A RISK MEASURE BEYOND COHERENCE

Shaun S. Wang, PhD, FCAS SCOR March 2002, Cuncun, Mexico

Risk Measure

- To decide capital requirement for a given risk portfolio
- Impacts "return-on-capital" calculation
- Different perspectives
 - management & shareholder
 - regulator & policy-holder

Value-at-Risk

- $\operatorname{VaR}(\alpha) = \operatorname{Min} \{x \mid F(x) \ge \alpha\}$
 - $-\alpha$ threshold, e.g., 99% or 95%.
 - A ruin concept to actuaries
- Widely used in banking industry for setting capital requirements
- Management concerns mostly survival probability

Coherence Rules

Artzner, Delbaen, Eber, and Heath (99) proposed consistency rules from *regulatory perspective*:

- 1. $\rho(X+Y) \leq \rho(X) + \rho(Y)$.
- 2. If $X \le Y$, $\rho(X) \le \rho(Y)$.
- 3. For b > 0, $\rho(bX) = b\rho(X)$.
- 4. For constant c, $\rho(X+c) = \rho(X) + c$.

Tail-VAR or CTE

- Artzner et al showed that VaR is not coherent
- They introduced Tail-VaR or Conditional Tail Expectation (CTE)

 $CTE(\alpha) = VaR(\alpha) + \frac{Pr\{X > VaR(\alpha)\}}{1 - \alpha} \cdot E[X - VaR(\alpha) | X > VaR(\alpha)]$

Myth about Tail-VaR

- Researchers/ practitioners have shown tremendous interests in Tail-VaR !!
- Being talked about *so* frequently *that* it seemed to be **the only** coherent measure.
- *Did you know the truth?* Many other riskmeasures are coherent (and beyond).

Distortion Measure

- Let $g:[0,1] \rightarrow [0,1]$ be increasing with g(0)=0 and g(1)=1.
- Let F(x) be the CDF for the shortfall
- Define distortion: $F^*(x) = g[F(x)].$
- Define risk-measure:
- $\rho(X) = \mathrm{E}^*[X].$
- Theorem: ρ(X) is coherent when "g" is continuous.

Example

• <u>VaR</u> non-coherent since "g" discontinuous

 $g(u) = \begin{cases} 0, & \text{when } u < \alpha, \\ 1, & \text{when } u \ge \alpha, \end{cases}$

• <u>Tail-VaR</u> coherent since "g" continuous. But "g" non-differentiable, nor 1-to-1.

$$g(u) = \begin{cases} 0, & \text{when } u < \alpha, \\ \frac{u - \alpha}{1 - \alpha}, & \text{when } u \ge \alpha, \end{cases}$$

A Smooth Distortion

- Introduce $g(u) = \Phi[\Phi^{-1}(u) \lambda]$
- "g" is differentiable and 1-to-1
- The unique distortion that recovers CAPM & Black-Scholes (Wang, 2000 JRI)
- A new result of Buhlmann (1980 ASTIN) equilibrium pricing model.

A New Risk Measure

- For threshold α , let $\lambda = \Phi^{-1}(\alpha)$ be the 100 α -th standard normal percentile.
- Let $F^*(x) = \Phi[\Phi^{-1}(F(x)) \lambda].$
- Define risk measure as the mean value under F*

 $WT(\alpha) = E^*[X].$

WT-measure of Normal Risk

- When *F* is normal(μ,σ^2), $F^*(x) = \Phi[\Phi^{-1}(F(x)) \lambda]$ is normal($\mu + \lambda \sigma, \sigma^2$)
- WT(α) identical to VaR(α), the 100 α -th percentile.
- This fact gives a basis for selecting the threshold α .

WT-measure of lognormal risk

- If $\ln(X) \sim \operatorname{normal}(\mu, \sigma^2)$, under distortion $g(u) = \Phi[\Phi^{-1}(u) - \lambda]$ we get $\ln(X^*) \sim \operatorname{normal}(\mu + \lambda \sigma, \sigma^2)$
- WT(α)= exp(μ + $\lambda\sigma$ + $\sigma^2/2$) with $\lambda = \Phi^{-1}(\alpha)$.
- WT(α) corresponds to percentile $\Phi(\lambda + \sigma/2)$, higher than $\alpha = \Phi(\lambda)$.

Ex. 1

Portfolio A		Portfolio B	
Loss x	f(x)	Loss x	f(x)
0	0.6	0	0.6
1	0.375	1	0.39
5	0.025	11	0.01

Portfolio	Mean	CTE(0.95)	WT(0.95)
Α	0.5	3.00	2.42
вА	0.5	3.00	3.40
New	Challe	nae for	Actuari

Ex. 2

	Case A	Case B
Scenario	loss \$	loss \$
#1	1	0
#2	2	0
	• • •	•••
#9	9	0
#10	10	10
CTE(0.95)	10	10
WT(0.95)	9.12	6.42
Mew Lha		

Conclusion

- There are many *coherent* risk-measures other than Tail-VaR
- WT-measure is a good alternative to Tail-VaR
- It is better to look at the whole distribution of short-fall.

Feedback?

Swang@scor.com

Shaunwang@attbi.com