#### **27th** International Congress of Actuaries



# Measurement of Risk, Solvency Requirements and Allocation of Capital within Financial Conglomerates

Harry Panjer, Canada

# Purpose of this talk

- Examine overall approaches to capital needs;
- Suggest an overall approach;
- Suggest a new methodology;
- Examine allocation question;
- Examples.

# A New Millennium. New Challenge for Actuarie

# Solvency: Top-down or Bottom-up?

- How should *total solvency requirement* be determined:
  - As sum of parts for each policy?
    - with some adjustment for correlation?
    - with some for adjustment for stress testing?
    - In aggregate over whole company?
      - With mechanism for allocation
        - to each line of business?
        - to each policy type?
        - to each individual policy?
      - This is a capital allocation problem

# Bottom-up

- Traditional method in insurance:
  - margins contained in liability reserves through conservative assumptions
  - specific formulas for additional capital for specific risk exposures (e.g. RBC)
  - sensitivity and stress testing
  - Little consideration of non-product risk

# Top-down

- Focus on solvency of entire enterprise
  - Could include insurance and other companies
  - Can include both product and non-product risks
  - Meets needs of insurance regulator; i.e. protection of policyholders
  - But it requires
    - Looking at entire enterprise
    - Sophisticated models
    - Computer modelling and simulation

# Top-down

- Traditional VaR models build up large model from components using *multivariate Normal* distribution
  - Correlation between parts can be reflected
  - But complicated *interactions* may not be adequately captured
- Integrated (internal) modelling is likely necessary
  - Exogenous factors (economic scenario generator; e.g. Wilkie model)
  - Company-specific factors (e.g. book of business)

# Solvency measures

- Total balance sheet requirement is some amount? Usually actuaries think in terms of the *probability of ruin* or some other measure.
  - VaR uses quantile (e.g. 99%) meaning ruin probability is 1%
  - If quantile is used, how to allocate capital to all business units?
    - Need a measurement tool that will allocate capital in a sensible way (and also give corresponding quantiles for each risk)

# Criteria for Capital Allocation

- Consider a number of risks
- The total capital requirement for the combined risks should be smaller than sum for each free-standing risk.
  - Otherwise, there is an incentive to decompose company.
- The capital allocation to each risk should be smaller than the capital requirement for the same free-standing risk.
  - Otherwise, it may be advantageous to pull out specific risks from company.

# Criteria for Capital Allocation (cont'd)

- Sum of capital allocation for each risk should be exactly the capital for the total risk.
- Allocation should be invariant under all decompositions of enterprise.
- Identical risks should have same allocation.
- Allocation for comonotonic risks should be additive.

#### A New Millennium. New Challenge for Actuarie

### Some formulas

Consider sum of all loss random variables for the *n* business units

$$X = X_1 + X_2 + \ldots + X_n$$

- Each X<sub>j</sub> can be positive (loss) or negative (gain).
- Each X<sub>j</sub> represents PV of losses for all (or some) future years.

# Recommendation for total balance sheet requirement

Use TailVaR (CTE) as risk measure
 Find x<sub>q</sub> satisfying

$$\Pr\{X > x_q\} = 1 - q$$

where X represents loss to the insurer. – Total balance sheet requirement is

 $\mathrm{E}\left[X|X > x_q\right]$ 

### TailVaR

TailVaR = E
$$[X|X > x_q]$$
  
=  $x_q + E[X - x_q|X > x_q]$ 

= VaR + expected "shortfall"

- Expected shortfall is the net stop-loss premium for excess losses given that a stoploss claim occurs.
- The trigger point Xq can be thought of as the point at which the current assets are just sufficient (on average) to cover current liabilities.

# Properties of TailVar

- TailVar is a *coherent* risk measure.
  - Subadditive. Capital for two risks is not larger than for each risk separately.
  - Risk with no uncertainty requires no extra capital.
  - Invariant under location and scale tranformations, e.g. changing currencies.
  - Additive for comonotonic risks.

# Capital allocation under TailVar

 Total loss for the enterprise is sum of losses for each risk

$$X = X_1 + X_2 + \ldots + X_n$$

- Total balance sheet requirement for risk j is  $E[X_j|X > x_q]$
- Allocation to each line of business is the expected contribution to the "shortfall" when the trigger point is exceeded.

# Properties

- Capital requirement is this allocation minus reserves, however calculated.
- Allocation incorporates all sources of variation and correlations.
- Allocation is invariant under all methods of subdivision of the company.
- Allocation is easily calculated as a part of simulation exercise.
- TailVar is a coherent risk measure.

# Numerical Example

 Consider two identical risks, each Normally distributed with mean 0 and variance 1. For each risk separately:

| Prob        | Total Bal | VaR   | Expected  |
|-------------|-----------|-------|-----------|
| 1 <i>-q</i> | Reqt      | $x_q$ | Shortfall |
| 10.00%      | 1.75      | 1.28  | 0.47      |
| 1.00%       | 2.67      | 2.33  | 0.34      |
| 0.10%       | 3.37      | 3.09  | 0.28      |
| 0.01%       | 3.95      | 3.72  | 0.23      |

### Example (cont'd)

| Prob | Prob Correlation        |      | Total Balance | Allocation   |  |  |
|------|-------------------------|------|---------------|--------------|--|--|
| 1-q  | <i>1-q</i> Corefficient |      | Sheet Reqt    | to each risk |  |  |
| 1%   | 100%                    | 4.65 | 5.33          | 2.67         |  |  |
| 1%   | 75%                     | 4.35 | 4.99          | 2.49         |  |  |
| 1%   | 50%                     | 4.03 | 4.62          | 2.31         |  |  |
| 1%   | 25%                     | 3.68 | 4.21          | 2.11         |  |  |
| 1%   | 0%                      | 3.29 | 3.77          | 1.88         |  |  |
| 1%   | -25%                    | 2.85 | 3.26          | 1.63         |  |  |
| 1%   | -50%                    | 2.33 | 2.67          | 1.33         |  |  |
| 1%   | -75%                    | 1.64 | 1.88          | 0.94         |  |  |
| 1%   | -100%                   | 0.00 | 0.00          | 0.00         |  |  |

New Millennum. New Challenge for Actuarie

# Analytic Results for Normal Distribution

 $K = E[X|X > x_q] = \mu + a\sigma^2$ where  $a = \frac{\phi(x_q)}{1 - \Phi(x_q)}.$ 

#### A New Millennium. New Challenge for Actuarie

# Analytic Results for Multivariate Normal Model

- It is sufficient to consider only the case with
  n = 2 by combining all the risks, except the first one, into the random variable X<sub>2</sub>.
- Then

$$X = X_1 + X_2$$

and

$$K_{1} = E[X_{1}|X > x_{q}] = \mu_{1} + a\sigma_{1}^{2}(1 + \rho_{1,2}\frac{\sigma_{2}}{\sigma})$$

# Analytic Results for Multivariate Normal Model

• If  $\rho_{1,2} < 0$ then  $K_1 = E[X_1 | X > x_q] < \mu_1 + a\sigma_1^2$ 

 $\rho_{1,2} < -\frac{\sigma_1}{\sigma_2}$ 

 $K_1 = E[X_1 | X > x_q] < \mu_1$ 

• If

then

#### **Numerical Illustration**

| Mean <sub>1</sub> | StdDev <sub>1</sub> | <i>Mean</i> ₂ | StdDev <sub>2</sub> | Corr | Prob | TailVaR | Pr(TailVaR) | Alloc <sub>1</sub> | Pr(Alloc <sub>1</sub> ) |      | Pr(Alloc <sub>2</sub> ) |
|-------------------|---------------------|---------------|---------------------|------|------|---------|-------------|--------------------|-------------------------|------|-------------------------|
| 0                 | 1                   | 0             | 1                   | 0    | 0.99 | 3.77    | 0.996       | 50%                | 0.97                    | 50%  | 0.97                    |
| 0                 | 1                   | 0             | 1                   | 0.5  | 0.99 | 4.62    | 0.996       | 50%                | 0.99                    | 50%  | 0.99                    |
| 0                 | 1                   | 0             | 1                   | 1    | 0.99 | 5.33    | 0.996       | 50%                | 0.996                   | 50%  | 0.996                   |
|                   |                     |               |                     |      |      |         |             |                    |                         |      |                         |
| 0                 | 1                   | 0             | 1                   | -0.5 | 0.99 | 2.67    | 0.996       | 50%                | 0.909                   | 50%  | 0.909                   |
| 0                 | 1                   | 0             | 1                   | -1   | 0.99 | 0       | 0.5         | 50%                | 0.5                     | 50%  | 0.5                     |
| 0                 | 1                   | 0             | 2                   | 0.5  | 0.99 | 7.05    | 0.996       | 29%                | 0.978                   | 71%  | 0.994                   |
| 0                 | 1                   | 0             | 4                   | 0.5  | 0.99 | 12.21   | 0.996       | 14%                | 0.959                   | 86%  | 0.995                   |
| 0                 | 2                   | 0             | 4                   | 0.5  | 0.99 | 14.1    | 0.996       | 29%                | 0.978                   | 71%  | 0.994                   |
| 0                 | 1                   | 0             | 2                   | -0.5 | 0.99 | 4.62    | 0.996       | 0%                 | 0.5                     | 100% | 0.99                    |
| 0                 | 1                   | 0             | 4                   | -0.5 | 0.99 | 9.61    | 0.996       | -8%                | 0.959                   | 108% | 0.995                   |
| 0                 | 2                   | 0             | 4                   | -0.5 | 0.99 | 9.23    | 0.996       | 0%                 | 0.978                   | 100% | 0.99                    |



# Analytic Results for Multivariate Normal Model

• For *n* risks:

$$K_{j} = E[X_{j}|X > x_{q}] = \mu_{j} + a\sigma_{j}^{2}(1 + \rho_{j,-j}\frac{\sigma_{-j}}{\sigma_{j}})$$

or:

$$K_{j} - \mu_{j} = \rho_{j,X} \frac{\sigma_{j}}{\sigma_{X}} (K - \mu)$$

New Challenge for Actuarie

# Analytic Results for Multivariate Normal Model

• Finally,

$$K_j - \mu_j = \beta_j (K - \mu)$$

This looks like CAPM with "internal" beta

$$\beta_{j} = \rho_{j,X} \frac{\sigma_{j}}{\sigma_{X}}$$

A New Millennium. New Challenge for Actuarie

#### Example - A Real Case

|                 |         |          |        |         | Correla | ntion m | atrix   |        |        |         |
|-----------------|---------|----------|--------|---------|---------|---------|---------|--------|--------|---------|
| Product         | 1       | 2        | 3      | 4       | 5       | 6       | 7       | 8      | 9      | 10      |
| 1               | 1       | -0.00    | 0.12   | -0.02   | 0.18    | -0.26   | -0.12   | 0.11   | 0.08   | -0.03   |
| 2               | -0.00   | 1        | 0.05   | 0.27    | 0.02    | 0.08    | 0.16    | -0.21  | -0.17  | -0.15   |
| 3               | 0.12    | 0.05     | 1      | 0.01    | -0.11   | 0.10    | 0.03    | -0.12  | -0.09  | -0.12   |
| 4               | -0.02   | 0.27     | 0.01   | 1       | 0.22    | 0.05    | 0.09    | -0.11  | 0.13   | -0.23   |
| 5               | 0.18    | 0.02     | -0.11  | 0.22    | 1       | -0.11   | 0.01    | -0.03  | 0.14   | -0.01   |
| 6               | -0.26   | 0.08     | 0.10   | 0.05    | -0.11   | 1       | 0.07    | -0.09  | -0.46  | -0.16   |
| 7               | -0.12   | 0.16     | 0.03   | 0.09    | 0.01    | 0.07    | 1       | -0.25  | 0.08   | 0.14    |
| 8               | 0.11    | -0.21    | -0.12  | -0.11   | -0.03   | -0.09   | -0.25   | 1      | -0.16  | -0.16   |
| . 9             | 0.08    | -0.17    | -0.09  | 0.13    | 0.14    | -0.46   | 0.08    | -0.16  | 1      | 0.21    |
| 10              | -0.03   | -0.15    | -0.12  | -0.23   | -0.01   | -0.16   | 0.14    | -0.16  | 0.21   | 1       |
| Corr. with Sum  | 0.25    | 0.69     | 0.09   | 0.36    | 0.16    | 0.40    | 0.39    | -0.18  | -0.07  | 0.18    |
| SD (Loss Ratio) | 7.47%   | 3.73%    | 16.12% | 2.51%   | 82.14%  | 8.05%   | 3.36%   | 11.85% | 12.29% | 5.17%   |
| Premium in\$MM  | \$36.00 | \$120.40 | \$1.30 | \$52.42 | \$0.70  | \$48.09 | \$47.40 | \$8.08 | \$8.64 | \$50.15 |
| SD in \$M M     | \$2.69  | \$4.49   | \$0.21 | \$1.32  | \$0.57  | \$3.87  | \$1.59  | \$0.96 | \$1.06 | \$2.59  |

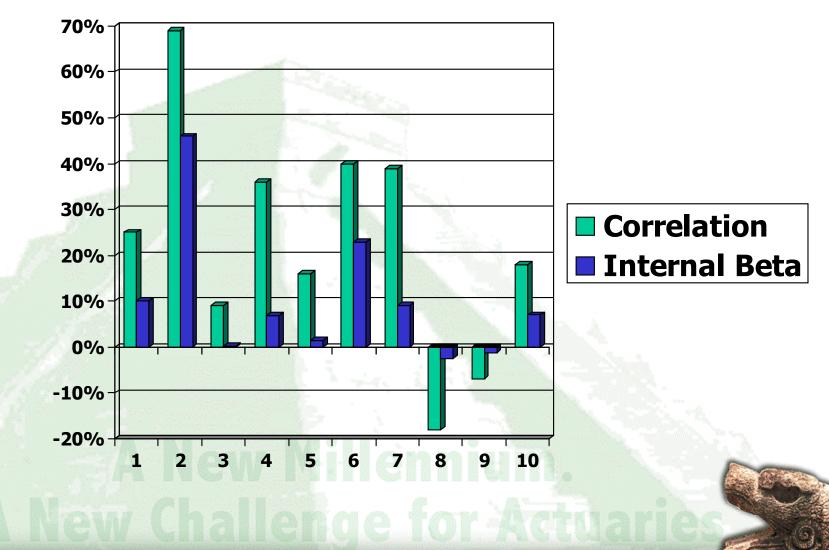
New Millennium. New Challenge for Actuarie

# Results for each line and combined portfolio

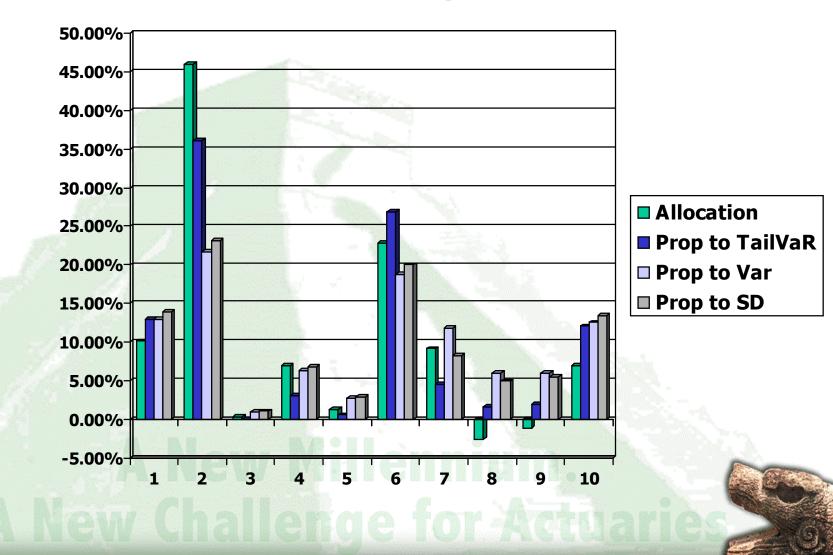
| Line  | Mean   | 99.865% | Capital |  |
|-------|--------|---------|---------|--|
| 1     | 25.69  | 33.75   | 8.06    |  |
| 2     | 37.84  | 51.30   | 13.46   |  |
| 3     | 0.85   | 1.48    | 0.63    |  |
| 4     | 12.70  | 16.65   | 3.95    |  |
| 5     | 0.15   | 1.87    | 1.72    |  |
| 6     | 24.05  | 35.67   | 11.62   |  |
| 7     | 14.41  | 21.73   | 7.32    |  |
| 8     | 4.49   | 8.24    | 3.75    |  |
| 9     | 4.39   | 8.11    | 3.72    |  |
| 10    | 9.56   | 17.35   | 7.79    |  |
|       |        |         |         |  |
| Total | 134.13 | 196.15  | 62.02   |  |

| All lines | Mean   | 99.865% | Capital |
|-----------|--------|---------|---------|
| combined  | 134.13 | 161.39  | 27.24   |

#### **Correlations and Internal Beta**



#### **Allocation Comparisons**



# "Regulatory" price of risk

- Consider the standard deviation as the unit of risk.
- The regulatory price of risk is the amount of capital required for each risk unit:  $\underline{K_j \mu_j}$

 $r_j - r_f$ 

 $\sigma_{i}$ 

This is analogous in the one-period CAPM to

# "Regulatory" price of risk

| ſ | Line | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8     | 9     | 10   |
|---|------|------|------|------|------|------|------|------|-------|-------|------|
| Ī | Pre  | 3.00 | 3.00 | 3.01 | 3.00 | 3.00 | 3.00 | 4.59 | 3.92  | 3.50  | 3.00 |
|   | Post | 1.03 | 2.79 | 0.37 | 1.44 | 0.64 | 1.61 | 1.56 | -0.73 | -0.30 | 0.74 |

#### New Millennium. New Challenge for Actuarie

#### Conclusions

- Capital should be allocated exactly as would be done by the CAPM, except that the total capital is based on TailVaR while CAPM is based on variance.
- Methodology provides a coherent framework for BOTH determination of total capital as well as allocation to business units.
- Note: Other methods exist, but are often based on optimization of some objective function. None use our approach.

### Implementation issues

- This top-down approach requires major computing resources in practice:
  - Simulation models with some analytics.
  - Consistent approach with trading risk management practices used currently.
- Long term-direction, but with coherent theoretical framework.
  - Applicable to any combination of institutions in a conglomerate.
  - Useful for both regulation and internal risk management.

# Further ongoing work

- Sensitivity to non-normality
  - Especially if some risks have much heavier tails than others
- Allocation of capital to each future year in the horizon
  - Can be done

# A New Millennium. New Challenge for Actuarie