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Abstract 

The runoff triangle is viewed as an incompletely observed rectangular array which also 
may comprise future loss years.  Together with multivariate normality, a parametric 
structure for the means and covariances completes the stochastic specification. The 
payment pattern is a core aspect. After maximum likelihood estimation and 
incorporation of estimation uncertainty, the predictive distribution of the unobserved 
entities is derived. This distribution is conditional on the observed history and marginal 
with respect to the estimated parameters. Besides predictive means, also percentiles can 
be derived. The latter become important when objectifying prudent provisions as well as 
solvency margins.  
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1. INTRODUCTION 

Risk is part and parcel of the insurance business and presents itself to insurers in 
different ways. First of all there is the insurance risk they incur on running policies and 
claims still waiting to be settled. Both of these types of risk are related and have 
financial consequences. They reflect in particular on risk provision and the insurer’s 
solvency position. Modeling them together in their entirety gives us the opportunity to 
assess both the adequacy of risk provisions and the solvency position generally. 

From an actuarial viewpoint it is important to bring into focus the risk profile attached 
to the two risk components: the profile of insurance commitments undertaken by the 
insurer and the profile of claims still in the pipeline. This integrated view of past 
(incurred not settled) and future (covered not incurred) displays corresponding matters 
of prudential provision and solvency margin in a neat joint way. Indeed such matters as 
an actuarial provision for premium deficiency or the value of future underwriting 
business may be explicated. 

Unlike other models which usually only make an isolated financial assessment of claims 
provision, the Integrated Financial Modeling (IFM) encompasses the risk inherent in the 
insurance proces as a whole and allows us to describe it. The analysis of loss years and 
the associated loss provisions usually is based on runoff triangles, which are aggregated 
representations of claims experience. However, we prefer to consider a rectangular loss 
array over a runoff triangle. Indeed, by viewing a rectangular array instead of a 
triangular one, we are able to encompass future loss years for which no entries have 
been observed as yet. This allows a symmetric treatment of aggregate loss by loss year, 
whether the loss years are lying in the past or ahead in the future. Schematically, the 
situation is as follows: 
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Figure 1 Rectangular loss array 

 
The elements of this loss array are viewed as arising from a multivariate normal 
distribution. We do not belief this normality assumption to hold in the strict sense, but 
the impact of its violation need not be that serious. After all, the entries of the loss array 
are aggregates for which usually a central limit law holds. In exchange for this 
simplicity, we get convenient freedom to model a covariance structure for these entries.  

By adding a measure of risk exposure, like gross earned premium, to the loss array  the 
loss years are evaluated as a time series of loss ratios which fluctuate around a long term 
average. Besides that, development patterns are incorporated in the model and 
correlations between loss years and development years are taken into account. This 
means that if entries deviate from the value that was expected beforehand, this is taken 
into account for predicting neighbouring entries. These covariances are important. Not 
as much for efficient parameter estimation but the more so for prediction. 

Formulating a parametric model for the expected values and covariances, the stochastic 
law with multivariate normality has been completed. An important aspect of the model 
is a smooth payment pattern which may require some multimodality. The remainder of 
the paper then follows the standard steps for maximum likelihood estimation and 
prediction in a multivariate normal environment. Parameter estimation uncertainty is 
explicitly accounted for.  

The plan of the paper runs as follows. After recognizing a rectangular loss array as a 
matrix, it is vectorized such that selection matrices identify observed elements as well as 
elements to be predicted. Then inspired by time series analysis and the (negative) 
multinomial distribution the vector of means and the covariance matrix are derived. 
Then the payment pattern is viewed as a process in continuous time. This leads to a 
rather sophisticated discretized payment pattern. Its maximum likelihood estimation 
generates a delicate numerical optimization problem. Finally, the predictive probability 
distribution is set out for linear aggregates of the loss array. Here, estimation uncertainty 
is integrated out with an appeal to Bayesian statistical inference. So, this predictive 
distribution is conditional on the historical observations and marginal with respect to the 
unknown parameters. 

 

 

Past loss years 
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Loss year ↓

Known

Unknown 



 

 4

2. MATRIX EMBEDDING OF THE INCOMPLETE LOSS ARRAY 

We consider a rectangular data structure of aggregate nominal paid loss, where the 
implicit continuous time has been discretized. For ease we take these as years but any 
other interval may apply. So, we have a matrix Y with m rows for the loss years and n 
columns for the settlement durations. In the typical insurance application we have a 
triangular subset of Y as observations. In case of missing observations the triangle 
becomes a trapezium or some blurred variation. Furthermore we have a column vector 
w with volume measures for the m loss periods. For ease we may imagine w to contain 
gross earned premiums. So, we have: 
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In a natural display the rows and columns of Y will be ordered chronologically, with 
equal length for the loss period and the settlement duration. In the settlement direction, 
the equal length assumption is not necessary, however. Indeed, if the final column 
comprises the distant upper tail of the settlement durations, this will aggregate an 
infinite length upper tail. In that case the n-th column of Y will have no observations. 
For prediction and provision purposes our later focus will be on a linear (discounted) 
combination of the unknown future elements of Y conditional on the known elements of 
Y. 

We may arrange the mn elements of Y as a column vector by stacking its columns one 
beneath the other. This vector is denoted as vecY. Next we may permute vecY such that 
missing observations, known observations and future observations are put together. To 
this end we need an mn×mn permutation matrix S and arrive at: 
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Adopting a normal distribution for vecY and choosing a parametric model for its mean 
and covariance matrix, the next steps will be swift in principle. Parameter estimation 
through maximizing the likelihood function requires the normal density for y1 and 
prediction requires the normal density for y2 conditional on y1. The addition of 
estimation uncertainty is handled as a mixing operation. 

   

3. MEAN AND COVARIANCE OF THE LOSS ARRAY 

We will infer simple forms for the mean and covariance by viewing obvious candidates 
for the column vector of row totals and the row vector of column totals of Y. In the 
following the column vector ι  has all its elements equal to 1, its order being clear from 
the context. 

3.1 Row Totals 

Let us form the vector Yι  which is, once observed, a time series on ultimate aggregate 
loss for the m loss years. Well-known approaches for the analysis of such a series can be 
borrowed from econometrics and time series analysis. For the mean a linear model 
suggests itself and the covariance matrix may be inspired by autoregressive and/or 
moving average models. The volumes w enter as a diagonal matrix W defined as: 
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This also introduces the suffix ∆ notation due to THEIL (1983) to indicate the diagonal 
matrix reshaping of a column vector, which will be used later. We arrive at the 
following specification for the mean and the covariance: 
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Here Xβ shapes the linear model through an m×k matrix X and k parameters in β. The 
m×m matrix Ω is generic for the ARMA form. Confining ourselves to AR forms, the 
case of first order autocorrelation corresponds with: 
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Higher order autocorrelations are easily handled through the inverse of  Ω, using results 
originating with SIDDIQUI (1958) as well as ANDERSON and MENTZ (1980). For the vector 
of ultimate loss ratios, the foregoing implies 

Ω== −− 211 )(                    )( σιβι YWXYW VE  

When β boiles down to a scalar, X becomes the column vector ι  and the the time series 
models a stationary loss ratio proces. 

 

3.2 Column Totals 

The row vector ι 'Y divided by its total gives the empirical form of the settlement 
duration in the form of a payment pattern. This payment pattern can be viewed as a 
probability vector nℜ∈π . This leads to the mean: 

1                                  )( =′∝′ πιπιE Y  

For the covariance matrix we borrow from the (negative) multinomial distribution. This 
leads to a general form: 

( ) 1                    )( −≥′+∝′ ∆ τπτππιV Y  

The sign of the correlations coincides with the  sign of τ . So when τ>0 large losses are 
indicative for other large losses, etc. This particular specification of the covariance 
matrix is insensitive for odd choices of the settlement duration intervals. Indeed let G be 
a grouping matrix . Then we  have ππ G=~ and 

ππτπππτππτππ ′+=′+=′′+ ∆∆∆
~~~)()()( GGGGG  

This property is important in order to handle a shifting upper tail. 

 

3.3 Joint Specification 

The foregoing specifications are compatible with the following form for the mean 
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πβE ′= )()( WXY  

which emphasises the rank-1 structure of this expectation. Following chapter 2 in 
MAGNUS and NEUDECKER (1999) this can be rewritten, using the Kronecker product of a 
matrix, in vectorized form as: 

βπE )()vec( WXY ⊗=  

which emphasises the linearity in β. For the covariance matrix we get: 

WWY Ω⊗′+= ∆ )()vec( 2 πτππσV  
 

Observe the different treatment of the direction of loss time and settlement duration 
time, as compared with the chain-ladder method.  
 

3.4 Final Joint Specification 

Using the selection matrices S1 and S2 we get for the mean of y1 and y2: 
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Observe that the auxiliary matrices Z1 and Z2 depend on the parameters in π. Likewise 
we get for the covariance matrix: 

[ ] 2,1,                    )(

)vec(
2221

12112

2

1

2

1

2

1

=′Ω⊗′+=









=

′
















=









∆ jiπτππ

σVV

jiij SWWSC

CC
CC

S
S

Y
S
S

y
y

 

The auxiliary matrices Cij depend, in addition to the parameters in π, also on τ and the 
parameters in Ω. We remark that, for prediction purposes, the selection matrix S2 may 
be collapsed to a grouping matrix or more general any matrix defining appropriate 
(discounted) aggregates. Likewise the selection matrix S1 may also have aspects of a 
grouping matrix when certain elements of Y are observed in grouped form. What 
matters in the foregoing are the linear transformation aspects. 

 

3.5 Conditional Specification 

Let us denote all unknown parameters to be estimated as ζ. The mean and covariance of 
y2 conditional on y1 and ζζζζ are given as: 
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These are classical formulae. See for instance page 522 in RAO (1973). The auxiliary 
vector µ and matrix Ψ with elements as function of the parameters in ζ are for later use. 

 

4. PAYMENT PATTERN IN CONTINUOUS TIME 

The payment pattern as modelled by the probability vector π could be subject to 
parameter estimation. This amounts to n−1 free parameters for a discrete time payment 
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pattern with finite horizon and as a result no uppertail. This model has its merits. 
However, when n becomes large the estimated pattern of π may become erratic whereas 
a smooth pattern is likely to be the actuarial a priori view. Furthermore, an upper tail 
may be more realistic. To this end we imagine the payment pattern to coincide with 
settlement time duration. It has a density and distribution depending on a few 
parameters η: 
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Examples of potential useful densities are Weibull, lognormal, gamma, inverse 
Gaussian, etc. De discretized probabilities π result as the solution of the linear system: 
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This average of the cumulative distribution is due to the difference between loss 
occurrences at the beginning of the loss year and towards the end of the loss year. An 
implicit assumption here is that loss occurrences are uniformly distributed within the 
year. We illustrate the foregoing with exponentially distributed settlement duration. In 
that case we have )exp()|( ηηη ttg −=  and π results as: 
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This is a geometric distribution with a deflated first probability. The appearance of such 
an averaged cumulative distribution is not new. In the econometric topic of distributed 
lag analysis THEIL and STERN (1963) used a simple Erlang density given by 

)exp()|( 2 ηηη tttg −=  where similar averaged integrals occur. For a survey on distributed 
lags, see GRILICHES (1967). 

The empirical modelling of the payment pattern may need a multimodal density. In that 
case a mixture of basic densities is an option. Observe that for most densities the 
average of the cumulative distribution requires numerical integration.  
 

5. ASPECTS OF PARAMETER ESTIMATION 

The data available for parameter estimation are stored in the r1 elements of y1. We 
remember the mean and covariance as: 
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Minus the logarithm of the likelihood function can be written as: 
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where, for notational simplicity, all indices 1 have been suppressed. Optimization with 
respect to β and σ conditional on the other parameters gives rise to the following closed 
form expressions: 

( ) rQ /ˆ                         ˆ 111 =′′= −−− σβ yCZZCZ  
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where Q is a quadratic form given by: 
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The estimation criterion after concentrating out β and σ boiles down to: 

2
lndetlnln * QrL +=− C  

Minimization of this estimation criterion with respect to the remaining unknown 
parameters, needs numerical optimization. In generaly this is a straightforward matter. 
When the modelling of the payment pattern π requires mixtures, it becomes more 
delicate. Local optima are a possibility and these need care. See page 742-743 in 
QUANDT (1983). At the minimal stationary point, the implied estimates for β and σ can 
be derived. The Hessian matrix of the original minus loglikelihood function at this 
optimum may be derived by numerical differentation. The inverse of this Hessian gives 
an approximation for the covariance matrix of the parameter estimator. We denote this 
covariance matrix as Φ. In a Bayesian way we may state that the posterior density for 
the parameters ζ is approximately normal with mean and covariance matrix: 

Φ≈≈ )(                           ˆ)( ζζζ VE  

These inferential results not only play a role at the modelling stage but also when 
accounting for the impact of parameter estimation uncertainty on the predictive 
distribution of y2. 
 

6. PREDICTIVE DISTRIBUTION 

Remembering the mean and covariance of y2 conditional on y1 and ζ: 
)(),|(                     )(),|( 1212 ζζζµζ Ψ== yyyy VE  

we write the matrix of cross-moments as: 
)()()(),|( 122 ζµζµζζ ′+Ψ=′ yyyE   

We linearize µ(ζ) about the maximum likelihood estimate 
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where J is the Jacobian matrix: 
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The columns of J corresponding with the elements of β and σ allow simple closed form 
expressions: 
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The other columns of J are most easily derived by numerical differentiation. 
Remembering the mean and covariance of ζζζζ  we marginalize the vector of means and 
matrix of cross-moments of y2: 
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from which the covariance matrix results as 

JJyy ′Φ+Ψ≈ )ˆ()|( 12 ζV   

This covariance matrix is additive in stochastic process uncertainty and parameter 
estimation uncertainty. When S2 is a matrix consisting of a single row, y2 will be scalar 
and the share of estimation uncertainty in total uncertainty results as: 

JJ
JJ

′Φ+Ψ
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The predictive probability distribution of y2 is approximately multivariate Student with 
the foregoing mean and covariance matrix. The degrees of freedom being informally 
derived as the number of observations r1 minus the number of estimated parameters in 
the expected value specification, that is β and the free parameters in π.  

Once we have avalaible this predictive distribution, its mean generates an unbiased 
statistical forecast whereas an upper percentile will correspond with a prudent actuarial 
provision. Ruin-like percentiles bring solvency margins into perspective. 

 
 

REFERENCES 

ANDERSON, T.W. and R.P. MENTZ (1980). On the structure of the likelihood function of 
autoregressive and moving average models. Journal of Time Series Analysis 1 83-94. 

GRILICHES, Z. (1967). Distributed lags: a survey. Econometrica 35 16-49. 

GRILICHES, Z. and M.D. INTRILIGATOR (1983). Handbook of Econometrics, Volume 1. 
Amsterdam: North-Holland Publishing Company. 

MAGNUS, J.R. and H. NEUDECKER (1999). Matrix Differential Calculus with 
Applications in Statistics and Econometrics. Chichester: John Wiley & Sons. 

RAO, C.R. (1973). Linear Statistical Inference and its Applications. 
New York: John Wiley & Sons. 

SIDDIQUI, M.M. (1958). On the inversion of the sample covariance matrix in a stationary 
autoregressive process. The Annals of Mathematical Statistics 29 585-588. 

THEIL, H. (1983). Linear algebra and matrix methods in econometrics. 
Chapter 1 in GRILICHES and INTRILIGATOR (1983). 

THEIL, H. and R.M. STERN (1960). A simple unimodal lag distribution. Metroeconomica 
12 111-119. 

QUANDT, R.E. (1983). Computational Problems and Methods. 
Chapter 12 in GRILICHES and INTRILIGATOR (1983).  

 


