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Participating life insurance policies are characterized by the fact
that the insurer’s profits are shared with the policyhold-
ers. There are several ways in which this profit-sharing is realized.
Usually the shared profits are credited to the mathematical
reserves at the end of each year, and this implies the “purchase”
of additional insurance. The benefits are then “adjusted”
in consequence of the “adjustment” of the mathematical reserves.

Participating policies are usually coupled with a mini-
mum interest rate guaranteed.

There is now a great attention towards the options em-
bedded in a participating life insurance contract, in partic-
ular on the “bonus option”, implied by the participation mecha-
nism, and on the “surrender option”, i.e., the policyholder’s right
to early terminate the contract and to receive the surrender value.
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In a previous paper we have analysed a life insurance product intro-
duced in Italy at the end of the seventies, the so-called rivalutabile ,
for which a special portfolio of investments, covering at least
the mathematical reserves of all the policies with profits issued by the
insurance company, is constituted and kept apart from the
other assets. At the end of each year a % of the rate of
return on this portfolio (=⇒ reference portfolio) in the preced-
ing year is assigned to the policyholder, provided that it
does not fall below the technical rate. We have considered
both the case in which the policy is paid by a single premium at
issuance, and the case in which it is paid by a sequence of periodi-
cal premiums, and we have obtained a very simple closed-form
relation that characterizes “fair” contracts in the Black-
Merton-Scholes (1973) framework.
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However, this analysis does not take into account the
presence of the surrender option. In the present paper we
partially fill this gap by pricing the single premium contract. In
another paper, just finished last week, we complete the analysis by
pricing also periodical premium contracts.

More in detail, in this paper

• we define a rule for computing the surrender values,
which introduces an additional contractual parameter in the model.

By modelling the assets à la Cox, Ross and Rubinstein (1979)

• we obtain a recursive binomial algorithm for com-
puting the value of the whole contract.

Since the value of the corresponding participating contract without
the surrender option is expressed in closed-form

• the value of the surrender opt. is obtained residually.
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The total price is split into the values of three compo-
nents:

• the basic contract (i.e., without profits and without surrender),

• the bonus option,

• the surrender option.

REMARK: Although these embedded options are not traded sep-
arately from the other elements of the contract, we believe that such
decomposition can be very useful to an insurance company since it
allows it to understand the incidence of the various compo-
nents on the premium and, if necessary, to identify possible
changes in the design of the policy.
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The rest of the presentation is organized as follows:

• we describe the structure of the contract and define all the
liabilities that the insurer has to face;

• we introduce our valuation framework;

• we derive the fair value of the contract and of all its
components describing, in particular, our recursive algorithm;

• we show some graphs.
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THE STRUCTURE OF THE CONTRACT

single-premium endowment policy

0 time of issuance

T maturity

benefit paid at the end of the year

C1 benefit paid at time 1, if the insured dies during the first year

Ct benefit paid at time t, t = 2, ..., T

⇓
C1 is given

Ct depends on the performance of the ref. portfolio
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PARTICIPATION MECHANISM

i technical rate (annual compounded)

gt rate of return on the reference portfolio during year t

η participation coefficient (between 0 and 1)

δt rate of adjustment of the mathematical reserve at time t

δt = max

{
ηgt − i

1 + i
, 0

}
, t = 1, ..., T − 1

Single Pr. Contract =⇒ Ct+1 = Ct(1 + δt), t = 1, ..., T − 1

=⇒ Ct = C1

t−1∏
k=1

(1 + δk), t = 2, ..., T
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Rationale of the rule for computing the adjustment
rates δt and interpretation of the technical rate i

Italian insurance companies compute the net single premium as the

expected value, w.r.t. a suitable mortality distribution,
of the initial benefit C1 discounted from the random
time of payment to time 0 with the technical rate i.

In this case a return at the technical rate i is assigned to the policy
since the beginning. Taking into account the adjustment rule (and
disregarding the surrender option)

=⇒ the total return granted to the policy in year t is

(1 + i)(1 + δt)− 1 = max {i, ηgt}
=⇒ i can be interpreted as a min. int. rate guaranteed.
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SURRENDER CONDITIONS

We assume that

• the surrender decision is taken at the beginning of
the year, just after the announcement of the benefit for the com-
ing year,

• the surrender value at the beginning of year t + 1 (i.e., at
time t), denoted by Rt, depends on the current benefit
(Ct+1), on one contractual parameter (ρ), and possibly
on some other variables (such as the time to maturity of the
policy, the mathematical reserve, etc.):

Rt = f (Ct+1, ρ, ...), t = 0, ..., T − 1
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THE VALUATION FRAMEWORK

The contract under scrutiny is a typical example of contingent-
claim, affected by both the mortality and the financial risk.

While the mortality risk determines the moment in which
the benefit is due, the financial risk affects the amount
of the benefit and the surrender decision.

We assume, in fact, that

• financial and insurance markets are perfectly compet-
itive, frictionless (no taxes, no transaction costs such as, e.g.,
expenses and relative loadings of the insurance premiums, short-
sale allowed), and free of arbitrage opportunities.

• all the agents are rational and non-satiated, and share the
same information.
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=⇒ In this framework, the surrender decision can only be
the consequence of a rational choice, taken after comparison,
at any time, between the total value of the policy (including the
option of surrendering it in the future) and the surrender value.

OTHER ASSUMPTIONS:

• stochastic independence between the insured’s lifetime and
the financial variables

• mortality probabilities are extracted from a “risk-neutral”
mortality measure (i.e., all insurance prices are computed as
expected values with respect to this specific measure)

• mortality probabilities depend on the age of the insured (we
denote by x this age at time 0).
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THE FINANCIAL SET-UP

We assume that the rate of return on risk-free assets is
deterministic and constant, and denote by r the (annual com-
pounded) riskless rate.

=⇒ The financial risk which affects the policy is generated by a
stochastic evolution of the rates of return on the reference portfolio.

In this connection, we assume that

• it is a well-diversified portfolio, split into units,

• yields are immediately reinvested and shared among units

• the reinvested yields increase only the unit-price of the
portfolio but not the total number of units (that changes
when new investments or withdrawals are made).
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=⇒ The rates of return on the reference portfolio are
completely determined by the evolution of its unit price

Denoting by Gτ this unit-price at time τ (≥ 0)

=⇒ gt =
Gt

Gt−1
− 1, t = 1, ..., T − 1

For describing the stochastic evolution of Gτ , we choose the discrete
model by Cox, Ross and Rubinstein (1979) (CRR), universally
acknowledged for its important properties.

REMARK: CRR may be seen either as an “exact” model under
which “exact” values for both European and American-style contingent-
claims can be computed, or as an approximation of the Black
and Scholes (1973) and Merton (1973) model to which it asymp-
totically converges.
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More in detail, we

• divide each policy year into N subperiods of equal length,

• let ∆=1/N ,

• fix a volatility parameter σ >
√

∆ ln(1+r),

• set u=exp(σ
√

∆) and d=1/u.

Then we assume that

• Gτ can be observed at the discrete times τ=t+h∆
(t=0, 1, ...; h=0, 1, ..., N−1),

• conditionally on all relevant information available at time τ ,
Gτ+∆ can take only two possible values: uGτ (“up”
value) and dGτ (“down” value).
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=⇒ In this discrete setting, absence of arbitrage is equiva-
lent to the existence of a risk-neutral probability measure
under which all financial prices, discounted by means of
the risk-free rate, are martingales.

Under this risk-neutral measure, the probability of {Gτ+∆ = uGτ}
conditioned on all information available at time τ (that is, in partic-
ular, on the knowledge of the value taken by Gτ ), is given by

q =
(1 + r)∆ − d

u− d
while

1− q =
u− (1 + r)∆

u− d

represents the (conditioned) probability of {Gτ+∆ = dGτ}.
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REMARK: In order to prevent arbitrage opportunities, we have
fixed σ in such a way that d < (1 + r)∆ < u, which implies a strictly
positive value for both q and 1−q.

The above assumptions imply that gt, t=1, 2, ..., T−1

• are i.i.d.

• take one of the following N+1 possible values:

γj = uN−jdj − 1, j = 0, 1, ..., N

with (risk-neutral) probability

Qj =

(
N

j

)
qN−j(1− q)j, j = 0, 1, ..., N

17



Moreover

• also the adjustment rates of the benefit, δt, t=1, 2, ..., T−1,
are i.i.d.

• they take one of the following n+1 possible values:

µj =

{
ηγj−i
1+i j = 0, 1, ..., n−1 (with prob. Qj)

0 j = n (with prob. 1−
∑n−1

k=0 Qk)

where

n =

⌊
N

2
+ 1 − ln(1 + i/η)

2ln(u)

⌋
(with byc the integer part of a real number y) represents the mini-
mum number of “downs” such that a call option on the
rate of return on the reference portfolio in a given year
with exercise price i/η does not expire in the money.
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THE VALUE OF THE WHOLE CONTRACT: UW

The stochastic evolution of the benefit {Ct, t=1, 2, ...,T}
can be represented by means of an (n+1)-nomial tree:

• in the root we represent the initial benefit C1 (given);

• each node has n+1 branches that connect it to n+1 subsequent
nodes;

• in the nodes “at time t” we represent the possible values of Ct+1.

=⇒ The possible trajectories that the stochastic pro-
cess of the benefit can follow from time 0 to time t
(t = 1, 2, ..., T−1) are (n+1)t, but not all these trajectories lead
to different nodes. The tree is, in fact, recombining, and the dif-
ferent nodes (or states of nature) at time t are

(n+t
n

)
.
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In the same tree we represent

• the surrender values Rt, t=0, 1, ..., T−1

• the values of the whole contract

• the “continuation” values.

REMARK: The last two values will be computed by means of a
backward recursive procedure operating from time T−1 to time 0.

We denote by

{Wt, t=0, 1, ..., T−1} the stochastic process with components the
values of the whole contract at the beginning of year t+1 (time t),

{Vt, t=0, 1, ..., T−1} the stochastic process with components the
continuation values at the beginning of year t+1 (time t).

=⇒ UW = W0
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• At time T−1

In each node (if the insured is alive) the continuation value is
given by

VT−1 = (1 + r)−1CT

since the benefit CT is due with certainty at time T .

=⇒ The value of the whole contract is

WT−1 = max{VT−1, RT−1}

since the (rational and non-satiated) policyholder chooses between
continuation and surrender in order to maximize his(her) profit.
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• At time t < T−1

Assume to be in a given node K (with the insured still alive).

Now, in order to catch the link between values at time t and values
at time t+1, we denote by

CK
t+1, RK

t , WK
t , V K

t

the benefit, the surrender value, the value of the whole contract,
the continuation value, at time t in the node K, and by

W
K(j)
t+1 , V

K(j)
t+1 (j=0, 1, ..., n)

the value of the whole contract and the continuation value at time
t+1 in each node following K.
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REMARK: Continuation ⇒ to receive, at time t+1, the ben-
efit CK

t+1 if the insured dies within 1 year, or to be entitled to a
contract with total random value Wt+1, if the ins. survives.

=⇒ The continuation value at time t (in the node K) is
given by the risk-neutral expectation of these payoffs, discounted
for 1 year with the risk-free rate:

V K
t = (1 + r)−1

qx+tC
K
t+1 + px+t

n−1∑
j=0

W
K(j)
t+1 Qj +

+ W
K(n)
t+1

1−
n−1∑
j=0

Qj

 , t = 0, 1, ..., T − 2

=⇒ The value of the whole contract is

WK
t = max{V K

t , RK
t }, t = 0, 1, ..., T − 2
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THE VALUE OF THE NON-SURRENDABLE
PARTICIPATING CONTRACT: UP

We define “non-surrendable participating contract” an endowment
policy with stochastic benefit Ct and without the surr. option.

To compute its value we need, first of all, to compute the market
price at time 0 of the benefit Ct, supposed to be due with
certainty at time t (t =1, 2, ..., T ). We denote this price by π(Ct).
While

π(C1) = C1(1 + r)−1

for t > 1

=⇒ π(Ct) = EQ[(1 + r)−tCt] = EQ

(1 + r)−tC1

t−1∏
k=1

(1 + δk)


where EQ denotes expectation wrt the financial risk-neutral measure.
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Stochastic Independence of δk, k = 1, 2, ..., T−1

=⇒ π(Ct) = C1(1 + r)−t
t−1∏
k=1

EQ[1 + δk]

Identical Distribution of δk, k = 1, 2, ..., T−1

=⇒ π(Ct) = C1(1 + r)−t

1 +

n−1∑
j=0

µjQj

t−1

, t = 2, 3, ..., T

Letting µ = EQ[δk] =
∑n−1

j=0 µjQj and λ = r−µ
1+µ

=⇒ π(Ct) =
C1

1 + µ
(1 + λ)−t, t = 2, 3, ..., T
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=⇒ The fair value of the non-surr. part. contract is given by

UP =

T−1∑
t=1

π(Ct) t−1/1qx + π(CT ) T−1px

=
C1

1 + µ

T−1∑
t=1

(1 + λ)−t
t−1/1qx + (1 + λ)−T

T−1px


=

C1

1 + µ
A

(λ)
x: T e

THE VALUE OF THE SURRENDER OPTION: S

=⇒ S = UW − UP = W0 −
C1

1 + µ
A

(λ)
x: T e
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THE VALUE OF THE BASIC CONTRACT: UB

We define “basic contract” a standard endowment policy with con-
stant benefit C1 (without profits and without the surrender
option).

⇓

UB = C1A
(r)
x: T e = C1

T−1∑
t=1

(1 + r)−t
t−1/1qx + (1 + r)−T

T−1px


THE VALUE OF THE BONUS OPTION: B

=⇒ B = UP − UB = C1

A
(λ)
x: T e

1 + µ
− A

(r)
x: T e


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SOME NUMERICAL RESULTS

We present now some graphs showing the behaviour of the
value of the whole contract and its components w.r.t. some
parameters. To produce them we have

• extracted the mortality probabilities from S.I.F. 1991,

• fixed C1=1, T=5, N=250,

• considered different values for the remaining parameters.

REMARK: Our choice for N implies a daily change in the
unit price of the reference portfolio since there are about 250
trading days in a year, and guarantees a very good approxima-
tion to the Black-Merton-Scholes (1973) model. However,
this high number of steps in each year requires a large amount of
CPU time; that is why we have not fixed a high value for T .
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We have assumed that the surrender value is given by the cur-
rent benefit discounted from maturity to the surrender
date with the (annual compounded) rate ρ:

Rt = Ct+1(1 + ρ)−(T−t), t = 0, 1, ..., T − 1.

We have fixed the following basic set of values for the param-
eters x, r, i, η, σ, ρ, and then we have moved each parameter
one at a time:

x = 50, r = 0.05, i = 0.02, η = 0.5, σ = 0.15, ρ = 0.035.

With these parameters we have obtained the following results:

UB = 0.7845, B = 0.1084, UP = 0.8930, S = 0.0128, UW = 0.9058.
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The premiums versus the age of the insured x
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The premiums versus the riskless rate r
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The premiums versus the technical rate i
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The premiums versus the participation coefficient eta
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The premiums versus the volatility parameter sigma
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The premiums versus the surrender parameter ro
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