2007 CAS Spring Meeting and the 37th ASTIN & June 20, 2007, Orlando USA

Determine required solvency capital for P&C insurers in China market

Dr. Xie Zhigang, email: ck@mail.shufe.edu.cn Shanghai University of Finance and Economics

Contents

- Research Target
- Study issues
- Initial results

1 Background • CIRC's Regulatory Strategies:

--- Three pillar framework has been accepted

(1) Solvency (2) Governance (3) Market Conduct

• On solvency pillar

 Reserving standard has been implemented from 2005
 A series of valuation rules for admissible assets and liabilities has been issued for actuarial solvency
 But Statutory required/minimum solvency standard has not been updated since 2000.

1 Background: 3 elements in pillar 1

3) Minimum capital/SM

CIRC: Insurance Administration 2000 CIRC [No.1, 2003]: Solvency Regulation

1) Reserving rules

CIRC [No.13, 2004]: Technical Provisions in Non-life

Background: about the minimum SM 1 Two versions issued so far, but still not well made. 1st version: Insurance Administration 1996 by PBOC --- simple percentages of business volume --- a simplified model of the early USA models --- too high to be implemented 2nd version: Insurance Administration 2000 by CIRC, and kept in CIRC [No.1, 2003]: Solvency Regulation Solvency Margin (+ Regulatory indicators)

- --- A simplified model of EU Directive 73/239/EEC (Solvency 0)
- --- in use, but not so satisfied

2 Towards a reasonable standard What is a reasonable level of minimum capital requirement (or solvency margin) ?

- must be risk-oriented, but
- risk capital is charged on those well recognized, significant, quantitatively measured risk step by step, not all in one time and one model.

 Risk analysis of P&C insurance industry P&C insurers and market share in 2006

No.	1	2	3	4	5	6	7	8	9	others
%	45	11.5	10.7	9.5	4	4	2.5	2.2	1.8	14.8

Evolving and dynamic risk profile

(2) Determine the risks for capital charge

	Risk	Capital charge	Estimated	
R ₁	Investment	yes	2535%	
	Underwriting			
R ₂	R _{2a} Reserving	yes	<mark>65—</mark> 75%	
	R _{2b} Pricing			
R ₃	Credit (cat/reinsurance etc)			
R ₄	Operational/governance	not yet		
R ₅	A/L matching			

(3) From company factors to industry standard:3A: claims data for underwriting risk

claims data collected

Sample Insurer	Market share in 2004	Data records and form	No of Records
No.1	58%	1h/2001 1h/2005	10
No.2	12%	4q/2000 3q/2005	20
No.3	9%	a/1997 a/2005	9
No.4	0.82%	h/2002 h/2005	10
No.5	0.88%	1q/2001 3q/2005	19
No.6	0.04%	h/2000 h/2004	10
No.7	0.04%	h/2000 h/2004	10 9

3 Study issues 3B: Estimate risk factors R_{2a} , R_{2b} 1) Reserve risk R_{2a} Reserve distribution --- Bootstrap $R_{2a} = \frac{L(\alpha) - OS_{a}}{OS}$

> 2) Pricing risk R_{2b} $R_{2b} = \max\{LR_{\alpha} + ER - 1, 0\}$ Loss ratio distribution --- Parameter bootstrap

3) Confidence levels--- 95%, 99%

3C: From company factors to industry standard
(1) simple average
(2) weighted average
(3) above two compared, adjusted based on individual analysis on each business line

4 Initial results

Required capitals for sample companies (RMB'000, cl=95%)

Capital charge		Sample companies						
		No.1	No.2	No.3	No.4	No.6	No.7	
Reserving risk		3,086,635	1,056,597	1,086,407	62,259	5,816	8,293	
Pricing risk		13,150,594	2,291,339	1,796,893	217,574	7,699	9,516	
adjusted	р =0.26	7,133,947	1,380,721	1,164,525	120,684	5,394	7,078	

SMSM (2004)	8,437,200	1,554,246	1,105,410	111,440	5,518	<mark>9,</mark> 423
R2a + R2b/ SMSM (%)	84.55%	88.84%	105.35%	108.29%	97.76%	<mark>75.</mark> 11%