have long been recognised by some practitioners, this paper provides a 
framework for their systematic analysis and quantification. A mathematical model is developed 
in which these concepts are precisely defined, and statistical methods are developed for the 
quantification of these factors from claim frequency data. The model also shows how these 
factors interact to produce the overall variance for forecasts.  

It is not claimed that the particular form of model presented will be appropriate in all 
circumstances, but where necessary, modifications will often be possible within the general 
framework presented here.  
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1 Motivation 

1.1 Why is the Poisson assumption ‘never’ appropriate for forecasting? 

1.1.1 Introduction 

Claim number probability distributions are used in non-life insurance for forecasting an unknown 

future number of claims, whether for pricing or reserving purposes. For these purposes, the 
probability distribution should include all sources of uncertainty, otherwise risk-margins in 

reserves and/or premiums will be inadequate. 

It is useful to distinguish aleatoric and epistemic uncertainty. Aleatoric uncertainty is also known 
as process uncertainty: epistemic comprises both parameter and model uncertainty. To illustrate 
these concepts, we consider the example of rolling a normal six-sided die (which, incidentally, is 

the problem that prompted the invention of probability theory by Pascal and Fermat in 1654).  

1.1.2 Process, parameter and model uncertainty: die-rolling example 

We aim to predict the number of times a die shows a ‘six’ when rolled a fixed number of times. 
If we are sure that the die is perfectly balanced, then the number of ‘sixes’ follows a Binomial 
distribution with parameters n and p, where n is the number of throws and p is 1/6. We can use 
this Binomial distribution to make probabilistic prediction statements, for example: “if we roll 
the die 4 times, the chance of 4 sixes is 1 in 1,296” (that is, 1/6

4
). The Binomial distribution 

represents pure aleatoric (or process) uncertainty in this example. 

There may also be uncertainty arising from doubt as to whether the die is perfectly balanced. The 
die may be weighted in such a way as to make a ‘six’ more or less likely. If it is weighted 
towards showing a six, then clearly the chance of observing 4 sixes in 4 throws is greater than 
1/1,296: if it is weighted against, then the chance of observing 4 sixes is less than 1/1,296. 
Perhaps less obviously: if we are uncertain as to whether the die is weighted for or against 
showing a six, then the chance of observing 4 sixes in 4 throws is usually greater than 1/1,296 
because of the possibility that the die is weighted in favour.    

Suppose, for example, that before observing any throws of the die, we believe there is a 40% 
chance that it is perfectly balanced (p = 1/6 or 2/12), a 30% chance that in the long-run it will 

show 1 six in every 12 throws (p = 1/12), and a 30% chance that in the long-run it will show 1 
six in every 4 throws (p = ¼ or 3/12).  

The chance of obtaining a ‘six’ in a single throw is now: 

0.30 * 1/12 + 0.40 * 2/12 + 0.30 * 3/12 = 1/6, which is the same as for a perfectly balanced die. 

However, the chance of 4 sixes in 4 throws is: 

0.30 * (1/12)4 + 0.40 * (2/12)4 + 0.30 * (3/12)4 = 1/669, which is nearly double the chance of 

obtaining 4 sixes from a die that is known to be perfectly balanced.  

Uncertainty about whether or not the die is perfectly balanced is an example of epistemic 

uncertainty. This type of epistemic uncertainty is also known as parameter uncertainty: it is 
uncertainty about the value of the parameter p. The example illustrates that parameter uncertainty 

generally increases the chances of extreme outcomes. 
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Another type of epistemic uncertainty is model uncertainty. In the above calculations we 
assumed that the die has a fixed shape and internal structure so that the chance of throwing a six 

remains constant. Perhaps the die has a soft centre of non-homogeneous viscous fluid, so as it 
rests with a six uppermost, its centre of mass shifts down making further sixes more likely. In 

this case our mathematical model, in which the probability p of a six remains constant, is 
incorrect. This possibility further increases uncertainty about future outcomes.  

1.1.3 Back to insurance: Poisson process 

In the die-rolling example, the appropriate probability distribution representing aleatoric 

uncertainty is the Binomial because the number of sixes is limited by the number of throws. For 
numbers of non-life insurance claims, a Poisson distribution is usually more appropriate. This is 

because most non-life policies provide cover for a fixed period of time with no limit on the 
number of claims. There are exceptions to this, but where there is a contractual limit on the 
number of claims (as when cover terminates following the first claim, for example) the 
probability of a claim on each individual policy is usually so low that the Poisson distribution 
provides a good approximation. (Recall that the Binomial distribution with parameters n and p 
approaches a Poisson distribution with parameter λ = n.p as p tends to zero.) 

Some policies do not place a contractual limit on the number of claims but may be subject to 
practical limits. For example, in auto insurance, a car is usually off the road for repairs following 

a claim, which creates an upper limit of perhaps one claim every couple of weeks. However, the 
probability of a claim in any two week period is usually so low that the Poisson distribution 

again provides a very good approximation. 

So for aleatoric uncertainty we use the Poisson distribution. A Poisson distribution is completely 

specified by its mean, which we denote λ. The Poisson distribution has the property that the 
variance is equal to the mean. However, in the real-world, the parameter λ is never known 

precisely, so even if the Poisson model is basically correct, we also have epistemic (parameter) 
uncertainty. For this reason, the Poisson distribution should not be used for forecasting: we 

should instead use a distribution with variance greater than mean, such as the Negative Binomial. 

1.2 Four types of parameter uncertainty 

There are many possible sources of parameter uncertainty in non-life insurance. These are 
considered in this paper as four main types:  

• Estimation uncertainty 

• Heterogeneity 

• Contagion 

• Exposure uncertainty  

1.2.1 Estimation uncertainty 

Estimation uncertainty is perhaps the purest form of parameter uncertainty. In the real-world it is 
always present and usually material, so estimation uncertainty alone provides a strong argument 
for ‘never’ using the Poisson distribution in forecasting claim numbers. 
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Back to the die-rolling example: suppose we have the opportunity to observe 12 throws of the die 
before having to forecast the number of sixes that will appear in a further 4 throws. In the 12 

throws, we observe 6 sixes. The chance of 6 or more sixes appearing if the die is perfectly 
balanced can be calculated from the Binomial distribution with p = 1/6 as less than 0.8%. We 

might reasonably conclude from this that p is probably not equal to 1/6. In this case, having 
observed 6 sixes in 12 throws, we would naturally estimate p as ½. We could now base 

probabilistic predictions for the next 4 throws on the Binomial distribution with p = ½. However, 
in the absence of any additional (‘prior’) information, the estimate p = ½ is quite unreliable: the 

standard deviation of this estimate is 0.13 and we can be only 90% confident that the true value 
of p is between 0.29 and 0.71. (This is a Bayesian confidence interval based on a uniform prior 

distribution: see Section A.1.1 of the appendix for details.)  

Instead of using a single Binomial distribution for forecasting, we should use a mixture of 

Binomials, allowing for the full range of possible values of the parameter p. The appropriate 
distribution for forecasting here is known as the ‘Beta-Binomial’ distribution as it is a mixture of 

Binomials based on a Beta distribution for p (further details in Section A.1.2 of the appendix). 
The principles of mixing were illustrated by the numerical example in Section 1.1.2, where we 

found that parameter uncertainty increases the chance of extreme outcomes. 

In the case of a Poisson claim generating process: suppose there were 6 claims last year. In the 

absence of any other information, we estimate λ=6 for the annual frequency. The Bayesian 
posterior distribution for λ is a Gamma distribution, so in forecasting the number of claims next 

year, we should use a Gamma mixture of Poisson distributions, which is well known to be a 
Negative Binomial distribution.  

Note that throughout this paper, “Negative Binomial distribution” refers to the generalized form 
in which the parameter r can take any positive real value, not necessarily restricted to integer 
values. Further details are given in Section A.2.2 of the appendix.  

1.2.2 Heterogeneity 

Heterogeneity refers to different basic units of exposure, and the common phenomenon that not 
all are equally risky. In terms of the Poisson model: the parameter λ is usually not the same for 

all basic risk units. For example, in auto insurance, some drivers are more accident prone than 
others: in professional indemnity insurance, some lawyers are less scrupulous than others, etc.  

Heterogeneity also encompasses situations where the riskiness of a single policy changes with 
time. For example, a newly qualified driver may become less accident prone during the first year 
of driving: a professional person may be more likely to make mistakes during busy periods than 
quiet periods, etc. In these situations, we could consider the basic unit of exposure to be the 
“policy-month” (or some other suitable time period during which risk might reasonably be 
approximated as constant): we are then again concerned with the phenomenon that not all 
exposure units have the same Poisson parameter λ.  

“Heterogeneity” can also be stretched to accommodate non-independence of losses arising from 
a single basic unit of exposure. If one claim tends to lead to another on the same policy, this is 
much the same situation as heterogeneity over time for a fixed risk unit. (An example of this 
occurs in household theft insurance where thieves sometimes return for the replacement goods 
provided by the insurer.) It is also possible that, following a claim, the chance of a further claim 
from the same exposure unit is temporarily reduced (as when a car is off the road for repairs, for 
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example). This causes a partial shift towards a Binomial claim generating process, and as we 
shall see later, can be accommodated as “negative heterogeneity”. However, all other causes lead 

to positive heterogeneity, and when all causes are combined, the overall level of heterogeneity is 
nearly always positive in non-life insurance. 

Note that heterogeneity in its purest form (ie differences between the basic risk units) is only an 
issue when forecasting if some of the future risk units have not yet been observed. If all risk units 
have been selected and previously observed (for example, when considering renewal of current 
policies) heterogeneity does not cause the variance of the number of claims to exceed the mean. 

This is because, if n1 and n2 are Poisson random variables with different parameters λ1 and λ2, 
then their sum n1 + n2 is also Poisson (with parameter λ1 + λ2) so has variance equal to mean. 

Heterogeneity becomes an issue in forecasting if we expect some new risk units, but don’t know 
whether their Poisson parameters will be λ1 or λ2. 

1.2.3 Contagion  

In this paper, contagion refers to the possibility that the Poisson parameter will temporarily 

increase (or decrease) for many risk units simultaneously, as a result of a common cause. In 
many property classes (auto, home-owners, fire, marine etc) a major cause of contagion is the 

weather. For example, while roads are icy, claim frequency temporarily increases for diverse 
categories of driver (whether they have high or low Poisson rates in normal conditions). In 

liability classes, contagion might be caused by a legal ruling that leads to multiple claims. 

The difference between heterogeneity and contagion is that heterogeneity refers to differences 

between exposure units at a particular point in time (or within a particular epoch, such as a 
calendar year) but contagion refers to differences in risk at different points in time (or between 

different defined epochs). 

Economic conditions are another possible cause of time dependency in many lines of insurance 
(eg credit insurance, workers compensation). However, these tend to cause gradual trends, or 
cycles of several years duration, which, to the extent that they are predictable at the start of each 
year, do not lead to increased parameter uncertainty. Contagion refers to unpredictable time 
effects: trends are handled separately in the mathematical model developed later in this paper. 

Trends are unpredictable to the extent that the parameters that describe them have to be 
estimated, but this is taken into account as parameter estimation uncertainty. 

1.2.4 Exposure uncertainty 

If λ represents the expected number of claims per unit of exposure, and x represents the expected 

exposure, then the expected number of claims is λ.x (assuming uncertainty in these two factors is 
mutually independent). Clearly some uncertainty in the actual total number of claims is induced 

by uncertainty in x. 

In die-rolling, exposure uncertainty is like not knowing the number of throws n when trying to 
forecast the number of sixes that will occur. Perhaps we are told only that the die will be thrown 
repeatedly for one minute. This is analogous to a reinsurance treaty that covers all primary 

policies in force for one year. In reinsurance treaty pricing, there is often uncertainty in the future 
level of exposure that will be covered. The extent to which this needs to be explicitly taken into 

account depends on how the treaty will be priced. If the aim is to produce a premium rate per 
unit of exposure, then exposure uncertainty has only second order effects.  
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1.2.5 Summary  

At the risk or stating the obvious: each of the four sources of parameter uncertainty described 
above increases uncertainty when forecasting numbers of claims. If the Poisson distribution is a 
reasonable model for aleatoric uncertainty in claim numbers, then the presence of any one of 
these four types of parameter uncertainty will increase the variance so that it exceeds the mean. It 
is important that all four types of parameter uncertainty are considered otherwise variance may 
be understated, leading to inadequate risk loads in premiums and/or reserves. 

In Section 2 of this paper, we develop a fairly general mathematical model that incorporates 
Poisson process error and the four types of parameter uncertainty: estimation error, 
heterogeneity, contagion, and exposure uncertainty. Section 3 outlines statistical methods that 
can be used to calibrate the model based on past frequency and exposure data. First, in Section 
1.3, we give some examples to highlight the importance of taking care with the calibration of the 
claim number distribution. 

1.3 Effect of using wrong claim number distribution 

1.3.1 Low frequency example - with estimation error 

Consider a catastrophe excess of loss reinsurance treaty covering a specific type of natural 
catastrophe for one year. The cedent has decided to buy cover with the per event retention set at 
the level of a 10-year return period. To assess the amount of sideways cover required (the 
number of reinstatements) the cedent is interested in questions such as: what is the probability of 
two or more such large events occurring in a single year? The answer to this question clearly 
depends on the probability distribution assumed for the number of such large events in one year. 
By definition of events with a 10-year return period, the mean of this distribution is 0.1. 

We now suppose that only earthquakes will be covered by the treaty and the cedent carries out 

calculations using a Poisson distribution in the belief (quite widely supported among 
seismologists) that this is a reasonable model for earthquake occurrence. 

The middle column of Table 1 gives the probability of n events for a Poisson distribution with 
mean equal to 0.1. The probability that in a single year two or more events occur each producing 

a loss in excess of the 10-year return value is 0.468% (= 100% - 90.484% - 9.048%). 

Table 1 – Probability of n claims – effect of parameter uncertainty 

n 

No allowance for parameter 
uncertainty (Poisson) 

Allowance for parameter estimation 
error (Negative Binomial) 

0 90.484% 90.555% 

1 9.048% 8.913% 

2 0.452% 0.509% 

3 0.015% 0.022% 

4 0.000% 0.001% 
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However, this calculation ignores parameter uncertainty. The cedent most likely obtained the 10-
year return period loss amount by using a catastrophe modelling system: let us suppose this 

produces a 10-year loss figure for the cedent of $100 million, so this is the per event retention 
being considered. Because of parameter uncertainty in the cat model, the true annual frequency 

of quakes causing a gross loss to the cedent in excess of $100 million is not known with certainty 
to be precisely 0.1. A typical 95% confidence interval for the true frequency would be from 

0.038 to 0.192 (corresponding to a return period of between 5.2 and 27 years). When this is taken 
into account, the variance of the number of events exceeding $100 million increases from 0.1 to 

0.1016 (details are given in Section A.2.3 of the Appendix). The chance of two or more losses in 
excess of $100m increases from 0.468% to 0.532% as shown in the final column of Table 1. 

To see what effect this parameter uncertainty should have on technical premiums, we calculate 
the aggregate loss distribution for a treaty covering the layer $100m excess of $100m each event. 

We assume that the severity distribution for the part of cat losses in excess of the $100m 
retention is Pareto with scale $100m and shape parameter 2. This implies that, for each loss event 

impacting the treaty, the mean amount recoverable is $50m and there is a 25% chance that the 
full $100m will be recoverable.  

The aggregate loss under the treaty has been calculated using both the Poisson and Negative 
Binomial models for the number of events exceeding $100m gross. Results are shown in 

columns 2 and 3 of the table below. For both models, the expected number of events is 0.1 and 
the mean loss to the treaty per event is $50m so the mean aggregate loss is $5m. However the 

standard deviation of the aggregate loss is slightly higher using the Negative Binomial model. 
The final two columns relate to the aggregate loss distribution for the same event limits ($100m 

excess of $100m) but with an aggregate deductible of $100m (in other words, the treaty is a 
‘back-up’ treaty). In this case, the use of a Poisson distribution understates the mean aggregate 

loss as well as the standard deviation.  

Table 2 - Aggregate loss ($m) for treaty covering layer $100m xs $100m per event 

No aggregate deductible Inner aggregate £100m 

 Poisson Neg Bin Poisson Neg Bin 

Mean $5.00m $5.00m $0.11m $0.12m 

Std Dev $19.65m $19.76m $2.72m $2.95m 

Premium $14.83m $14.88m $1.46m $1.60m 

 

The final row of the table shows a technical premium calculated as mean plus half the standard 
deviation. In the case of the treaty with no aggregate deductible, it is just the risk load (the 

standard deviation) that is slightly understated by ignoring estimation error in the frequency 
parameter, leading to a small, probably immaterial, understatement of technical premium. In the 

case of the back-up treaty (aggregate deductible of £100m) both the mean and the standard 
deviation are understated by ignoring parameter estimation error in the frequency, leading to an 

understatement in the technical premium of approximately 8%. 

In the case of events such as hurricanes that have a tendency to occur in clusters, the use of a 
Poisson distribution would have a more significant impact because it would ignore contagion as 
well as parameter estimation error. Contagion is considered in the next example. 
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1.3.2 High frequency example - with contagion 

We consider the aggregate loss arising from a home-owners portfolio. The individual loss 
severity distribution is Log-Normal with mean equal to $1,000 and standard deviation equal to 
$5,000: this has a skewness coefficient of 140 and implies 1 in 100 losses exceeds $13,000, 1 in 
1,000 exceeds $52,000 and 1 in 10,000 exceeds $161,000. We suppose there is a policy limit of 
$100,000 per claim: this reduces the mean, standard deviation and skewness of the loss 
distribution to $978.05, $3,632 and 14.1 respectively. The mean claim frequency is estimated as 
0.2 per policy year, and we have a portfolio of 1 million policies, so the expected number of 

claims next year is 200,000. 

A Negative Binomial distribution (which has variance greater than mean) is more appropriate 
than a Poisson distribution (variance equal to mean) for all the reasons discussed in Section 1.2, 
but contagion will be the dominant cause of super-Poisson uncertainty in this case. The 
assumption of independent increments required for a Poisson process is clearly violated: claims 
from a home-owners portfolio do not occur independently because many claims may result from 
a single cause (often weather related). 

Hopefully, nobody would ever use a Poisson distribution in this situation as it is so clearly 
wrong. The Poisson distribution has standard deviation equal to square root of the mean, so the 
variation coefficient (defined as the ratio of standard deviation to mean) tends to zero as the 
mean increases. This is an instance of the ‘law of large numbers’, which applies here because of 
the independence assumption implicit in the Poisson assumption. In this example, the mean is 
200,000, so the Poisson standard deviation would be 447.2, giving a variation coefficient of only 
0.22% for the number of claims. The individual loss distribution (the capped Log-Normal) is so 
skewed in this example that most of the uncertainty in the aggregate loss would arise from this 
rather than from variation in the number of claims. (The variation coefficient of the aggregate 
loss calculated using a Poisson assumption is in fact 0.86%: nearly four times the value 
attributable to Poisson claim number variation.) 

When there are multiple units of exposure as in this example, Poisson parameter uncertainty 
caused by estimation error or contagion impacts all exposure units in the same direction, so the 
variation coefficient of the total number of claims does not tend to zero as the size of the 
portfolio increases. The variation coefficient instead tends to a finite constant determined by the 
amount of estimation error and contagion. (Here it is assumed that the degree of contagion 
remains the same as the portfolio grows: if contagion is caused primarily by weather effects, then 
the degree of contagion will fall if the geographic spread of the portfolio increases.)  The general 
model developed in Section 2 shows that the squared variation coefficient of the number of 
claims approaches ρe

2 + ρc
2
  + ρe

2.ρc
2
  as the portfolio size increases, where  ρe

 and ρc
 are the 

variation coefficients for estimation error and contagion respectively. In this example, we 
suppose there is no estimation error (ρe = 0: never true in the real world!) so the variation 
coefficient for claim numbers approaches ρc. The precise definition of  ρc is elaborated in Section 

2: for the time being, the reader is asked to accept that 5% is a realistic value for this example. 
We therefore use a Negative Binomial distribution with mean equal to 200,000 and standard 

deviation equal to 10,000 to represent the total number of claims that will occur next year on the 
portfolio. (In terms of the Negative Binomial parameters used in the appendix: p = 0.002, r = 

400.5016.) Table 3 below gives moments of the aggregate loss distribution calculated using the 
collective risk model. 
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Table 3 – Moments of aggregate loss distribution 

 Capped Log-Normal Constant claim severity 

Mean $195,609,000 $195,609,000 

Std Deviation $9,914,450 $9,780,450 

Variation Coefficient  5.07% 5.00% 

Skewness 0.10002 0.09990 

Kurtosis 0.01499 0.01497 

Quintessence 1.0032 1.0020 

Sixth Moment 0.3257 0.3251 

 

Results in the middle column are based on the capped Log-Normal distribution for individual 
claim amounts (which has coefficients of variation and skewness of 3.71 and 14.1 respectively). 
Results in the final column are based on the same Negative Binomial distribution for the number 
of claims, but a constant claim severity of $978.05: the variation coefficient, skewness and 
higher moments given in the last column are just those of the Negative Binomial distribution 
used to model the number of claims. 

The striking feature of these results is how close the results based on the Log-Normal severity 
are to those calculated using a constant severity. This illustrates the fact that where there is 

contagion, the shape of the individual loss distribution becomes irrelevant as the expected 
number of claims increases. (For a formal proof, see Lundberg (1964).) The same applies where 
there is parameter estimation or exposure uncertainty. Intuitively, this can be seen as a 
consequence of the law of large numbers: as the number of claims becomes large, their total 
approaches their number multiplied by the mean of the severity distribution: variation in the 
amounts of individual claims cancels out until it is negligible compared to variation in the 
number of claims. This is not the case in a Poisson model because in that case the coefficient of 
variation in the number of claims also tends to zero. 

The practical consequence is: in the presence of contagion and/or estimation error and/or 
exposure uncertainty (ie always), when the expected number of claims is very large, we should 

not waste our time and effort developing a very refined model of individual loss amounts.  We 
should instead devote most of our effort to ensuring that we have a good model for the number of 

claims, because the aggregate loss distribution ultimately depends only on this.  
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2 General formula for single-epoch forecasts 

2.1 Overview 

In this section, general formulas for the mean and variance of a claim number forecasting 
distribution are developed. The formulas take account of all five types of uncertainty identified 
in Section 1: 

• Poisson process uncertainty 

• Parameter estimation uncertainty 

• Heterogeneity of risk units 

• Contagion effects 

• Exposure uncertainty 

Note that we are concerned in this section only with the first two moments (mean and variance) 
of the claim number distribution. These are sufficient to calibrate a Negative Binomial 
distribution for the forecast number of claims. Further comments on the use of a Negative 
Binomial distribution for this purpose are given in Section 2.3.4.  

The number of claims being forecast is denoted N, and its mean and variance are denoted E(N) 
and Var(N). General formulas for E(N) and Var(N) are derived by repeated application of the 
following results from the theory of conditional probability: 

 E(X)  = E(E(X|Y))  1 

 Var(X)  = E(Var(X|Y)) + Var(E(X|Y))  2 

We start with the Poisson model of aleatoric uncertainty, then apply formulas 1 and 2 once for 
each of the four types of parameter uncertainty. The final model does not depend on the order in 
which the four types of parameter uncertainty are taken into account. In the following we 
introduce them in the order: heterogeneity, exposure uncertainty, contagion, and finally 
parameter uncertainty. 

2.2 Derivation of the general formula  

2.2.1 Poisson process uncertainty 

As discussed in Section 1.1.3, our basic model of aleatoric uncertainty is the Poisson process. 
The Poisson parameter may vary between risk units within an epoch (heterogeneity) and may 
vary from one epoch to the next through contagion effects. So we use λit to denote the Poisson 
parameter representing the mean claim frequency for exposure unit i in epoch t. 

Initially, we consider a single epoch, and to simplify the notation, we temporarily drop the 

subscript t. Consider a single risk unit for which the mean frequency λi is known. Since we are 
assuming that the number of claims that will arise, Ni, has a Poisson distribution we have: 

 E(Ni | λi)  = Var(Ni | λi) = λi   3 
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2.2.2 Heterogeneity 

2.2.2.1 Single risk unit drawn at random 

Still within a single epoch, imagine that we draw a single risk unit at random from a 

heterogeneous population of risk units. λ and ρh denote the mean and variation coefficient (across 
all risk units) of the Poisson parameters. λi now represents the Poisson parameter of the single 

randomly selected risk unit: Ni represents the number of claims that will arise from this randomly 
selected unit. If the population parameters λ, ρh are known:  

 E(λi) = λ  and  Var(λi) = (ρh.λ)
2 

by definition of λ and ρh
 

4 

We now apply formulas 1 and 2 to obtain the mean and variance of Ni: 

 E(Ni) = E(E(Ni | λi))   by equation 1 

  = E(λi)  by equation 3 

  = λ   by equation 4 5 

 Var(Ni)  = E(Var(Ni | λi)) + Var(E(Ni | λi)) by equation 2 

  = E(λi) + Var(λi) by equation 3 

  = λ + (ρh.λ)
2  by equation 4 

  = λ.(1 + φ.λ) where φ = ρh
2 6 

Later we will allow negative values of φ. Clearly if φ is negative, it cannot represent the squared 
variation coefficient of heterogeneity as defined above. Instead, as discussed in Section 1.2.2, a 
negative value of φ may arise from non-Poisson aleatoric uncertainty with variance less than 
mean. If aleatoric uncertainty is better approximated as Binomial, with r being the maximum 
possible number of claims per risk unit (r is assumed the same for all risk units), then instead of 
Var(Ni|λi) = λi (from equation 3) we have Var(Ni|λi) = λi.(1- λi/r), (because λi is now the Binomial 
mean: λi = r.pi say). The above calculation then gives Var(Ni) = λ.(1 + {ρh

2
 – (1+ ρh

2
)/r}.λ), 

which is the same as equation 6 but with φ = ρh
2 – (1+ ρh

2)/r. Equation 6 can be viewed as the 
special case in which r is infinite. For smaller values of r, the combined effects of pure 
heterogeneity (as represented by ρh) and the non-Poisson aleatoric uncertainty may produce a 
negative value for φ. This is however unusual in non-life insurance.  

2.2.2.2 Multiple risk units drawn at random 

Now suppose that x units of exposure are selected independently at random from the 
heterogeneous population, and that each unit generates claims independently. We also assume 

that the population is very large so the parameters λ and ρh of the remaining population hardly 
change as risk units are withdrawn. N denotes the total number of claims from all x units of 

exposure. The mean is the sum of the means, and (by independence) the variance is the sum of 
the variances, so from the above results for a single unit of exposure (equations 5 and 6) we 

have: 

 E(N|x) = x.λ   7 

 Var(N|x)  = x.λ.(1 + φ.λ)  8 
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2.2.2.3 Sample drawn partly at random 

More generally, suppose a proportion q of the x units of exposure is selected at random from the 
heterogeneous population, the remainder being a fixed sample with mean Poisson parameter 

equal to λ. In this case we have: 

 Var(N|x)  = (1-q).x.λ + q.x.λ.(1 + φ.λ)  

  = x.λ.(1 + q.φ.λ)  9 

The first term is for the (1-q).x exposure units that are fixed with average Poisson rate equal to λ. 

Even though there may be heterogeneity within this group, the total number of claims is the sum 
of the Poisson numbers generated by each unit of the group, so is also Poisson with parameter 

equal to the sum of the individual Poisson parameters, that is (1-q).x times the mean Poisson 
parameter. Heterogeneity within this fixed part of the portfolio affects the reliability with which 

the mean Poisson rate λ can be estimated from past data for the same portfolio, but this is a 
separate issue taken into account later (parameter estimation error, Section 2.2.5). 

Equation 9 approximates the usual situation in experience-rating applications of the collective 
risk model: we are pricing for a future period having observed claim numbers in past periods. 

The past data are used to estimate λ. If the future exposure is mostly renewal business, it can 
usually be expected to have approximately the same underlying parameter λ as in the past (unless 

there is reason to believe that the lapsing business will not be a representative cross-section of 
the portfolio). Any new business has not been observed in the past, so there is the additional 

uncertainty of drawing this from a heterogeneous population. 

2.2.3 Exposure uncertainty 

We now suppose that there is uncertainty in the level of exposure x: we use m to denote the 
expected exposure and ρx to denote the variation coefficient: 

 E(x) = m    and  Var(x) = (m.ρx)
2  10 

Applying equations 1 and 2 again we have: 

 E(N)  = E(E(N|x))  by equation 1 

  = E(x.λ)  by equation 7 

  = m.λ by equation 10 11 

 Var(N)  = E(Var(N|x)) + Var(E(N|x)) by equation 2 

  = E(x.λ.(1 + q.φ.λ)) + Var(x.λ) by equations 7 and 9 

  = m.λ.(1 + q.φ.λ) + (m.λ.ρx)
2
 by equation 10 

  = m.λ + (m.λ)2 {q.φ /m + ρx
2}   

  = m.λ + α.(m.λ)2   12 

where: α = q.φ /m + ρx
2  13 
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2.2.4 Contagion 

We now consider more than one epoch (for example, accident years) so we reintroduce subscript 
t (for time) to distinguish epochs. In place of λ we now have λt, representing the mean (over all 
units of exposure) of the Poisson rate in epoch t. (The squared variation coefficient for 
heterogeneity, φ = ρh

2, may also depend on time: this possibility is considered in Section 3.) 

We use µ to denote the underlying mean frequency, and ρc to denote the variation coefficient 
caused by contagion effects: 

 E(λt) = µ    and  Var(λt) = (µ.ρc)
2  14 

from which we have: 

 E(λt
2
)  = E(λt)

2
 + Var(λt)    by definition of variance 

  = µ
2
.(1+ ρc

2
) by definition of µ and ρc  15 

Contagion effects are assumed to be stochastically independent for different epochs. The 

possibility of trends is also considered in Section 3: to allow for trends, µ is replaced by µt. 
Contagion refers only to the random component of λt that occurs in addition to any trend 

changes. Nevertheless, the assumption of stochastic independence of contagion effects across 
epochs is a strong assumption and should be critically considered in any multi-epoch application 

of the model developed here.  

Introducing subscript t, and making the conditioning on λt
 explicit, equations 11 and 12 become: 

 E(Nt| λt)  = m.λt   16 

 Var(Nt| λt)  = m.λt + α.(m.λt)
2  17 

Applying equations 1 and 2 again: 

 E(Nt)  = E(E(Nt| λt))  by equation 1 

  = E(m.λt)  by equation 16 

  = m.µ  by equation 14 18 

 Var(Nt)  = E(Var(Nt| λt)) + Var(E(Nt| λt)) by equation 2 

  = E(m.λt + α.(m.λt)
2
) + Var(m.λt) by equations 16 and 17 

  = m.µ + α.m
2
.µ
2
.(1+ ρc

2
) + (m.µ.ρc)

2
 by equation 14  

  = m.µ + (m.µ)2 .{ α.(1+ ρc
2) +  ρc

2}  

  = m.µ + (m.µ)2 .{(1+ α).(1+ ρc
2) - 1}  19 
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2.2.5 Parameter estimation uncertainty 

Finally, recognizing that equations 18 and 19 are conditional on the underlying mean frequency 
µ being known precisely, the uncertainty in µ can be introduced by applying formulas 1 and 2 
one more time. Using µ’ to represent an unbiased estimate of µ, and ρe to denote the variation 
coefficient of the estimation uncertainty, we have: 

 E(µ) = µ’  and  Var(µ) = (ρe.µ’)
2
   20 

Note that we take a Bayesian perspective here: the estimate µ’ is known so is not considered to 
be a random variable: the true value µ is unknown so is considered to be a random variable. 

From equation 20 we have: 

 E(µ
2
)  = µ’

2
.(1+ρe

2
)  21 

So finally we have: 

 E(Nt)  = E(E(Nt | µ))  by equation 1 

  = E(m.µ) by equation 18 

  = m.µ’  by equation 20  22 

 

 Var(Nt)  = E(Var(Nt | µ)) + Var(E(Nt | µ)) by equation 2 

  = E(m.µ + (m.µ)2 .{(1+ α).(1+ ρc
2) - 1}) + Var(m.µ) 

   by equations 19 and 20 

  = m.µ’ + (m.µ’)2 .(1+ρe
2).{(1+ α).(1+ ρc

2) - 1} + (ρe.m.µ’)
2 

   by equation 21 

  = m.µ’ + (m.µ’)
2
 .{(1 + α).(1+ ρc

2
).(1+ρe

2
) - 1} 23 

Equation 23 is the proposed general formula for the variance of the number of claims in a single 

future epoch, taking account of all the main sources of uncertainty. This can alternatively be 
expressed in terms of the squared variation coefficient (Vco) which is defined as the variance 

(equation 23) divided by the square of the mean (equation 22): 

 Vco
2
(Nt)  = 1/(m.µ’) + {(1 + ρx

2
 + ρh

2
.q/m).(1 + ρc

2
).(1 + ρe

2
) - 1} 24 

In equation 24, α has been replaced by its definition (equation 13). 

2.3 Comments on the general formula 

2.3.1 Comparison with other claim number formulas in actuarial literature 

Many texts on risk theory allow for the overall effect of parameter uncertainty but do not 
distinguish the various causes in a general mathematical model. Here, we consider two well-

known works: Heckman and Meyers (1983) and Daykin, Pentikäinen and Pesonen (1994), 
denoted H&M and DP&P in the following.  
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H&M discuss contagion, heterogeneity, and parameter estimation error, then use a single 
parameter c (which they call the contagion parameter) to represent the overall effect through the 

equation:  

 Var(N)  = E(N).{1 + c.E(N)}  25 

Comparing this to the general formula developed here (equations 22 and 23 above) we see that: 

 c  = (1 + ρx
2 + ρh

2.q/m).(1 + ρc
2).(1 + ρe

2) – 1  26 

so the H&M contagion parameter can be seen as representing the combined effect of the four 
types of parameter uncertainty considered in the present paper. 

DP&P consider what we have called ‘contagion’, although they use the terms ‘short-period 
oscillations’ and ‘contamination’. To model this they use a multiplicative ‘mixing variable’ 
denoted q with E(q) = 1, Var(q) =  σq

2, and arrive at the formula (their equation 2.4.12):  

 Var(N)  = E(N).{1 + σq
2.E(N)}  27 

In the present paper we model contagion (Section 2.2.4) using: E(λt) = µ and Var(λt) = (µ.ρc)
2
. If 

we define qt = λt/µ, then clearly we have λt = qt.µ with E(qt) = 1 and Var(qt) = ρc
2, from which it 

is clear that this formulation is equivalent to that used by DP&P, with ρc
 
= σq. Comparing 

equation 27 with the general formula (equation 24) we see that the formula of DP&P is the 

special case ρx = ρh = ρe = 0. DP&P also discuss heterogeneity, and point out that a multiplicative 
mixing variable can also be used to model this (although they prefer the term ‘structure variable’ 

in this case) and they cite Ammeter (1948) and Buhlmann (1970) in this connection. However 
they make it clear that, for their purposes, σq

2 represents contagion only, stating “for most of the 

applications dealt with in this book the inner variation in the collective is not relevant”. They do 
not explicitly consider the effects of parameter estimation error and exposure uncertainty on 
claim number forecasts. 

By explicitly distinguishing the various causes of parameter uncertainty in a general 

mathematical model, the present paper aims to ensure that all causes are taken into account so 
the combined effect is not understated. 

2.3.2 Limiting and special cases of the general formula 

2.3.2.1 Limit as expected exposure increases 

As the expected exposure m increases, with all other quantities constant, the general formula 
(equation 24) for the variation coefficient of a claim number forecast approaches: 

 Vco
2
(N)  = (1 + ρx

2
).(1 + ρc

2
).(1 + ρe

2
) - 1  28 

This supports the comment made in the example of Section 1.3.2, where we also assumed ρx = 0. 

2.3.2.2 Limit as parameter uncertainty decreases 

If the four component variation coefficients are all much smaller than one (except ρh, which need 
only be small compared to the square root of m/q), then product terms become immaterial and 
equation 24 becomes approximately: 

 Vco
2
(N)  = 1/(m.µ’) + ρx

2
+ ρh

2
.q/m + ρc

2 
+ρe

2
   29 
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This is just the sum of five terms, one relating to process uncertainty, and one relating to each of 
the four types of parameter uncertainty. In general (when the component variation coefficients 

are not necessarily so small that cross terms can be neglected) the total uncertainty can be 
considered as the sum of the five terms of equation 29, plus an additional term representing the 

interactions between the five sources of uncertainty.  

2.3.2.3 Case of no contagion, heterogeneity or exposure uncertainty 

In the real-world there is always parameter estimation error: that is, we always have ρe > 0. 
However, it is possible, though unusual, to have no contagion, no heterogeneity and no exposure 
uncertainty: that is ρx = ρh = ρc = 0. It is interesting to examine the formula in this special case 
because this gives the smallest possible forecasting variance when aleatoric variation is Poisson. 
(Smaller forecasting variance is possible if aleatoric uncertainty has lower variance than Poisson 
because then it is possible for “heterogeneity” to be negative, as discussed in Section 1.2.2.)  

The general formula (equation 23) for the variance of the number N of claims that will arise from 

m exposure units reduces in this special case to: 

 Var(N)  = m.µ’ + (m.µ’)2 .ρe
2  

  = m.µ’ + m2.Var(µ’) by definition of ρe 30 

Calibration of the formula in the general case is covered in Section 3. However, in this special 
case, calibration from experience data is particularly simple, if it can be assumed that ρh = ρc = 0 
in the past as well as in the future. Under this assumption, the Poisson parameter is the same for 
all risk units and in all epochs: λit = µ for all i and t. So if we observed m0 risk units and the 
number of claims was k, then the obvious estimate of µ is µ’ = k / m0. Estimation uncertainty is 
then Var(µ’) = Var(k) / m0

2 = µ / m0 (because Var(k) = m0.µ by the Poisson assumption). So 
(replacing µ with its estimate µ’) equation 30 becomes:  

 Var(N)  =  m.k / m0 + m
2
.k / m0

2
  

  = g.(1+ g).k where g = m / m0 31 

The first term (g.k) represents Poisson process uncertainty: the second term (g2.k) represents 
parameter estimation uncertainty.   

To interpret equation 31, we first consider the special case g = 1, that is, both estimation and 
prediction are based on the same number of risk units. (For example, we have observed one year 
of experience and aim to predict the number of claims in one future year, in the knowledge that 
the size of the portfolio will not change.) In this case, equation 31 becomes Var(N) = 2.k. This is 
easily interpreted by noting that Var(N) represents the expected squared difference between the 
best estimate k and the actual number N of future claims. Since these are, by assumption, 
independent Poisson variables, their expected squared difference is the sum of their variances, 
which is the sum of the two Poisson parameters. Again by assumption, they both have the same 
Poisson parameter, and the obvious estimate of this is the observed number k, so the sum of the 
two variances is 2.k.   

For g not equal to 1, the obvious estimate of N is g.k, so the Poisson process component of 
Var(N) becomes g.k. The estimation-error component varies with the square of g because, for a 
given value of g: Var(g.k) = g2.Var(k).  



 16 

Note that if g is much greater than one, the Process uncertainty (g.k) may be negligible compared 
to the estimation uncertainty (g2.k). Conversely, if g is much less than one, the process 

uncertainty will dominate and the estimation uncertainty may be negligible: this is illustrated by 
the example in Section 1.3.1. 

The above derivation of equation 31 from equation 30 appeals to intuition on what is a good 
estimate of µ. More formal arguments can lead to slightly different results, depending on the 
assumptions made. The appendix (Section A.2.2) gives a Bayesian argument leading to: 

 Var(N)   = g.(1+ g).(k + 1)    instead of equation 31  32 

The Bayesian argument given in the appendix also shows that, under certain stated conditions 
(allowing for process variation and parameter estimation error only), the forecasting distribution 

of N is precisely Negative Binomial.  

2.3.2.4 Case of no parameter estimation uncertainty and no exposure uncertainty 

Here we consider variation in the number of claims N caused only by process variation, 
heterogeneity and contagion. This is needed for the development of the statistical calibration 
methods described in Section 3.  

If there is no exposure uncertainty (ρx
 
= 0) then the quantity α (defined by equation 13) becomes: 

α = q.φ /m. Equation 19 (which does not include parameter estimation uncertainty) then 
becomes: 

 Var(Nt)   = m.µ + (m.µ)2 .{(1+ q.φ /m).(1+ ρc
2) - 1}  33 

This can alternatively be obtained from the general formula (equation 24) by setting ρx
 = ρe

 = 0.  

2.3.3 Application of the general formula 

Equations 22 and 23 give the first two moments of the forecasting distribution for the number of 
claims N. The first two moments are sufficient to specify a Negative Binomial distribution. An 

advantage of using the Negative Binomial for forecasting claim numbers is that this enables 
established compounding methods (those studied by Panjer (1980) and Heckman & Meyers 

(1983)) to be used in calculating aggregate loss distributions. Using a Negative Binomial is also 
clearly better than using a Poisson distribution: the Negative Binomial allows two moments 

(mean and variance) to be correctly specified, the Poisson allows only one moment (mean) to be 
correctly specified. 

In the appendix (Section A.2.2) the Negative Binomial distribution is parameterised using 
parameters r and p. These parameters are related to the first two moments through:   

 p = E(N) / Var(N)   and  r = E(N).p/(1-p)   34 

It was noted in Section 2.3.1 that the general formula for Var(N) (equation 23) can be expressed 

as Var(N) = E(N).{1 + c.E(N)} where E(N) = m.µ’ and c is given by equation 26. The required 
Negative Binomial parameters are therefore:  

 p = 1 / {1 + c.m.µ’} and r = 1/c   35 

Although the Negative Binomial is exact in a few, somewhat artificial, special cases (for 
example: (a) the case of no contagion, no exposure uncertainty and no heterogeneity discussed in 
Section A.2.2 of the appendix; and (b) the case of no contagion, no exposure uncertainty, no 
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parameter estimation uncertainty and Gamma-distributed heterogeneity), the Negative Binomial 
is in general only an approximation. In general, allowing for all sources of uncertainty produces 

a mixture of Negative Binomial distributions. (In Section 3.3 one such mixture distribution is 
developed that allows for process error, heterogeneity and contagion only.) The Negative 

Binomial provides an adequate approximation in many circumstances but of course it will not 
always be appropriate. In particular, when the expected number of claims is very large, it is 

advisable to consider whether some other distribution (eg Beta-Binomial, or a mixture or sum of 
Negative Binomials) would be better. This is because (as illustrated by the example in Section 

1.3.2), as the expected number of claims increases, the aggregate loss distribution approaches the 
assumed claim number distribution, so this becomes critical.  

However, regardless of whether the Negative Binomial or some other distribution is used, the 
general formula for the variance developed in this paper (equation 23) is equally valid. 

3  Calibration of the formula from past data 

3.1 Introduction 

To apply the general formula for the uncertainty of claim number forecasts (equation 24), it first 
needs to be calibrated, that is, values need to be assigned to the seven quantities appearing in the 

formula: the four variation coefficients (ρx, ρe, ρh,
 
ρc) and the quantities m, q and µ. 

In this section we consider the use of data on past claim frequencies to calibrate the model, on 
the assumption that the future will be similar to the past. Claim frequency data is of little or no 
relevance for determining the quantities m, ρx and q (representing expected future exposure, 

uncertainty in exposure, and proportion of exposure that will be new business). We do not 
consider these three other than to say that they should be based on whatever relevant information 

is available: q could be estimated by looking at data on past renewal and lapse rates, m and ρx by 
looking past growth rates. For all three, business plans are likely to be more relevant than any 

past data, and judgement more important than statistical analysis. The statistical methods 
developed in this section are for estimation of the other four parameters, (µ, ρe, ρh, ρc) from past 

claim numbers and corresponding exposures.  

These parameters will all be subject to estimation error. ρe represents the estimation error in µ but 
will itself be subject to estimation error, as will the estimates of ρh

 and ρc. We do not attempt to 
quantify the estimation error in the quantities ρe, ρh

 and ρc: this would be to give too much weight 

to past data. Instead, we develop statistical methods that produce point estimates of these 
quantities: the methods are based on sound statistical principles (such as maximum likelihood 

estimation) so the point estimates are believed to be about as reliable as possible. To allow for 
estimation error, the statistical estimates of ρe, ρh

 and ρc should be considered and adjusted 

judgementally if necessary. For example, if the past experience shows little evidence of 
contagion, the statistical methods developed here will produce a low figure for ρc. It could be 

that large contagion effects are possible, but simply that none have occurred in the recent past. 
Because of this possibility, an analysis of the data to obtain an objective assessment of the 

reliability of the point estimate ρc
 
would be spurious. No amount of statistical analysis would 

reliably indicate the potential for contagion effects larger than any that have occurred, so 

judgement is required. The statistical methods described here provide an objective starting point 
for the application of judgement. 
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We restrict attention in this paper to short-tail classes for which actual numbers of claims are 
known with some certainty for all past exposure periods: the dataset is assumed to consist of the 

following three items for each data-point: 

• past epoch t 

• exposure xtk 

• corresponding actual number of claims ntk 

A triple of values (t, xtk, ntk) is called a data-point or an observation. A dataset will usually 
contain many data-points, but may contain just one. The subscript k allows for the possibility of 

more than one data-point for the same epoch. Data-points do not necessarily relate to single ‘risk 
units’ (however these might be defined): the number of risk units is indicated by xtk.  

If there is more than one observation in any one epoch it is possible to estimate the heterogeneity 
parameter φ (=ρh

2). If the data-set also covers more than one past epoch it is possible to estimate 

the contagion parameter ρc. If there is only one observation for each of several past epochs, then 
it is impossible to distinguish the effects of heterogeneity from the effects of contagion.  

There are three main stages in the calibration method developed here: 

1. Estimation of λt for each past epoch, and φt for those epochs with more than one observation. 
(λt denotes the true mean Poisson rate in epoch t including contagion effects: φt denotes the 
heterogeneity parameter for epoch t.) 

2. Analysis of changes in frequency across epochs to estimate trend parameters and the 
contagion parameter ρc. We also investigate whether there is evidence that the heterogeneity 

parameter φt varies across epochs, and if not, estimate a constant value, denoted φ.  

3. Projection of trends to the required future epoch to determine the expected future claim 

frequency µ and its estimation uncertainty ρe. If Stage 2 shows evidence that φt varies with t, 
we also consider what value of φ is appropriate for the future. 

These three stages are described in Sections 3.2, 3.3 and 3.4 respectively. 

3.2 Estimation of λt and φt for each epoch separately 

3.2.1 Positive heterogeneity 

3.2.1.1 Gamma assumption for heterogeneity  

Estimation of λt and φt is carried out for each epoch separately, so we drop the subscript t 
initially. From Section 2.2.2 (equations 7 and 8), the number of claims N arising from x 

randomly selected risk units (with x, λ and φ all known) has: 

 E(N|x,λ,φ) = x.λ  36 

 Var(N|x,λ,φ) = x.λ.(1 + φ.λ)  37 

If we assume that heterogeneity follows approximately a Gamma distribution, then the total 
Poisson rate for x units of exposure is also Gamma (because the sum of independent identically 
distributed Gamma variables is also Gamma). The distribution of N is then a Gamma mixture of 
Poissons, which is Negative Binomial: this well-known result is proved in Section A.2.2 of the 
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appendix. (Alternatively: from the Gamma assumption for heterogeneity it follows that the 
number of claims on a single randomly selected risk unit is Negative Binomial, so the number of 

claims N arising from x units of exposure is also Negative Binomial as the sum of independent 
identically distributed Negative Binomials.)  So, by assuming a Gamma distribution of Poisson 

rates in the heterogeneous population, we have a Negative Binomial distribution for N: 
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== ϕλ   for some p between 0 and 1, and r > 0. 38 

In general, a Negative Binomial distribution has: p = E(N) / Var(N) and r = E(N) . p / (1-p) (see 
the appendix) so, from equations 36 and 37 we have: 

 p = 1 / (1 + φ.λ)  and  r =   x / φ   39 

3.2.1.2 Maximum likelihood estimation of true mean frequency λ for single past epoch 

Given data pairs (xk, nk), the parameters λ and φ can be estimated by maximum likelihood 
estimation (MLE): that is, we find the values λ’ and φ’ that maximise the product over all 
observations k of the Negative Binomial probabilities (equation 38). (An alternative is to use 
Bayesian estimation: this is considered in Section 3.2.1.3.) For a single data-pair (x, n), the 
Negative Binomial log-likelihood L is obtained by taking the natural logarithm of the Negative 
Binomial probability (equation 38). Writing lg(.) for ln(Γ(.)) this gives: 

 L  = lg(n+r) – lg(n+1) – lg(r) + n.ln(1-p) + r.ln(p) 

  = lg(n+ x / φ) – lg(n+1) – lg(x / φ) + n.ln(φ.λ) - (n + x / φ).ln(1 + φ.λ) 40   

For multiple observations (xk, nk) (k = 1, 2,…), the total log-likelihood is the sum over k of the 

above expression for L. Maximum likelihood estimates of φ and λ are the values that maximise 
this, and can be found by setting the derivatives ∂L/∂λ and ∂L/∂φ to zero. From equation 40: 

 ∂L/∂λ  = n / λ – (φ.n + x) / (1 + φ.λ)   

  = (n – λ.x) / {λ.(1 + φ.λ) }  41 

If there are multiple observations (xk, nk) this must be summed over k before setting to zero. The 
denominator is the same for all observations, so only the numerator needs to be summed, and 

setting this to zero gives the maximum likelihood estimate (MLE): 

  λ’  = (Σk nk) / (Σk xk)  = n
+
 / x

+
  42  

where n+ denotes Σk nk and x
+ denotes Σk xk Note that the MLE of λ is just the overall observed 

mean claim frequency in the epoch concerned. Since n
+ 
is the number of claims from x

+
 units of 

exposure, equation 37 applies and we have: 

 Var(n+)  = x+.λ.(1 + φ.λ)  43 

From which: 

 Var(λ’)  = λ.(1 + φ.λ) / x
+
 

  = λ2.(φ + 1/λ) / x+   44 

Replacing the unknown quantity λ in this expression by the estimate λ’ (equation 42) gives the 

following approximate expression for the squared variation coefficient of λ’: 

 Vco
2
(λ’) ≈ (φ + 1/λ’) / x

+
  = φ / x

+
 + 1 / n

+
  45 
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3.2.1.3 Bayesian estimation of true mean frequency λ for single past epoch 

As an alternative to MLE, we also consider Bayesian estimation. From a Bayesian perspective, 
MLE is equivalent to using an ‘uninformative prior’ then estimating the parameter as the mode 

of the posterior distribution. Here we specify a suitable form of informative prior for λ, then 
determine the posterior distribution by Bayes’ theorem. The best estimate of λ is taken as the 

mean of the posterior distribution (this is best in the sense of minimising the mean square error): 
estimation uncertainty is represented by the variation coefficient of the posterior distribution.  

Substituting from equations 39 into equation 38, the Negative Binomial probability becomes: 
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Given multiple data-points (xk, nk), the likelihood is the product, over all data-points, of this 

expression. If π(λ) denotes the prior probability density for the parameter λ, then by Bayes’ 
theorem, the posterior density f(λ) is proportional to the product of this and the factors of the 

likelihood that depend on λ:  
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For the prior distribution we propose π(λ) proportional to 1/λ
γ 
for some parameter γ between zero 

and  one. This is an improper prior in the sense that it gives an infinite probability for λ > 0. 
However if π(λ) is set to zero for λ > Λ, where Λ is suitably large, then π(λ) defines a proper 
prior distribution for λ in the range of what is considered possible. π(λ) decreases as λ increases, 
meaning basically that high values of λ are considered less likely than lower values. More 
precisely: the probability that λ is between λ0 and {λ0

1-γ + P.Λ1-γ }1/(1- γ) does not depend on λ0 (it 
is equal to P for all λ0). For example, putting γ = ½ and Λ = 10 implies that, a priori, λ has an 
equal chance (10%) of being between any adjacent two of the following: 

zero, 0.1, 0.4, 0.9, 1.6, 2.5, 3.6, 4.9, 6.4, 8.1, 10.  

Viewed as a probability distribution for the parameter λ, equation 47 (with 1/λγ  in place of π(λ)) 

is a Pearson VI probability density function. In general, the Pearson VI pdf can be expressed: 

 
ba

a

sbas

sba
f

+

−

+ΓΓ

+Γ
=

)/1).(().(.

)/).((
)(

1

λ
λ

λ   48 

and the mean and variation coefficient are given by: 

 E(λ)   = s.a /(b-1)     (provided b > 1) 49 

 Vco
2
(λ)   = {1 + s / E(λ)} / (b-2) (provided b > 2) 50 

(Note that s is a scale parameter, a and b are shape parameters.) 

Comparing equations 47 and 48 we have: 

  s = 1/ φ,   a = n+ + (1-γ),   b = x+ / φ – (1-γ)    51 

Therefore (from 49 and 50) the posterior mean and variation coefficient for λ are: 

 E(λ)   = { n
+
 + (1-γ)} / { x

+
 – (2-γ).φ}  52 
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 Vco
2
(λ) = {1 + s / λ’} / (b-2)      where λ’ = E(λ) 

    = {φ + 1 / λ’} / { x
+
 – (3-γ).φ}  53 

Comparing to MLE, we see that the Bayesian mean (equation 52) is higher than the MLE of λ 
(equation 42). Comparing equations 45 and 53 for the squared variation coefficient: the 
difference is the presence of the term -(3-γ).φ in the denominator of the Bayesian formula.  

The condition (b>2) for the variance of the posterior distribution to be finite is: x+ > (3-γ).φ. If 

this inequality is not satisfied, a finite variance can be calculated by truncating the posterior 
distribution at the maximum value Λ that is believed to be possible. The comparison of exposure 

x
+
 with heterogeneity φ may at first seem strange because we can change the left side of this 

inequality just by changing the definition of an ‘exposure unit’. For example, if we define an 

‘exposure unit’ to be 10 policy-years instead of a single policy-year, then x
+ 
will decrease by a 

factor of 10. However, in this case the mean claim frequency increases by a factor of 10, and the 
variance in claim frequencies (due to heterogeneity) also increases by the same factor (because, 
by independence, the variance is the sum of the variances). Therefore, the squared variation 
coefficient of heterogeneity (φ) decreases by the same factor.  

Instead of the improper prior π(λ) proportional to 1/λγ, we could use a Pearson VI distribution 

with scale s = 1/ φ for the prior: equation 47 still yields a Pearson VI posterior distribution. 

3.2.1.4 Estimation of heterogeneity φ from multiple observations (single past epoch) 

For the estimation of the heterogeneity parameter we consider only MLE because more general 
Bayesian methods are relatively intractable.  

Differentiating the log-likelihood (equation 40) with respect to the heterogeneity parameter φ, 

and writing Ψ(x) for the derivative dlg(x)/dx (where lg(x) = ln(Γ(x)) we have: 

 φ 2. ∂L/∂φ  = x. Ψ(x/φ) - x. Ψ(n + x/φ) + x.ln(1+ φ.λ) + φ.(n – x. λ) / (1 + φ.λ) 54 

It can be shown that this is less than zero for all positive values of φ, so for a single observation 
(n, x) the MLE of φ is always zero. In the case of multiple observations, there is sometimes a 
positive value φ’ such that the sum over all observations of equation 54 is zero. But sometimes, 
even with multiple observations, the log-likelihood (equation 40 summed over all observations 
k) increases indefinitely as φ approaches zero. In this case φ should be set to zero or to a negative 
value as described in the next sub-section. In any case, the MLE φ’ cannot be written in closed 
form, but when a positive solution exists it can be determined from equation 54 by numerical 
methods. The function Ψ(x) is known as the digamma function and there are good numerical 
algorithms for evaluating it. 

3.2.2 Negative and zero heterogeneity 

3.2.2.1 Negative heterogeneity: Binomial distribution 

As discussed in Sections 1.2.2 and 2.2.2.1, “heterogeneity” covers several distinct phenomena, 
and it is possible that the overall effect is a negative value for φ. Negative heterogeneity can be 
accommodated using a Binomial distribution for N|x (instead of Negative Binomial).  

The Binomial probability function can be expressed: 

 P(N=n)  = pn.(1-p)r-n. Г(r+1) / { Г(n+1).Г(r-n+1)}  55 



 22 

and the mean and variance are:  

  E(N)   = r.p Var(N) = r.p.(1-p) 56 

Equating to equations 36 and 37 gives:  

 p = -φ.λ         r = -x / φ   57 

Clearly, from equation 37, we must have φ.λ > -1, which ensures p < 1.  

Taking natural logs of 55 and substituting from 57, the log-likelihood L is: 

 L  = lg(1 - x / φ) - lg(n + 1) - lg(1 - n - x / φ) + n.ln(-φ.λ) - (n + x / φ) . ln(1 + φ.λ) 58 

The terms containing λ are the same as in the Negative Binomial case (equation 40): 

 L  = n.ln(λ) - (n + x / φ) . ln(1 + φ.λ) + (terms not involving λ) 59 

Equation 59 gives the so-called ‘quasi-likelihood’ for λ: this can be determined solely from the 

mean and variance assumptions for n (equations 36 and 37). Because both the Negative Binomial 
and Binomial log-likelihoods are equivalent to the quasi-likelihood for λ, ∂L/∂λ is the same in 
both cases (equation 41), so the MLE of λ is the same (equation 42), and the formula for the 
estimation uncertainty is also the same (equation 45).  

To find the MLE of φ, equation 58 has to be differentiated with respect to φ: 

 φ
 2
. ∂L/∂φ  = x. Ψ(1- x / φ) - x.Ψ(1-n- x/φ) + x.ln(1+ φ.λ) + φ.(n – x. λ) / (1 + φ.λ) 60 

This is not the same as in the Negative Binomial case (equation 54). The Binomial MLE of φ is 
the negative value φ’ at which the sum over all observations (nk, xk) of this expression is zero. As 
in the Negative Binomial case, there is not necessarily a solution, and when a solution does exist 
it cannot be written in closed form but can be found by numerical methods. If a solution exists to 
both equations 54 and 60, the choice between the positive and negative values of φ can be based 
on the maximised likelihoods (equations 40 and 58 respectively). 

It is also possible to calculate a Bayesian estimate of λ in the Binomial case. The Binomial 
probability (equation 55) can be regarded as a scaled Beta distribution for λ, and a similar 
sequence followed as in Section 3.2.1.3 for the Negative Binomial. This is not done here for 
reasons of space. 

3.2.2.2 Zero heterogeneity: Poisson distribution 

A zero value for φ corresponds to the Poisson distribution for N (given x and λ): 
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From which, the log-likelihood is: 

 L  = -x.λ + n.ln(x.λ) -  lg(n + 1)   62 

Differentiating this with respect to λ and setting to zero, produces the same MLE for λ as in the 
Negative Binomial and Binomial cases (equation 42).  
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3.3 Estimation of time effects: trends and contagion 

3.3.1 Testing for constant heterogeneity 

In general, we may have data covering more than one epoch with data-points (t, xtk, ntk). 
Equations 36 and 37 continue to apply but in general all quantities may vary with time so a 
subscript t is required throughout. In the previous section the MLE of λt for each epoch t was 
shown to be λt’ = nt

+ / xt
+  (where nt

+ = Σk ntk and xt
+ = Σk xtk). In the case when both φ and λ are 

the same in all epochs, and all exposure units are randomly selected in each epoch (ie q = 1) then 
all observations can be pooled into a single class and the MLE of λ is λ’ = (Σtk ntk) / (Σtk xtk).  

Equations 54 and 60 can also be summed over all observations (k and t) and solved to find the 
MLE of φ on the assumption that it is the same in all epochs. This can be done for φ using either 
the constant estimate λ’ or the varying estimates λt’. Using the varying estimates λt’, we can  
calculate the maximum likelihood (sum of equation 40 or 58 over all observations) based on: 

a) a single constant MLE φ’ 

b) varying MLEs φt’ 

We denote the maximum likelihoods La and Lb respectively.  The hypothesis that φ is constant 
can then be tested using Wilks generalized likelihood ratio test: if φ is constant, 2.(Lb – La) has 
approximately a chi-squared distribution with T-1 degrees of freedom (where T is the number of 
different φt’ estimates in (b)). So if 2.(Lb – La) could plausibly have come from this chi-squared 
distribution (if it is less than the 95% point of the distribution, for example) the hypothesis that φ  
is constant can be accepted, but if 2.(Lb – La) is implausibly large the hypothesis is rejected.  

A likelihood ratio test could be used for the hypothesis that λt is constant, but more flexible 
methods that distinguish different types of variation in λt are developed in the next sub-section. 

3.3.2 Estimation of trends and contagion 

3.3.2.1 Introduction 

We hypothesise an underlying mean frequency µt that would pertain if there were no contagion 
effects, and which may vary with time (t) as a result of trends or long-term cycles. Contagion 

relates to additional short-term effects that cause the actual mean frequency λt (across the entire 
heterogeneous risk population) to differ from µt. For contagion we use the model introduced in 

Section 2.2.4 (equations 14 and 15) but with µt in place of µ.  

The aim here is to estimate the underlying mean frequency µt and the contagion parameter ρc 

from an analysis of the variation in observed frequency across epochs. Variation across epochs in 
the observed frequencies λt’ (from equation 42) has three possible causes: 

a) Trend changes in the underlying frequency µt 

b) Contagion effects (causing short-term differences between λt and µt) 

c) Estimation error (differences between the estimates λt’ and true values λt). 

We have assessed the magnitude of estimation error (equation 45 or 53): any variation in λt’ that 

cannot reasonably be attributed to this will be attributed to causes (a) and (b). Gradual changes 
are attributed to cause (a), short-term variation (in excess of what can be explained by (c)) is 

attributed to (b).  
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3.3.2.2 MLE of trend and contagion parameters  

We use the notation nt
+ = Σk ntk and xt

+  = Σk xtk, that is, nt
+ denotes the total number of claims 

observed in epoch t, and xt
+ denotes the total exposure giving rise to these claims. Since nt

+ is the 

number of claims arising from xt
+ units of exposure, equation 37 applies and we have: 

 Var(nt
+
)  = xt

+
.λt.(1 + φt.λt)  63 

Also, assuming that heterogeneity follows approximately a Gamma distribution (as described in 
Section 3.2.1.1) we have a Negative Binomial distribution for nt

+ (given xt
+, φt and λt), with 

Negative Binomial parameters pt and rt given by: 

 pt = 1 / (1 + φt.λt)  and  rt =   xt
+ / φt   64 

from which we have: 
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(This is essentially the same as equation 46, with the subscript t to distinguish epochs, and with 
totals nt

+ and xt
+ in place of n and x.) 

We aim to estimate the contagion parameter ρc defined by equation 14 (Section 2.2.4). We also 
allow for possible trends by using µt in place of µ so equation 14 becomes:  

 E(λt) = µt    and  Var(λt) = (µt.ρc)
2 66 

A suitable form of model for trends might be: 

 µt  = exp(β0 + β1.t + β2.t
2
)
 

67 

The exponentiation ensures that µt is greater than zero. Other linear forms could alternatively be 
used in the exponent.  

Given the data pairs (nt
+
, xt

+
) and estimates φt obtained as described in Sections 3.2 and 3.3.1, we 

aim to estimate the contagion parameter ρc and the trend parameters (β0, β1, β2). To use MLE, we 

need to assume a full probability distribution for contagion: we have previously made only 
second moment assumptions as in equation 14. Since the distribution of nt

+ given xt
+, φt and λt is 

Negative Binomial (as described by equation 65 above), the distribution of nt
+
 allowing for the 

uncertainty in λt caused by contagion effects is a mixture of Negative Binomials: if ft(λt) denotes 

the probability density function representing contagion effects, we have: 
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This integral is tractable if we assume that ft(λt) is a Pearson-VI distribution with scale parameter 
equal to 1/φt. The Pearson-VI family is sufficiently flexible, having two shape parameters, for 
the mean and variance to be as required. The Pearson VI probability density can be expressed: 
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and the mean and variation coefficient are given by: 
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 E(λ)   = s.a /(b-1)     (provided b > 1) 70 

 Vco
2
(λ)   = (a + b – 1) / {a.(b-2)} (provided b > 2) 71 

Note that s is a scale parameter, a and b are shape parameters. If a and b both tend to infinity 
with a/b, constant the variation coefficient tends to zero while the mean tends to s.a/b.  

From equation 66, we require the mean and squared variation coefficient to be µt and ρc
2
. Setting 

s = 1/φt then solving for at and bt gives: 

 at = {1 + φt.µt.(1+ ρc
2)} / ρc

2   and bt = {1 + 2.ρc
2  + 1 / (φt.µt)} / ρc

2    72 

Evaluating the integral in equation 68 gives the following probability distribution for the total 
number of claims in epoch t (given the total exposure and the heterogeneity parameter):   
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This can be used to determine ρc and the trend parameters (β0, β1, β2) by MLE. The parameters at 
and bt depend on ρc and (β0, β1, β2) (through equations 72 and 67) but nt

+
 and rt (equation 64) do 

not. Taking natural logs, and ignoring terms that do not depend on ρc and (β0, β1, β2) gives: 

 Lt  = lg(at + bt) + lg(nt
+ + at) + lg(rt + bt) – lg(at) – lg(bt) – lg(nt

+ + rt + at + bt)  74 

Using θ to denote any one of the required parameters (ρc β0, β1, β2) we have: 

 ∂Lt/∂θ  = {ψ(at + bt) + ψ(nt
+  
+ at) - ψ(nt

+ 
+ rt + at + bt) - ψ(at)}.∂at /∂θ   

                + {ψ(at + bt) + ψ(rt
  
+ bt) - ψ(nt

+ 
+ rt + at + bt) - ψ(bt)}.∂bt/∂θ  75 

The partial derivatives ∂at /∂θ and ∂bt/∂θ are obtained from equations 72 and 67. Equations 74 
and 75 have to be summed over all epochs t. The matrix of second derivatives (the Hessian 
matrix) can be obtained by differentiating a second time. The Newton-Raphson method can then 
be used to find MLEs of the parameters (ρc β0, β1, β2). The approximate variance-covariance 
matrix of the parameter estimates is obtained as negative the inverse Hessian matrix. Further 
details are not given here for reasons of space.   

3.4 Projection of trends 

3.4.1 General case of single-epoch forecast 

For single-epoch forecasts, we need to apply equations 22 and 24. This section is concerned with 
determining appropriate values of µ’ and ρe

2 for the future epoch concerned. Also, if the 
likelihood ratio test of Section 3.3.1 shows evidence that φt varies with t, it is necessary to 
consider the appropriate value of φ (denoted ρh

2
 in equation 24) for the future epoch.  

From equation 67 we have: 

 µt  = exp(β0 + β1.t + β2.t
2) 

If we define: 

 ηt = β0 + β1.t + β2.t
2
 

  = (1, t, t2).β  76 
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(where β is the column vector of the β-parameters and the dot denotes matrix multiplication), 
then we have:   

 µt = exp(ηt)
  77 

Using β’ to denote maximum likelihood estimates of the β-parameters determined as outlined in 
the previous sub-section, we can calculate an estimate ηt’of ηt for any future epoch t: 

 ηt’ = (1, t, t2). β’  78 

At this point we have to consider whether to project any trends forwards (by using the value of 
time t corresponding to the required future epoch in equation 78). Another option is to assume 

that the there will be no further trend changes between the latest epoch in the dataset and the 
future epoch for which forecasts are required. In this case, the value of t used in equation 78 

should be that corresponding to the latest epoch in the data. Judgement is obviously required in 
making this decision. If the estimated trend parameters β1’ and β2’ are small, whether or not the 

trends are projected may be immaterial. If the values are material, then it is necessary to consider 
what might have caused the trends in the past: this will help in deciding whether or not the trends 

are likely to continue in the future. Because we will not necessarily always use the actual 
chronological time of the future epoch equation 78 it is replaced by:  

 η’  = (1, t1, t2).β’
  79 

where t1 and t2 denote the values selected to replace t and t
2
. Similarly equation 76 becomes: 

 η  = (1, t1, t2).β
  

80 

Assuming the estimate β’ is approximately unbiased (on the grounds the it is an MLE and MLEs 

are asymptotically unbiased) we have E(η’) = η. Equation 79 implies the following for the 
estimation uncertainty in η’ arising from estimation uncertainty in β’:  

 Var(η’)  = (1, t1, t2).Var(β’).(1, t1, t2)
T
  = σe

2 say  81 

where Var(β’) is estimated using negative the inverse Hessian matrix (from equation 74), and T 
denotes matrix transpose.  

By asymptotic normality of MLEs, we approximate the estimates β’ as multivariate normal. 

Therefore (from equation 79) the estimate η’ is approximately normally distributed and exp(η’) 
is approximately log-normal. Using standard results for the log-normal we have: 

 E(exp(η’)) = exp(η + σe
2 / 2)  82 

 Vco(exp(η’))= exp(σe
2
) - 1 

 
83 

So if we define: 

 µ’ = exp(η’ - σe
2 / 2)  84 

then using ρe
2 to denote the variation coefficient of µ’, we have: 

 E(µ’) = exp(η) = µ by equation 82 85 

 Var(µ’) = exp(σe
2
) - 1 by equation 79

 
86 

(The variation coefficient of µ’ is the same as the variation coefficient of exp(η’) because µ’ is 
just exp(η’) multiplied by the known factor exp(-σe

2 / 2): we ignore estimation error in σe
2). 
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Equations 84 and 86 give the values µ’ and ρe
2 
that are required for the general single-epoch 

forecasting formulas (equations 22 and 24). 

If the likelihood ratio test of Section 3.3.1 shows evidence that φt varies with t, it is necessary to 
consider the appropriate value of φ (denoted ρh

2
 in equation 24) for the future epoch. This is 

probably best left to judgment, based on information on possible causes of heterogeneity, why it 
might have changed, and future business plans that might affect the mix of risks. 

4 Conclusion 
For reasons of space, it has not been possible to include in the present paper: 

• Numerical examples of the statistical calibration methods described in Section 3. 

• Statistical calibration methods for use with long-tail classes in which the ultimate number 
of claims nt for past periods is not known for several years. In such cases, model calibration 
is carried out from a development triangle of claim numbers.  

• Generalisation of the single-epoch forecasting formulas developed in Section 2 for multi-
epoch forecasting. 

The author intends to publish further work in these areas.   
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Appendix A Bayesian forecasting 
This appendix reviews some well-known mathematical results and derives related results that are 

referred to in Sections 1 and 2.  

A.1 Binomial process 

A.1.1 Posterior distribution for Binomial parameter p  

A Binomial random variable k has probabilities: 

 Pr(k | n, p)  = n! / {k!(n-k)!} p
k
 .(1-p)

n-k
                   (k = 0, 1, 2,…n) 

where p is the chance of success in each of n independent trials, and k is the number of 
successes. 

Bayes’ theorem gives the posterior probability density for p (having observed k) as: 

 f(p|k)  proportion to: π(p).p
k
 .(1-p)

n-k
       where π(p) is the prior distribution 

If we have a uniform prior (π(p) = 1) then f(p|k) is a Beta distribution for p. 

More generally, if the prior beliefs can be approximated using a Beta distribution (usually the 
case as the Beta family is very flexible, having two shape parameters): 

  π(p)  proportional to: pα-1 .(1-p)β-1    

then the posterior is again a Beta distribuion:  

 f(p|k)  proportional to: pα+k-1 .(1-p)β+n-(k+1)  

The mean, mode and variance of a Beta distribution as specified above for π(p) are:  

  E(p)  = α / (α + β)  

  mode(p) = (α - 1) / (α + β - 2)     

 Var(p)  = α.β / {(α +β)2.(α +β+1)} 

So the mean and mode of the posterior distribution f(p|k) are: 

 E(p|k)  = (α+k) / (α+β+n) 

  mode(p|k)  = (α+k-1) / (α+β+n-2)  

The case of a uniform prior can be considered to be the special case α = β = 1. In this case, the 
posterior mean is (k+1)/(n+2) and the posterior mode is k/n (which is the classical maximum 
likelihood estimate). 

A Bayesian confidence interval (sometimes called a “credible interval”) is an interval 

constructed from the posterior distribution. In Section 1.2.1 we used a 90% Bayesian confidence 
interval for p based on f(p|k) above in the case α = β = 1, n = 12 and k = 6. 

A.1.2 Forecasting for a Binomial process: Beta-Binomial distribution 

When aleatoric uncertainty is Binomial, assuming a Beta prior for the parameter p (eg a uniform 

prior) implies a Beta posterior distribution for p as described above. Forecasts of future outcomes 
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from the same process should therefore be based on a mixture of Binomial distributions in which 
the ‘mixing weights’ are given by the Beta posterior distribution for p. This is called the ‘Beta-

Binomial’ distribution.  

A.2 Poisson process 

A.2.1 Posterior distribution for Poisson parameter λ 

A Poisson random variable k has probabilities: 

 Pr(k | λ)  = e-λ. λk / k!    (k = 0, 1, 2,…) 

So by Bayes theorem the posterior distribution for λ (having observed k) is: 

 f(λ | k)  proportional to:  π(λ). e
-λ
. λ

k
 / k! 

If we have an uninformative prior distribution (π(λ) = 1) this is a Gamma distribution for λ, with 
E(λ) = Var(λ) = k+1. 

More generally, if the prior beliefs can be approximated using a Gamma distribution: 

  π(λ)  proportional to:  e-β.λ. λα-1  

then the posterior is again a Gamma distribution:  

 f(λ | k)  proportional to:  e-(β+1).λ. λα+k-1  

The mean, mode and variance of a Gamma distribution as specified above for π(λ) are:  

  E(λ)  = α / β 

 mode(λ)  = (α-1) / β 

 Var(λ)  = α / β2 

So the mean and mode of the posterior distribution f(λ | k) are: 

 E(λ|k)  = (α+k) / (β+1)  

 mode(λ|k)  = (α+k-1) / (β+1) 

The case of an uninformative prior can be considered to be the limit as β tends to zero with α 

fixed at one. The variation coefficient of the prior is then 1, but the mean and standard deviation 
both tend to infinity. This gives a posterior mean of k+1 and posterior mode k (which is also the 

classical maximum likelihood estimate of λ).  

A.2.2 Forecasting for a Poisson process: Negative Binomial distribution 

When aleatoric uncertainty is Poisson, assuming a Gamma prior for the parameter λ implies a 
Gamma posterior distribution for λ as described above. Forecasts of future outcomes from the 

same process should therefore be based on a mixture of Poisson distributions in which the 
‘mixing weights’ are given by the Gamma posterior distribution for λ. It is shown below that this 

produces a Negative Binomial distribution. We assume that k has been observed from a Poisson 
process with parameter λ, but forecasting is required for a Poisson process with parameter g.λ, 

that is: Pr(n | g.λ) = e
-g.λ
. (g.λ)

n
 / n!. Initially we assume an uninformative prior (the case β = 0,  α 

= 1), so the posterior distribution is f(λ | k) = e-.λ.λk / k!. The mixed distribution appropriate for 
forecasting is then: 
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This is the Negative Binomial distribution: n can be interpreted as the number of failures before 
success number r in independent trials each with chance p of success. 

The negative Binomial has:  

 E(n) = r.(1-p) / p     Var(n) = E(n) / p  

So in this case, the forecast number of claims n has: 

 E(n) = g.(k+1)   Var(n) = g.(1+g).(k+1) 

This should be compared with Equation 30 in Section 2.3.3.3, which was derived from the 

general model using a non-Bayesian argument. 

In the case of an informative Gamma prior, the above derivation is easily modified to produce a 
Negative Binomial with p = (1+β) / (1+β+g) and r = k + α, and therefore: 

 E(n) = g.(k+α) / (1+β)   Var(n) = g.(1+g+ β).(k+α) / (1+ β)
2
 

From this we see that the parameter r can take any positive value, not necessarily an integer. 
When generalized in this way, the Negative Binomial is sometimes called the Polya distribution. 

The case when r is restricted to positive integers is sometimes called the Pascal distribution.  

A Negative Binomial distribution exists for any positive values of mean and variance with 

variance greater than mean. The parameters p and r are given by: 

 p = E(N) / Var(N) and  r = E(N).p / (1-p) 

A.2.3 Numerical example of Section 1.3.1 

In Section 1.3.1 we have a posterior distribution for λ with a mean of 0.1 and 95% confidence 
interval (0.038, 0.192). This is corresponds to a posterior Gamma distribution for λ with 
parameters α’ = 6.25, β’ = 62.5 (where, in the notation above: α’ = (α+k) and β’= (β+1)). The 
variance of this Gamma distribution is α’ / β’2 = 0.0016. The variance of the number of claims n 
is then given by: 

 Var(n)  = E(Var(n| λ)) + Var(E(n| λ)) 

  = E(λ) + Var(λ)            because n|λ has a Poisson distribution with parameter λ 

  = 0.1 + 0.0016 


