

Enterprise Risk Management in Insurance Groups: Measuring Risk Concentration and Default Risk

Orlando, June 22, 2007

Nadine Gatzert, Hato Schmeiser, Stefan Schuckmann Institute of Insurance Economics, University of St. Gallen

Introduction (1)

- Trend towards consolidation in financial sector
- Financial conglomerate: financial group providing services and products in different sectors of financial markets
- Insurance group: financial group providing services and products in the insurance sector, not necessarily across sectors
- New types of risk
 - Risk concentrations: interdependencies and accumulation reduce diversification
- Crucial: proper risk assessment; enterprise risk management (ERM)
- Literature
 - Wang (1998, 2002): Overview of economic capital modeling, risk aggregation, use of copula theory in ERM
 - Kurizkes et al. (2003): ERM, capital adequacy in financial conglomerates under joint normality, measure diversification effect
 - McNeil et al. (2005): Modeling of depence using copulas

- Measure diversification on corporate level with economic capital of aggregated risk portfolio
 - Implicit assumption: different legal entities are merged into one
 - Only realistic in case of signed full-transfer-of-losses contract or if management decides in favor of cross-subsidization (e.g., for reputational reasons)
- But: intra-group transfers restricted by insurance law; limited liability of legal entities
- \Rightarrow Analysis from different perspectives:
 - Executive board of insurance group / shareholders: joint default, risk concentration
 - Policyholders / debtholders: default of individual entity
 - Solvency II / Swiss Solvency Test: diversification on group level?

Introduction (3)

University of St.Gallen

- Aim of this paper:
 - Provide a detailed, more comprehensive picture of an insurance group's risk situation
 - Consider both: risk concentrations (full liability) and joint default probabilities (no liability) of legal entities
 - Analyze sensitivity of default probabilities and risk concentration

... under different distributional assumptions

... for different dependence structures (linear and nonlinear)

⇒ Provide additional information insight by simultaneous consideration

Economic capital on stand-alone basis

- Economic capital: amount necessary to buffer against unexpected losses from business activities to prevent default at a specific risk tolerance level α for a fixed time horizon (1 year)
- Necessary economic capital for legal entity given by

 $EC_{i} = VaR_{1-\alpha}(L_{i}) - E(L_{i}) \quad i = 1, \dots, N.$

 L_i is the value of liabilities at t = 1 of company i = 1, ..., N (legal entities in insurance group)

Aggregation (full transfer of losses between legal entities)

$$EC_{aggr} = VaR_{1-\alpha}\left(\sum_{i=1}^{N} L_i\right) - E\left(\sum_{i=1}^{N} L_i\right)$$

Diversification versus concentration

Risk concentration factor

$$=\frac{EC_{aggr}}{\sum_{i=1}^{N}EC_{i}}$$

- Detection of risk concentrations in insurance group
- But: hypothetical number since generally no full coverage of losses for entities in group

d

- Determination of default probabilities
- Provides additional and valuable information about group's risk situation
- Assume no transfer of losses
- Joint default probabilities of exactly one (P1), two (P2), and three (P3) legal entities

Dependence structure (1)

Institute of Insurance Economics University of St.Gallen

Modeling the dependence structure between entities

- Nonlinear dependence with copulas: separate univariate margins and multivariate dependence structure
- Sklar's theorem:

$$P(X_{1} < x_{1},...,X_{N} < x_{N}) = F_{X_{1},...,X_{N}}(x_{1},...,x_{N}) = C(F_{X_{1}}(x_{1}),...,F_{X_{N}}(x_{N}))$$

- Fix default probabilities of individual entities (adjust economic capital): $P(X_i < 0) = \alpha_i, i = 1, ..., N$ ($P(A_i < L_i) = \alpha_i$)
- ⇒ Joint default probabilities only depend on dependence structure (*C*) and on marginal default probabilities α_i :

$$P(X_1 < 0, ..., X_N < 0) = F_{X_1, ..., X_N}(0, ..., 0) = C(F_{X_1}(0), ..., F_{X_N}(0)) = C(\alpha_1, ..., \alpha_N)$$

Copulas

Perfect dependence (comonotonicity)

 $M(u_1,\ldots,u_N)=\min\{u_1,\ldots,u_N\}$

Independence copula

$$\Pi(u_1,\ldots,u_N)=\prod_{i=1}^N u_i$$

Clayton copula (lower tail dependent)

$$C_{\theta,N}^{Cl}\left(u_{1},\ldots,u_{N}\right) = \left(\sum_{i=1}^{N} u_{i}^{-\theta} - N + 1\right)^{-1/\theta} \quad 0 \le \theta < \infty$$

Perfect dependence for $\theta \rightarrow \infty$

Independence for $\theta \rightarrow 0$

Dependence structure (3)

Gumbel copula (upper tail dependent)

$$C_{\theta,N}^{Gu}(u_1,...,u_N) = \exp\left[\left(-\sum_{i=1}^N \left(-\log u_i\right)^{\theta}\right)^{1/\theta}\right] \qquad \theta \ge 1$$

Perfect dependence for $\theta \rightarrow \infty$ Independence for $\theta \rightarrow 1$

Gauss copula (linear dependence)

$$C_{R}^{Ga}(u_{1},...,u_{N}) = \Phi_{N}(\Phi^{-1}(u_{1}),...,\Phi^{-1}(u_{N}))$$

- *R*: correlation matrix with coefficients ρ_{ij} between the liabilities of entity *i* and entity *j*
- Φ : standard univariate normal distribution function
- Φ_N : joint distribution function of X

Dependence structure (4)

Linear dependence given normal distribution

- Stand-alone economic capital: $EC_i = \sigma(L_i) \cdot z_\alpha$ z_α : α -quantile of the standard normal distribution σ stands for the standard deviation
- Aggregated economic capital:

$$EC_{aggr} = \sigma(L) \cdot z_{\alpha} = \sqrt{\begin{pmatrix} EC_{1} \\ EC_{2} \\ \vdots \\ EC_{N} \end{pmatrix}^{T} \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1N} \\ \rho_{21} & 1 & \cdots & \rho_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{N1} & \rho_{N2} & \cdots & 1 \end{pmatrix} \begin{pmatrix} EC_{1} \\ EC_{2} \\ \vdots \\ EC_{N} \end{pmatrix}}.$$

• Diversification effect on EC_{aggr} depends on N, EC_{i} , R

Institute of Insurance Economics University of St.Gallen

Input parameters – basis for simulation study

TABLE 1

Economic capital for individual entities in an insurance group for different distributional assumptions given a default probability $\alpha = 0.50\%$ and $E(L_i) = 100$, i = 1, 2, 3.

Legal entity	Distribution type	Case (A)		Case (B)	
		$\sigma(L_i)$	EC_i	$\sigma(L_i)$	EC_i
	"normal"				
Bank	Normal	15.00	38.64	35.00	90.15
Life insurer	Normal	15.00	38.64	5.00	12.88
Non-life insurer	Normal	15.00	38.64	5.00	12.88
Sum	[]		115.91		115.91
	"non-normal"				
Bank	Normal	15.00	38.64	35.00	90.15
Life insurer	Lognormal	15.00	45.22	5.00	13.59
Non-life insurer	Gamma	15.00	42.84	5.00	13.35
Sum			126.70		117.09

Default probabilities and risk concentration factor for linear dependence on the basis of Table 1

a) Joint default probabilities for linear dependence

Gauss copula

 Joint default probabilities only depend on dependence structure and individual default probabilities; not on distributional assumptions

• With increasing dependence, risk concentration factor increases, P3 increases, and P1 decreases

• Given liabilities have same standard deviations, distributional assumptions (normal vs. non-normal) have only marginal influence on risk concentration

• Large risk contribution of bank in case (B) leads to higher risk concentration in insurance group as a whole, compared to case (A)

• For perfect correlation (rho = 1): concentration factor is at maximum of 100% for all models; P3 = 0.50%, P1 = P2 = 0.

Default probabilities and risk concentration factor for Clayton copula on the basis of Table 1.

University of St.Gallen

Default probabilities and risk concentration factor for Gumbel copula on the basis of Table 1.

Institute of Insurance Economics

University of St.Gallen

Comparison of joint default probabilities for one (P_1) , two (P_2) , and three (P_3) companies for different dependence structures; case (A), normal distributions.

University of St.Gallen

- Assessed and related risk concentration and default risk of (three) legal entities in an insurance group
 - Sensitivity analysis provides insight in the group's risk situation: highly relevant for ERM on corporate group level
- Diversification concepts assume that entities are fully liable
 - ⇒ Useful in determining risk concentration in insurance group
- Additionally calculate joint default probabilities, given no transfer of losses between legal entities in a group
 - Only depend on individual default probability and coupling dependence structure
- Compare Gauss, Clayton, Gumbel copulas for normal and non-normal marginal distributions

Summary (2)

- For all dependency models, increasing dependence led to:
 - ⇒ Risk concentration factor and joint default probability of all three entities (P3) increase
 - \Rightarrow Probability of single default decreases
 - ⇒ Sum of joint default probabilities (P1+P2+P3) decreases
- Large risk contribution (in terms of volatility) of one entity led to much higher risk concentration for insurance group
- Distributional assumptions (normal / non-normal) had minor effect due to same expected value and same standard deviation
- Even if different dependence structures imply same risk concentration factor, joint default probabilities for different sets of subsidiaries can vary tremendously:
 - ⇒ Lower tail-dependent Clayton copula: lowest default probability P3
 - ⇒ Upper tail-dependent Gumbel copula: highest default probability P3