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Abstract

In this paper we deal with the problem of valuing the surrender op-
tion embedded in a participating life insurance policy with a minimum
interest rate guaranteed. This feature is an American-style put option
that enables the policyholder to sell back the contract to the insurer at
the surrender value. By means of a recursive binomial tree à la Cox,
Ross and Rubinstein (1979) we compute, first of all, the total price of
the contract, which includes also a “bonus” option. Then this price is
split into the value of three components: the basic contract, the bonus
option and the surrender option. The numerical implementation of the
model allows us to catch some comparative statics properties and to
tackle the problem of suitably fixing the contractual parameters in or-
der to obtain the premium computed by insurance companies according
to standard actuarial practice.

1 Introduction

Life insurance contracts and pension plans are often very complex contingent-
claims that embed several financial options, both of European and of American
style.

A typical example of European (put) option is implied by the maturity
guarantees present in most types of equity-linked life insurance products. The
importance of an accurate valuation of such guarantees is witnessed by a very
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large number of papers devoted to this issue that have followed the pioneering
work by Brennan and Schwartz (1976, 1979a, 1979b) and Boyle and Schwartz
(1977). For a categorization of the literature on equity-linked life insurance
contracts with minimum guarantees see, e.g., Bacinello and Persson (1998).

Another example of European (call) option is implied by the bonus mech-
anism that characterizes policies with profits. This feature has been studied,
for instance, by Briys and de Varenne (1997), Grosen and Jørgensen (2000,
2001), Miltersen and Persson (2000), and Bacinello (2000).

In particular, Bacinello (2000) analyses a life insurance endowment policy
with a minimum interest rate guaranteed in which both the benefit and the
periodical premiums are annually adjusted according to the performance of a
special investment portfolio. Under the Black and Scholes (1973) framework
Bacinello (2000) expresses, first of all, the fair price of such a policy in terms
of one-year call options, and then derives a very simple closed-form relation
that characterizes fair contracts. However, as a concluding remark, Bacinello
(2000) points out that an important issue connected to participating policies
which has not been dealt with in the paper is constituted by the presence of
a surrender option. A surrender option is an American-style put option that
entitles its owner (the policyholder) to sell back the contract to the issuer (the
insurer) at the surrender value. The fair valuation of such an option, as well
as an accurate assessment of the surrender values, are clearly crucial topics in
the management of a life insurance company, both on the solvency and on the
competitiveness side.

The aim of the present paper is just to fill this gap. More in detail, we con-
sider the single-premium version of the contract analysed by Bacinello (2000)
and define, first of all, a rule for computing the surrender values, which intro-
duces an additional contractual parameter in the model. Then, by modelling
the assets à la Cox, Ross and Rubinstein (1979), we obtain a recursive al-
gorithm for computing the fair price of the whole contract. Of course, this
algorithm explicitly uses death and survival probabilities, since the contract
can be surrendered only if it has not been surrendered yet and the insured is
still alive. As like as in Bacinello (2000), the fair price of the corresponding
participating contract without the surrender option is expressible in closed-
form, so that the value of the surrender option can be obtained residually.
In this way the total price is split into the values of three components: the
basic contract (i.e., without profits and surrender), the bonus option, and the
surrender option. The numerical implementation of the model with a Pentium
III 800 MHz shows that the results obtained can be quite accurate if the term
of the contract is not very long. Moreover, the problem of choosing a set of
contractual parameters that lead to a given level for the premium emphasized
by Bacinello (2000) can also be numerically solved within the same model.

As far as we are aware, the problem of valuing the surrender option em-
bedded in life insurance products has already been tackled, under different
assumptions and by various methodologies, by Albizzati and Geman (1994),
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Grosen and Jørgensen (1997, 2000), and Jensen, Jørgensen and Grosen (2001).
Albizzati and Geman (1994) consider a financial contract with a guaran-

teed interest rate (“contrat à taux garanti”) proportional to the initial yield on
a zero-coupon bond with the same maturity. Taking into account both initial
expenses and taxes, Albizzati and Geman (1994) compare, at any given future
date, the (deterministic) final value of the contract with the final value of a new
one, having the same maturity and acquired by reinvesting the (guaranteed)
surrender value at the prevailing market conditions. The financial uncertainty
is then given by the evolution of the price of a zero-coupon bond with a fixed
maturity. In particular, under an Heath, Jarrow and Morton (1992) model
with deterministic volatility, Albizzati and Geman (1994) derive a closed-form
expression for the price of a European-style surrender option (i.e., of an option
exercisable only at a fixed date) and then use pooling arguments for “averag-
ing” this price with respect to all possible exercise dates.

Grosen and Jørgensen (1997) consider instead a unit-linked contract with
a minimum interest rate guaranteed. This contract can be surrendered at any
time before its maturity, and the minimum guarantee is effective also in case of
early termination. Under the Black and Scholes (1973) framework, Grosen and
Jørgensen (1997) express the total value of the minimum guarantee and the
surrender option as the price of a standard American put option in an adjusted
Black and Scholes (1973) economy in which the market rate is replaced by its
spread over the minimum guaranteed interest rate.

Finally, a participating contract embedding a surrender option is also anal-
ysed, in the Black and Scholes (1973) framework, and priced by means of a
“Monte Carlo + binomial lattice” approach in Grosen and Jørgensen (2000),
by a finite difference approach in Jensen, Jørgensen and Grosen (2001).

The present paper is organized as follows. In Section 2 we describe the
structure of the contract and define all the liabilities that the insurer has to
face. Section 3 is devoted to the presentation of our valuation framework. In
Section 4 we derive the fair value of the contract and of all its components
describing, in particular, our recursive algorithm. Section 5 is devoted to the
presentation of some numerical results that allow us i) to catch the compar-
ative statics properties of the model, ii) to discuss about the possibility of
suitably choosing the contractual parameters in order to obtain the premium
computed by insurance companies according to standard actuarial practice.
Finally, Section 6 concludes the paper hinting at some problems involved by
the extension of the model to periodical premium contracts.

2 The structure of the contract

Consider a life insurance endowment policy issued at time 0 and maturing T
years after (at time T ). As it is well known, under this contract the insurer
is obliged to pay a specified amount of money (benefit or sum insured) to the
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beneficiary if the insured dies within the term of the contract or survives the
maturity date. More precisely, we assume that, in case of death during the
t-th year of contract, the benefit is paid at the end of the year, i.e., at time t
(t = 1, ..., T ); otherwise it is paid at maturity T .

We denote by C1 the “initial” sum insured, payable in case of death during
the first year of contract, and by Ct the benefit payable at time t (t = 2, ..., T ).
While C1 is given, for t>1 Ct is contingent on the performance of a special
portfolio of assets (reference portfolio, henceforth). The insurer directly man-
ages this portfolio, and shares the profits with the policyholders. To see how
this profit-sharing is realized, we first introduce the following notation: i (≥ 0)
represents the annual compounded technical interest rate, gt is the rate of re-
turn on the reference portfolio during the t-th year of contract, and η, between
0 and 1, identifies a participation coefficient. At the end of each policy year
(except the last one), if the insured is still alive, the benefit is “adjusted” for
the subsequent year at a rate δt so defined:

δt = max

{
ηgt − i

1 + i
, 0

}
, t = 1, ..., T − 1. (1)

The following relation links then the benefits pertaining to consecutive
years:

Ct = Ct−1(1 + δt−1), t = 2, ..., T. (2)

Obviously, Ct can also be expressed directly, so that its path-dependence is
immediately perceptible:

Ct = C1

t−1∏
k=1

(1 + δk), t = 2, ..., T. (3)

We observe that it is standard, for insurance companies, to compute the
(net) single premium as the expected value, with respect to a suitable mor-
tality distribution, of the initial benefit C1 discounted with the technical rate
i. In this case a return at the rate i is credited to the policyholder since the
beginning. Then, taking into account the adjustment mechanism and disre-
garding the surrender possibility, the total return granted to the policyholder
during the t-th year of contract (except the year in which the benefit is paid)
is given by

(1 + i)(1 + δt)− 1 = max {i, ηgt} ,

so that i can be interpreted as a minimum interest rate guaranteed. Moreover,
if we consider the surrender option and the fact that the premium implic-
itly includes a compensation for it, we argue that the minimum interest rate
guaranteed is even greater than i.
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However, it must be pointed out that this interpretation of i is correct
only if the premium is computed as described above. If instead the premium
is different, for instance greater, we can still state that there is a minimum
guarantee provision in the contract since δt cannot be negative, but no more
that the total rate of return on the policy in a given year is bounded from
below by i. In particular, in the following section, we will neglect any kind
of interpretation for i and simply consider it a contractual parameter that
intervenes in the definition of the liabilities. We will then compute the fair
value of all the liabilities, and only in the numerical section we will discuss
about the problem of suitably choosing the contractual parameters in order
that the fair premium equals the one described above.

Coming now to the surrender conditions, we assume that surrender takes
place (if the contract is still in force) at the beginning of the year, just after
the announcement of the benefit for the coming year. Usually the surrender
value depends on the level of the benefit at the surrender date and on this
date as well, on maturity, sometimes also on the age attained by the insured,
and finally on one or more contractual parameters. For instance, it could be
the current benefit discounted from maturity to the surrender date with a
suitable rate, or a percentage of the mathematical reserve of the policy. In the
numerical section we will consider both these situations, in which there is only
one contractual parameter (the discount rate or, respectively, the percentage
to apply to the mathematical reserve). We denote this parameter by ρ, so that
the surrender value at the beginning of the (t+1)-th policy year (i.e., at time
t) can be represented as

Rt = f(Ct+1, t, T, x + t, ρ), t = 0, ..., T − 1, (4)

where the function f will be specified in Section 5.
We remark that, according to our assumptions, surrender can take place

also at time 0, just after the payment of the single premium. However, if
the contract is fairly priced (in particular, as we will see in the next section,
if arbitrage opportunities are ruled out of the market), R0 is obviously less
than the premium, so that this is not an actual possibility for a rational and
non-satiated policyholder. Moreover, the surrender rule f and the contractual
parameter ρ can be fixed in such a way that the surrender values are penalizing
(to different degrees) or not. In this connection, we point out that a too high
level of penalization does not at all compromise the fairness of the contract
since it very likely implies a zero-value for the surrender option, but it could
seriously jeopardize the marketability of the policy. Therefore, as we have
already stated in Section 1, the problem of choosing an adequate level for the
contractual parameter ρ (given the surrender rule f) is also a crucial topic in
the design of the product under scrutiny.
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3 The valuation framework

The contract described in the previous section is a typical example of claim
contingent both on mortality and on financial risk. While the mortality risk
determines the moment in which the benefit is due, the financial risk affects
both the amount of the benefit and the surrender decision. We assume, in fact,
that financial and insurance markets are perfectly competitive, frictionless (in
particular no taxes, no transaction costs such as, e.g., expenses and relative
loadings of the insurance premiums, short-sale allowed), and free of arbitrage
opportunities. Moreover, all the agents are supposed to be rational and non-
satiated, and to share the same information. Therefore, in this framework,
the surrender decision can only be the consequence of a rational choice, taken
after comparison, at any time, between the total value of the policy (including
the option of surrendering it in the future) and the surrender value.

As it is standard in actuarial practice, we assume that mortality does
not affect (and is not affected by) the financial risk, and that the mortality
probabilities depend only on the age of the insured. We denote by x the
entry age (at time 0), by tpy the probability that the insured is still alive at
age y+t conditioned on the event that he/she is alive at age y, by h/tqy the
probability that the insured dies between ages y+h and y+h+t being alive at
age y, and set py=1py and qy=0/1qy. We assume that these probabilities are
extracted from a risk-neutral mortality measure, i.e., that all insurance prices
are computed as expected values with respect to this specific measure. If, in
particular, the insurance company is able to extremely diversify its portfolio
in such a way that mortality fluctuations are completely eliminated, then the
above probabilities coincide with the “true” ones. Otherwise, if mortality
fluctuations do occur, then the “true” probabilities are “adjusted” in such a
way that the premium, expressed as an expected value, is implicitly charged
by a safety loading which represents a compensation for accepting mortality
risk. In this case the adjusted probabilities derive from a change of measure,
as like as what happens in the Financial Economics environment; that is why
we have called them “risk-neutral”.

Coming now to the financial set-up, we assume that the rate of return
on risk-free assets is deterministic and constant, and denote by r the annual
compounded riskless rate. The financial risk which affects the policy under
scrutiny is then generated by a stochastic evolution of the rates of return on the
reference portfolio. In this connection, we assume that it is a well-diversified
portfolio, split into units, and that any kind of yield is immediately reinvested
and shared among all its units. Therefore the reinvested yields increase only
the unit-price of the portfolio but not the total number of units, that changes
when new investments or withdrawals are made.

These assumptions imply that the rates of return on the reference portfolio
are completely determined by the evolution of its unit price. Denoting by Gτ

this unit-price at time τ (≥ 0), we have then:
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gt =
Gt

Gt−1

− 1, t = 1, ..., T − 1. (5)

For describing the stochastic evolution of Gτ , we choose the discrete model by
Cox, Ross and Rubinstein (1979), universally acknowledged for its important
properties. In particular it may be seen either as an “exact” model under which
“exact” values for both European and American-style contingent-claims can
be computed, or as an approximation of the Black and Scholes (1973) model
to which it asymptotically converges.

More in detail, we divide each policy year into N subperiods of equal length,
let ∆=1/N , fix a volatility parameter σ>

√
∆ ln(1+r), set u=exp(σ

√
∆) and

d=1/u. Then we assume that Gτ can be observed at the discrete times
τ=t+h∆, t=0, 1, ...; h=0, 1, ..., N−1 and that, conditionally on all relevant in-
formation available at time τ , Gτ+∆ can take only two possible values: uGτ

(“up” value) and dGτ (“down” value).
As it is well known, in this discrete setting absence of arbitrage is equivalent

to the existence of a risk-neutral probability measure under which all financial
prices, discounted by means of the risk-free rate, are martingales. Under this
risk-neutral measure, the probability of the event {Gτ+∆ = uGτ} conditioned
on all information available at time τ (that is, in particular, on the knowledge
of the value taken by Gτ ), is given by

q =
(1 + r)∆ − d

u− d
, (6)

while

1− q =
u− (1 + r)∆

u− d

represents the risk-neutral (conditioned) probability of {Gτ+∆ = dGτ}. We
observe that, in order to prevent arbitrage opportunities, we have fixed σ in
such a way that d<(1+ r)∆<u, which implies a strictly positive value for both
q and 1−q.

The above assumptions imply that gt, t=1, 2, ..., T−1, are i.i.d. and take
one of the following N+1 possible values:

γj = uN−jdj − 1, j = 0, 1, ..., N (7)

with (risk-neutral) probability

Qj =

(
N

j

)
qN−j(1− q)j, j = 0, 1, ..., N. (8)

Moreover, also the adjustment rates of the benefit, δt, t=1, 2, ..., T−1, are i.i.d.,
and can take n+1 possible values, given by
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µj =
ηγj − i

1 + i
, j = 0, 1, ..., n− 1 (9)

with probability Qj, and 0 with probability 1−
∑n−1

j=0 Qj. Here

n =

⌊
N

2
+ 1 − ln(1 + i/η)

2ln(u)

⌋
, (10)

with byc the integer part of a real number y, represents the minimum number
of “downs” such that a call option on the rate of return on the reference
portfolio in a given year with exercise price i/η does not expire in the money.

4 The fair value of the contract and its com-

ponents

Under the assumptions described in the previous section, in particular taking
into account that all the probabilities introduced so far are risk-neutral and
that the mortality uncertainty is independent of the financial one, the fair
values of the European-style components of the contract can be computed
in two separate stages: in the first stage the market value at time 0 of the
benefit due at time t in case of death of the insured during the t-th year of
contract is computed for all t=1, 2, ..., T−1, along with the market value of the
benefit due at maturity T ; in the second stage all these values are “averaged”
with the probabilities of payment at each possible date. Observe that, for
t = 1, 2, ..., T −1, these probabilities are given by t−1/1qx, while the probability
that the benefit is due at maturity T is given by T−1/1qx + T px = T−1px.

4.1 The fair value of the basic contract: UB

Recalling that we have called “basic contract” a standard endowment policy
with benefit C1 (without profits and without the surrender option), we have:

UB = C1

[
T−1∑
t=1

(1 + r)−t
t−1/1qx + (1 + r)−T

T−1px

]
. (11)

4.2 The fair value of the non-surrendable participating
contract: UP

To compute this value we need, first of all, to compute the market price at
time 0 of the benefit Ct, due at time t=1, 2, ..., T . We denote this price by
π(Ct). While

π(C1) = C1(1 + r)−1, (12)
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for t>1

π(Ct) = EQ[(1 + r)−tCt],

where EQ denotes expectation taken with respect to the (financial) risk-neutral
measure introduced in the previous section.

Recalling relation (3) of Section 2, and exploiting the stochastic indepen-
dence of δk, k=1, 2, ..., T−1, we have, first of all

π(Ct) = C1(1 + r)−t

t−1∏
k=1

EQ[1 + δk].

Then, taking into account that δk, k=1, 2, ..., T−1, are also identically dis-
tributed, we have

π(Ct) = C1(1 + r)−t

(
1 +

n−1∑
j=0

µjQj

)t−1

, t = 2, 3, ..., T, (13)

where Qj, µj and n are defined in relations (8) to (10) of Section 3.
Observe that

1 + i

η(1 + r)
EQ[δk] =

1 + i

η(1 + r)

n−1∑
j=0

µjQj

represents the market price, at the beginning of each year of contract, of a
European call option on the rate of return on the reference portfolio with
maturity the end of the year and exercise price i/η.

Finally, the fair value UP is given by

UP =
T−1∑
t=1

π(Ct) t−1/1qx + π(CT ) T−1px. (14)

4.3 The fair value of the bonus option: B

The value of this option is simply given by the difference between UP and UB:

B = UP − UB

= C1


T−1∑
t=2

(1 + r)−t

(1 +
n−1∑
j=0

µjQj

)t−1

− 1


t−1/1qx +

+ (1 + r)−T

(1 +
n−1∑
j=0

µjQj

)T−1

− 1


T−1px

 . (15)
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4.4 The fair value of the whole contract: UT

Under our assumptions, the stochastic evolution of the benefit {Ct, t=1, 2, ...,T}
can be represented by means of an (n+1)-nomial tree. In the root of this tree
we represent the initial benefit C1 (given); then each knot of the tree has n+1
branches that connect it to n+1 following knots. In the knots at time t we rep-
resent the possible values of Ct+1. The possible trajectories that the stochastic
process of the benefit can follow from time 0 to time t (t = 1, 2, ..., T−1) are
(n+1)t, but not all these trajectories lead to different knots. The tree is, in
fact, recombining, and the different knots (or states of nature) at time t are
only

(
n+t
n

)
.

In the same tree we can also represent the surrender values defined by
relation (4) of Section 2, the fair price of the whole contract, and a continuation
price that we are going to define immediately. The last two prices can be
computed by means of a backward recursive procedure operating from time
T−1 to time 0. In particular, in each step and knot the fair price of the
whole contract is given by the maximum between the surrender value and the
continuation price.

To see this we denote, first of all, by {Vt, t = 0, 1, ..., T−1} and {Wt, t =
0, 1, ..., T−1} the stochastic processes with components the fair values of the
whole contract, and the continuation values respectively, at the beginning of
the (t+1)-th year of contract (time t), and let UT = V0. Then, observing that
in each knot at time T−1 (if the insured is alive) the continuation value is
given by

WT−1 = (1 + r)−1CT (16)

since the benefit CT is due with certainty at time T , we have

VT−1 = max{WT−1, RT−1}. (17)

Now assume to be, at time t<T−1, in a given knot K. For ease of notation
we have not indexed so far either the benefit, or the surrender value, or the
fair price of the whole contract, or the continuation price, in a given knot.
Now, in order to catch the link between prices at time t and prices at time
t+1, we denote by CK

t+1, RK
t , V K

t , WK
t all these values in the knot K, and

by V
K(j)
t+1 , W

K(j)
t+1 j=0, 1, ..., n, the fair value of the whole contract and the

continuation value at time t+1 in each knot following K. More in detail,
V

K(j)
t+1 (W

K(j)
t+1 respectively) , j=0, 1, ..., n−1, represent the value when δt+1=µj

(with risk-neutral probability Qj), while V
K(n)
t+1 (W

K(n)
t+1 ) represents the value

corresponding to δt+1=0 (with probability 1−
∑n−1

j=0 Qj).
We observe that, in the knot K, to continue the contract means to receive,

at time t+1, the benefit CK
t+1 if the insured dies within 1 year, or to be entitled

to a contract whose total random value (including the option of surrendering
it in the future) equals Vt+1 if the insured survives. The continuation value at
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time t (in the knot K) is then given by the risk-neutral expectation of these
payoffs, discounted for 1 year with the risk-free rate:

WK
t = (1 + r)−1

{
qx+tC

K
t+1 + px+t

[
n−1∑
j=0

V
K(j)
t+1 Qj +

+ V
K(n)
t+1

(
1−

n−1∑
j=0

Qj

)]}
, t = 0, 1, ...T − 2. (18)

To conclude, we have then

V K
t = max{WK

t , RK
t }, t = 0, 1, ...T − 2. (19)

4.5 The fair value of the surrender option: S

The fair price at time 0 of the surrender option is given by the difference
between UT and UP :

S = UT − UP . (20)

5 Numerical results

In this section we present some numerical results for the fair value of the
contract and of all its components. To obtain these results we have extracted
the mortality probabilities from the Italian Statistics for Females Mortality
in 1991, fixed C1=1, T=5, N=250, and considered different values for the
remaining parameters.

We observe that our choice for N implies a daily change in the unit price
of the reference portfolio since there are about 250 trading days in a year.
Moreover, this choice guarantees a very good approximation to the Black and
Scholes (1973) model. In fact, if we assumed that the unit price of the refer-
ence portfolio follows a geometric Brownian motion with volatility parameter
σ, then the market value, at the beginning of each year of contract, of a Euro-
pean call option written on the rate of return on the reference portfolio with
maturity the end of the year and exercise price i/η would be given by

φ(a)− 1 + i/η

1 + r
φ(b),

where

a =
ln(1 + r)− ln(1 + i/η)

σ
+

σ

2
, b = a− σ,
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and φ denotes the cumulative distribution function of a standard normal vari-
ate. In a very large amount of numerical experiments carried out with different
sets of parameters we have found that the difference between this Black and
Scholes (1973) price and the one obtained in our model (with N=250), and
the difference between the fair values of the bonus option in the two models,
are both less than 1 basis point (bp). However, this high number of steps in
each year requires a large amount of CPU time; that is why we have not fixed
a high value for T . In particular, the CPU time required by a Pentium III 800
MHz for computing the fair value of the contract and of all its components
when T=5 and N=250 is about 3 minutes.

As already mentioned in Section 2, we have specified two alternative rules
for computing the surrender values. According to the former, the surrender
value at the beginning of each year of contract is given by the current benefit
discounted from maturity to the surrender date with an annual compounded
rate ρ1:

Rt = Ct+1(1 + ρ1)
−(T−t), t = 0, 1, ..., T − 1. (21)

According to the latter rule, the surrender value is a rate ρ2 of the mathemati-
cal reserve of the policy. Traditionally this reserve is computed as an expected
value, with respect to the mortality measure, of the current benefit discounted
by means of the technical rate i. Then, in this case,

Rt = ρ2Ct+1

[
T−t∑
h=1

(1 + i)−h
h−1/1qx+t + (1 + i)−(T−t)

T−tpx+t

]
,

t = 0, 1, ..., T − 1. (22)

In order to get some numerical feeling about our fingers and to catch some
comparative statics properties of the model, we have fixed a basic set of values
for the parameters x, r, i, η, σ, ρ1, ρ2, and then we have moved each parameter
one at a time. For comparison, we have also computed the expected value,
with respect to the mortality measure, of the initial benefit C1 discounted with
the technical rate i, that we denote by U :

U = C1

[
T−1∑
t=1

(1 + i)−t
t−1/1qx + (1 + i)−T

T−1px

]
. (23)

As already discussed in Section 2, if U is the single premium paid by the
policyholder, then i can be interpreted as a minimum interest rate guaranteed.

The basic set of parameters, fixed in such a way that the fair price of the
whole contract UT is very close to U , is as follows:

x = 50, r = 0.05, i = 0.02, η = 0.5, σ = 0.15, ρ1 = 0.035, ρ2 = 0.985.
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With these parameters we have obtained the following results:

UB = 0.7845, B = 0.1084, UP = 0.8930, U = 0.9062.

Moreover, if the surrender values are computed according to relation (21),
then the fair price of the surrender option S(1) = 0.0128 and that of the
whole contract UT

(1) = 0.9058. If instead the surrender values are expressed by

relation (22), then S(2) = 0.0123 and UT
(2) = 0.9053.

Also without the aid of numerical results it is quite obvious that the fair
value of the basic contract UB is increasing with respect to the age of the
insured x, decreasing with the market rate r, and constant with respect to
the remaining parameters i, η, σ, ρ1, ρ2. As for the bonus option B, it is
increasing with the participation coefficient η and the volatility parameter σ,
decreasing with the age of the insured x and the technical rate i, constant
with the surrender parameters ρ1 and ρ2; it is instead a priori undetermined
the behaviour of B with respect to the market rate r. The fair value of the
non-surrendable participating contract UP is increasing with respect to η and
σ, decreasing with i, constant with respect to ρ1 and ρ2, undetermined with x
and r. The single premium U is increasing with x, decreasing with i, constant
with respect to r, η, σ, ρ1, ρ2. Finally, the fair value of the surrender option
S(j) and that of the whole contract UT

(j) are a priori undetermined with respect

to all the parameters except ρj (j = 1, 2). More precisely, if the surrender
values are expressed by relation (21), then S(1) and UT

(1) are both decreasing

with ρ1; if instead relation (22) holds, then S(2) and UT
(2) are increasing with

ρ2. From this behaviour we can argue that, when the fair value of the non-
surrendable participating contract UP is not greater than U , it is possible to
find (numerically) a value of the surrender parameter ρj such that UT

(j) = U .
As we will see from the following tables, also the remaining parameters can be
chosen in such a way that UT

(j) = U .
More in detail, in Table 1 we present the results obtained when x varies

between 40 and 60 and in Table 2 those obtained when r varies between 2%
and 10% with step 0.5%. In Table 3 i varies between 0 and 5% with step
0.5%; in Table 4 η varies between 5% and 100% with step 5%; in Table 5 σ
varies between 5% and 50% with step 5%. Finally, in Table 6 and in Table 7
we move the surrender parameters ρ1 and ρ2, from 0 to 5% and from 97% to
100% respectively, with step 0.5%.
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TABLE 1
C1=1, N=250, T=5, r=0.05, i=0.02, η=0.5, σ=0.15, ρ1=0.035, ρ2=0.985

x UB B UP S(1) UT
(1) S(2) UT

(2) U

40 0.7839 0.1088 0.8927 0.0129 0.9056 0.0124 0.9052 0.9059
41 0.7840 0.1088 0.8927 0.0129 0.9056 0.0124 0.9052 0.9059
42 0.7840 0.1088 0.8928 0.0129 0.9056 0.0124 0.9052 0.9059
43 0.7841 0.1087 0.8928 0.0129 0.9056 0.0124 0.9052 0.9060
44 0.7841 0.1087 0.8928 0.0129 0.9057 0.0124 0.9052 0.9060
45 0.7842 0.1086 0.8928 0.0128 0.9057 0.0124 0.9052 0.9060
46 0.7843 0.1086 0.8929 0.0128 0.9057 0.0124 0.9052 0.9061
47 0.7843 0.1086 0.8929 0.0128 0.9057 0.0124 0.9052 0.9061
48 0.7844 0.1085 0.8929 0.0128 0.9057 0.0124 0.9053 0.9061
49 0.7845 0.1085 0.8929 0.0128 0.9057 0.0124 0.9053 0.9062
50 0.7845 0.1084 0.8930 0.0128 0.9058 0.0123 0.9053 0.9062
51 0.7846 0.1084 0.8930 0.0128 0.9058 0.0123 0.9053 0.9062
52 0.7848 0.1083 0.8930 0.0128 0.9058 0.0123 0.9053 0.9063
53 0.7849 0.1082 0.8931 0.0128 0.9058 0.0123 0.9054 0.9063
54 0.7850 0.1081 0.8931 0.0127 0.9059 0.0123 0.9054 0.9064
55 0.7851 0.1080 0.8932 0.0127 0.9059 0.0123 0.9054 0.9065
56 0.7853 0.1079 0.8932 0.0127 0.9059 0.0122 0.9055 0.9065
57 0.7855 0.1078 0.8933 0.0127 0.9060 0.0122 0.9055 0.9066
58 0.7857 0.1077 0.8934 0.0127 0.9060 0.0122 0.9056 0.9067
59 0.7859 0.1076 0.8934 0.0126 0.9061 0.0122 0.9056 0.9068
60 0.7861 0.1074 0.8935 0.0126 0.9061 0.0121 0.9057 0.9069

From the results reported in Table 1 we can notice that the age of the
insured seems to have a very small influence on the premiums, at least in
the range of values here considered. The basic premium UB is about 78%
of the initial benefit C1, the bonus option is rather expensive (about 11% of
this benefit), whereas the surrender option is very cheap (between 1.2% and
1.3% of C1). Moreover, in all the examples here reported the fair value of the
whole contract is (slightly) less than U , so that some contractual parameter
(for instance ρj) should be modified in order that UT

(j) = U . Finally, the

increasing trend of the basic premium UB “beats” the decreasing trend of the
bonus option B, so that UP = UB + B increases with x. Also the surrender
options S(j), j = 1, 2, decrease in value with x, but not so strongly to capsize
the behaviour of UT

(j) = UP + S(j), increasing with x.
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TABLE 2
C1=1, N=250, T=5, x=50, i=0.02, η=0.5, σ=0.15, ρ1=0.035, ρ2=0.985

U=0.9062

r UB B UP S(1) UT
(1) S(2) UT

(2)

0.020 0.9062 0.0955 1.0017 0.0000 1.0017 0.0000 1.0017
0.025 0.8844 0.0977 0.9821 0.0000 0.9821 0.0000 0.9821
0.030 0.8633 0.0999 0.9631 0.0000 0.9631 0.0000 0.9631
0.035 0.8427 0.1020 0.9448 0.0000 0.9448 0.0000 0.9448
0.040 0.8228 0.1042 0.9270 0.0044 0.9314 0.0040 0.9309
0.045 0.8034 0.1063 0.9097 0.0087 0.9184 0.0082 0.9179
0.050 0.7845 0.1084 0.8930 0.0128 0.9058 0.0123 0.9053
0.055 0.7662 0.1105 0.8767 0.0168 0.8935 0.0163 0.8930
0.060 0.7484 0.1126 0.8610 0.0206 0.8816 0.0316 0.8926
0.065 0.7311 0.1146 0.8457 0.0242 0.8700 0.0469 0.8926
0.070 0.7143 0.1166 0.8309 0.0278 0.8587 0.0617 0.8926
0.075 0.6979 0.1185 0.8165 0.0312 0.8477 0.0761 0.8926
0.080 0.6820 0.1205 0.8025 0.0394 0.8420 0.0901 0.8926
0.085 0.6666 0.1224 0.7890 0.0530 0.8420 0.1036 0.8926
0.090 0.6515 0.1243 0.7758 0.0662 0.8420 0.1168 0.8926
0.095 0.6369 0.1261 0.7630 0.0790 0.8420 0.1296 0.8926
0.100 0.6226 0.1279 0.7505 0.0915 0.8420 0.1421 0.8926

From Table 2 we notice that all the results reported are very sensitive
with respect to the market rate r, and this is not surprising at all. The
value of the basic contract ranges from 90.62% of C1 (when r = i = 2%) to
62.26% (when r = 10%), and that of the bonus option from 9.55% of C1 to
12.79%, thus exhibiting an increasing trend. However, once again this trend
is beaten by the trend of UB, so that UP = UB + B decreases with r (from
100.17% of C1 to 75.05%). Moreover, observe that, when r = i = 2%, the
non-surrendable participating contract is quoted “over par”. The surrender
options S(j), j = 1, 2, are both increasing in value with r, but this behaviour
does not capsize the decreasing trend of UT

(j) = UP + S(j). In particular, both

S(1) and S(2) are valueless if r ≤ 3.5%, S(1) reaches the level of 9.15% of C1 and
S(2) that of 14.21% when r = 10%. Finally, there exists a level of r, between
4.5% and 5%, such that UT

(j) = U for j = 1, 2.
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TABLE 3
C1=1, N=250, T=5, x=50, r=0.05, η=0.5, σ=0.15, ρ1=0.035, ρ2=0.985

UB=0.7845

i B UP S(1) UT
(1) S(2) UT

(2) U

0.000 0.1489 0.9335 0.0134 0.9468 0.0515 0.9850 1.0000
0.005 0.1380 0.9226 0.0132 0.9358 0.0383 0.9609 0.9755
0.010 0.1274 0.9120 0.0131 0.9250 0.0255 0.9374 0.9517
0.015 0.1178 0.9023 0.0129 0.9153 0.0169 0.9192 0.9286
0.020 0.1084 0.8930 0.0128 0.9058 0.0123 0.9053 0.9062
0.025 0.0999 0.8845 0.0127 0.8972 0.0079 0.8924 0.8844
0.030 0.0917 0.8763 0.0126 0.8889 0.0036 0.8799 0.8633
0.035 0.0844 0.8689 0.0125 0.8814 0.0000 0.8689 0.8427
0.040 0.0772 0.8618 0.0124 0.8741 0.0000 0.8618 0.8228
0.045 0.0708 0.8554 0.0123 0.8676 0.0000 0.8554 0.8034
0.050 0.0646 0.8492 0.0122 0.8613 0.0000 0.8492 0.7845

From Table 3 we can observe that the technical rate i has a strong influence
on the value of the bonus option B (as expected), which ranges from 14.89%
of C1 (when i = 0) to 6.46% (when i = r = 5%). The same happens for U and
the fair price of the surrender option S(2). Recall, in fact, that i negatively
affects the surrender values when computed according to relation (22). The
value of the surrender option S(1), instead, does not seem to be very sensitive
with respect to i. Anyway, all the prices reported in Table 3 are decreasing
with i and, in particular, S(2) = 0 when i ≥ 3.5%. Finally, a value of i between
2% and 2.5% is such that UT

(j) = U for j = 1, 2.
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TABLE 4
C1=1, N=250, T=5, x=50, r=0.05, i=0.02, σ=0.15, ρ1=0.035, ρ2=0.985

UB=0.7845, U=0.9062

η B UP S(1) UT
(1) S(2) UT

(2)

0.05 0.0003 0.7848 0.0571 0.8420 0.1078 0.8926
0.10 0.0053 0.7898 0.0522 0.8420 0.0894 0.8792
0.15 0.0147 0.7993 0.0427 0.8420 0.0668 0.8660
0.20 0.0261 0.8107 0.0313 0.8420 0.0423 0.8530
0.25 0.0387 0.8232 0.0188 0.8420 0.0170 0.8402
0.30 0.0520 0.8365 0.0120 0.8485 0.0116 0.8481
0.35 0.0655 0.8501 0.0122 0.8622 0.0117 0.8618
0.40 0.0796 0.8642 0.0124 0.8766 0.0119 0.8761
0.45 0.0939 0.8785 0.0126 0.8911 0.0121 0.8906
0.50 0.1084 0.8930 0.0128 0.9058 0.0123 0.9053
0.55 0.1233 0.9078 0.0130 0.9208 0.0125 0.9204
0.60 0.1385 0.9230 0.0132 0.9362 0.0128 0.9358
0.65 0.1538 0.9384 0.0135 0.9518 0.0130 0.9513
0.70 0.1694 0.9539 0.0137 0.9676 0.0132 0.9671
0.75 0.1851 0.9697 0.0139 0.9836 0.0134 0.9831
0.80 0.2011 0.9856 0.0141 0.9998 0.0136 0.9993
0.85 0.2172 1.0018 0.0144 1.0161 0.0139 1.0156
0.90 0.2336 1.0181 0.0146 1.0327 0.0141 1.0322
0.95 0.2501 1.0347 0.0148 1.0495 0.0143 1.0490
1.00 0.2669 1.0514 0.0151 1.0665 0.0145 1.0659

As far as the participation coefficient η is concerned, we notice, from Table
4, a very strong influence on the value of the bonus option, that ranges from
0.03% of C1 (when η = 5%) to 26.69% (when η = 100%). Observe, moreover,
that the non-surrendable participating contract is quoted over par when η ≥
85%. Also the values of the surrender options and, especially, S(2), are quite
sensitive with respect to η. In particular S(1), equal to 5.71% of C1 when
η = 5%, decreases until 1.2% of C1 when η = 30%, then increases very slightly
and reaches the value of 1.51% of C1 when η = 100%. Anyway, the non-
monotonicity of S(1) does not capsize the increasing trend of UT

(1) = UP + S(1).

As for S(2), it decreases from 10.78% of C1 (when η = 5%) to 1.16% (when
η = 30%), and then slightly increases up to 1.45% of C1 for η = 100%. This
behaviour influences also the trend of UT

(2) = UP + S(2), that does not result

monotonic too. Finally, a value of η between 50% and 55% makes UT
(j) = U

for j = 1, 2.
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TABLE 5
C1=1, N=250, T=5, x=50, r=0.05, i=0.02, η=0.5, ρ1=0.035, ρ2=0.985

UB=0.7845, U=0.9062

σ B UP S(1) UT
(1) S(2) UT

(2)

0.05 0.0408 0.8253 0.0166 0.8420 0.0673 0.8926
0.10 0.0740 0.8586 0.0123 0.8709 0.0206 0.8792
0.15 0.1084 0.8930 0.0128 0.9058 0.0123 0.9053
0.20 0.1440 0.9286 0.0133 0.9419 0.0128 0.9414
0.25 0.1804 0.9649 0.0138 0.9788 0.0133 0.9783
0.30 0.2175 1.0020 0.0144 1.0164 0.0139 1.0159
0.35 0.2559 1.0405 0.0149 1.0554 0.0144 1.0549
0.40 0.2953 1.0799 0.0155 1.0954 0.0149 1.0948
0.45 0.3356 1.1201 0.0161 1.1362 0.0155 1.1356
0.50 0.3767 1.1612 0.0167 1.1779 0.0161 1.1773

Most of the comments concerning the behaviour of the premiums with
respect to the participation coefficient η are still valid when referred to the
volatility coefficient σ. From Table 5, in fact, we can observe that B is very
sensitive with respect to σ, and ranges from 4.08% of C1 (when σ = 5%) to
37.67% (when σ = 50%). Also S(2) is quite sensitive, and not monotonic, with
respect to σ, whereas S(1), not monotonic as well, does not seem to be very
sensitive. The premium UT

(1) = UP + S(1) is increasing, while UT
(2) = UP + S(2)

is not monotonic. The non-surrendable participating contract is quoted over
par when σ ≥ 30%, and there exists a value of σ, between 15% and 20%, such
that UT

(j) = U for j = 1, 2.

TABLE 6
C1=1, N=250, T=5, x=50, r=0.05, i=0.02, η=0.5, σ=0.15

UB=0.7845, B=0.1084, UP =0.8930, U=0.9062

ρ1 S(1) UT
(1)

0.000 0.1070 1.0000
0.005 0.0824 0.9754
0.010 0.0585 0.9515
0.015 0.0353 0.9283
0.020 0.0260 0.9189
0.025 0.0215 0.9145
0.030 0.0172 0.9101
0.035 0.0128 0.9058
0.040 0.0085 0.9015
0.045 0.0042 0.8972

≥0.050 0.0000 0.8930
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From Table 6 we notice that, when the surrender values are computed
according to relation (21), the influence of the discount rate ρ1 is very strong,
as expected. In particular, if ρ1 = 0, i.e., if there are no penalties and surrender
is treated as like as death, then the value of the surrender option S(1) is 10.7%
of C1 and the whole contract is quoted exactly at par. When instead ρ1 ≥ 5%,
then S(1) = 0. Finally, there exists a value of ρ1, between 3% and 3.5%, such
that UT

(1) = U .

TABLE 7
C1=1, N=250, T=5, x=50, r=0.05, i=0.02, η=0.5, σ=0.15

UB=0.7845, B=0.1084, UP =0.8930, U=0.9062

ρ2 S(2) UT
(2)

≤0.970 0.0000 0.8930
0.975 0.0032 0.8962
0.980 0.0078 0.9008
0.985 0.0123 0.9053
0.990 0.0169 0.9098
0.995 0.0214 0.9144
1.000 0.0260 0.9189

When the surrender values are computed according to relation (22) the
surrender option S(2), although being quite sensitive with respect to ρ2, reaches
the maximum value of only 2.6% of C1 when ρ2 = 100%, and is valueless for
ρ2 ≤ 97%. Moreover, a value of ρ2 between 98.5% and 99% makes UT

(2) = U

(see Table 7).

6 Concluding remarks

In this paper we have analysed a single premium life insurance endowment
policy in which the benefit is annually adjusted according to the performance
of a special investment portfolio. In addition to this participating mechanism,
that is coupled with the provision of a minimum return guaranteed, the con-
tract is also equipped with a surrender option, i.e., with an American-style
option to sell it back before expiration at a price computed according to a
predetermined formula (surrender value). Then this policy can be divided
in three components: the basic contract, the bonus option and the surrender
option. Assuming that the unit price of the reference portfolio follows the
discrete model by Cox, Ross and Rubinstein (1979), we obtain a closed-form
expression for the fair value of the first two components, and present a recur-
sive algorithm for computing the fair value of the third one. The numerical
implementation of the model allows us to address also the problem of suitably
choosing the contractual parameters in order that the fair price of the whole
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contract equals the premium computed by insurance companies according to
standard actuarial practice.

The policy here analysed is very often paid by annual premiums. However,
the extension of the valuation model here proposed in order to compute the
annual premium is not at all trivial. The fair price of the whole contract
depends, in fact, on the value of the surrender option, which in turn depends
on the annual premium. Moreover, even though this total price were given,
in order to compute the annual premium it should be split into an annuity
with instalments paid only if the insured is still alive and the contract has not
been surrendered yet. Then the annual premium determines also the value
of this annuity, through the surrender decision. A real vicious circle arises in
this way and, what is more, the numerical solution of the problem, at least
with a satisfactory level of accuracy, is thwarted by the high computational
complexity of the model. This problem constitutes then an important topic
to be addressed in the near future.
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