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Abstract

The management of operational risk has been one of the main
issues for �nancial institution recently, although it is quite hard to
properly measure the risk.

We concentrate on the Loss Distribution Approach(LDA), which
separately estimates the distributions of likelihood and the severity
from the reported loss cases and compounds both to obtain the dis-
trtibution of the cumulative amount of losses during a certain period.

In this article, we discuss the implementation of LDA and illustrate
the computation of the operational VaR from the actual loss data. We
also present some consequences that give comparisons among various
pair of severity distribution and parameter estimation and consider
how to use external data to measure operational risk in the consistent
way with internal loss data at last.

1 Introduction

The �nancial institution should consider various kinds of risks. For the mar-
ket risk and credit risk, there have been many researches on both theoretical
side and practical side. Although they might not be completed, some of them
have been already implemented and applied to the measurement and control
for market and credit risk. On the other hand, the de�nition of operational
risk and liquidity risk has remained vague and the width and complexity of
such risks prevent us to quantify the risk though many practitioners under-
stand the importance and impact of such risks.

However the Basel Committee on Banking Supervision suggested that
economic capital for operational risk should be allocated by the New Basel
Capital Accord, scheduled to start in 2005, and it may be about 12% of the
minimum regulatory capital. The �nal regulatory framework has not been
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determined yet, but the �nancial institution has been obliged to deal with the
management of operational risk. According to the Consultative Documnet
published by Basel Committee on Banking Supervision in January 2001 [4],
a general de�nition of operational risk is thought as \the risk of (direct or
indirect)1 loss resulting from inadequate or failed internal process, people
and systems or from external events".

The Basel Committee suggests some measurement approaches to capital
charges for operational risk. The Basic Indicator Approach(BIA) obliges
banks to hold capital for operational risk equivalent to a given percentage
of a single indicator such as gross income. The Standardized Approach(SA)
is almost the same as BIA, except that banks' activities have to be divided
into eight business lines and the capital charge should be calculated each
business line by multiplying the exposure indicator by a factor assigned to
the underlying business line. Since these approaches, especially the former,
can be applied to any bank regardless of its characteristics, the capital charge
obtained from these approach may be one of the targets within the regulatory
framework.

The Internal Measurement Approach(IMA) or the Loss Distribution Ap-
proach(LDA) allow banks to use their internal loss data to estimate the like-
lihood (the probability of loss event) and the severity(the loss given event).
The likelihood and the severity should be given by a single value respectively
in IMA while LDA demands their distributions. The Basel Committee call
them the Advanced Measurement Approach(AMA) generically.

The purpose of this paper is to use the Loss Distribution Approach(LDA)
to compute the operational VaR from the actual loss data. In the New Basel
Capital Accord, they say \Under the Loss Distribution Approach, the bank
estimates, for each business line/risk type cell, the probability distribution
functions of the single impact and the event frequency for the next (one) year
using its internal data, and computes the probability distribution function of
the cumulative operational loss."

The quanti�cation model based on LDA is an analogy of the classical
insurance risk model in risk theory. In short, after estimating the likelihood
and the severity of loss events separately2 , the aggregated amount of losses
during a certain period can be represented in the compound form. Especially
we use a compound Poisson model as the model of the aggregated amount of
losses, which is called Cram�er-Lundberg model in the collective risk theory.
Frachot et al.( [8]) give a very detailed description of the LDA implementa-
tion. We highly refer to their approach and illustrations for veri�cation of
our model.

Section 2 presents the simple model based on LDA. In section 3, we give
the implementation of operational risk measurement based on our model
using the actual loss data. On the way, we show some consequences that
give comparisons among various pair of severity distribution and parameter
estimation.

Section 4 discusses the remarks that we use external data to measure
operational risk in the consistent way with internal loss data. The last sec-
tion gives the conclusion, which comments the possibility of insurance for
mitigating operational risk.

The author would like to thank Hideyuki Torii, Osamu Egawa, Shingo
Suzuki and Shu Zeng who develop an operational risk management system,
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OperationalRisk Browser at Numerical Technologies Inc. and also appreci-
ates Eiji Ihori and Keisuke Nakagiri who work for Mitsubishi Trust and Bank-
ing Corp. They have studied the methodology to quantify the operational
risk with the author. A part of this paper is scheduled to be contained in
the book \THE PRACTICE OF OPERATIONAL RISK MANAGEMENT"
written in Japanese.

2 The model

The model suggested here is not especially new but has been actively studied
for a long time in the category of collective risk theory of the insurance
�eld. One must think that the characteristics of the loss event related to the
operational risk are similar to that of the accident event in non-life insurance.
The point is that the loss due to the accident may be quite large though the
likelihood of the accident is not so high. Therefore, it seems extremely natural
to make advantage of the model researched in the insurance �eld to develop
a quanti�cation model of the operational risk.

Immediately you see that the below model is essentially a compound
Poisson model, which is often called Cram�er-Lundberg model in the risk
theory except for the terminology of the operational risk.

The period during which the operational risk will be measured is �xed,
for example one year in the future. Though the New Basel Capital Accord
told to quantify the operational risk for each cell, which is speci�ed as a given
pair of a business line and a event type, we assume that there is only one cell,
that is, both business lines and event types are not considered. We avoid the
general description of the loss distribution model and present a compound
Poisson model directly. See [8] for the more general description.

Denote by N the random variable which represents the number of loss
event occurred during a given period. N is assumed to follow a simple Poisson
distribution with the mean parameter �.

For k = 1; � � � ; N , let Xk be the random variable that stands for the
severity of k-th loss event. It is assumed that X1; X2; � � � ; are independent
and every Xk is independent of N . Roughly speaking, there is no tendency
for the occurrence of loss events and the size of severity and the number of
loss events are uncorrelated. Besides, X1; X2; � � � ; have the same distribution
function F (x) = P (Xk � x). Since the value of Xk is supposed nonnegative,
F should be the function whose domain is the real number more than or
strictly larger than zero. For example, log-normal, Weibull, Gamma, Pareto
and so on.

Then the aggregated severity during the period, Z is de�ned as

Z = X1 +X2 + � � �+XN =
NX
k=1

Xk: (1)

We denote by G(z) the distribution of Z. In our setting, G is expressed
in terms of Poisson distribution and the convolution of F in the following
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way.

G(z) =
1X
n=1

e��
�n

n!
F n�(z); (2)

where F n� is the n-fold convolution of F .
Then the operational VaR with a con�dence level q is de�ned by

OPVaR(q) = inffzjG(z) � qg (3)

If it is possible to know G(z) explicitly, we can easily compute the op-
erational VaR. However, it is hard to achieve the explicit expression of the
distribution of Z in general, so we will use Monte Carlo simulation to get the
operational VaR later.

3 Veri�cation of model by case

This section veri�es the model suggested in the previous section by using
actual reporting data on human errors or system breakdown. At �rst, we
overview the characteristics of actual data, then show the result of parameter
estimation for a distribution of severity per event, and �nally operational VaR
is calculated by using simple Monte Carlo simulation.

3.1 Analysis of reporting data

In this analysis, we used a part of the malfunction reporting data which the
Mitsubishi Trust Bank had collected for the Quantitative Impact Study 1
(QIS1) report.

The reporting data is divided into six business lines like Agency services,
Asset management, Commercial banking, and so on. The event type, that
is, causes of loss event is not considered this time.

We just take notice of the date when a loss event was reported (not
occurred nor exposed), the severity and the business line which the loss event
belonged to. Actual data included the near-miss case, that is, the case where
the error resulted in zero loss. We omitted zero-loss cases in our analysis
though such cases should be used in some way.

Moreover, we transformed the actual amount of loss into the zero dimen-
sion quantity by dividing it by an exposure indicator given every business
line and then changing its scale.

One reason is, of course, that it is not possible to make public raw �gures
of loss due to the character of data; we think that it is an essential data
processing method in order to understand the severity of the loss event and
to make a comparison of the impact among di�erent lines or banks, since the
impact of severity really di�ers according to the number of workers, trading
volume, the total asset and so on, that is, the \size" each business line and
bank. Hereafter in this paper, \the severity" means the quantity after some
transformations.
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Furthermore, we notice that we do not especially consider the case that
several events was combined and was reported as one loss event although it
seems that it is necessary to do some processing about it.

To begin with, we show a summary of reported data.
Table 1 shows the numbers of loss events each business lines during some

period. The business line is indicated by the number, but we notice that the
alphabetical order of the business line does not correspond to the number.

BL1 BL2 BL3 BL4 BL5 BL6 Total
The whole period 400 160 86 5 104 122 877

Table 1: The numbers of loss events each business lines

The number of loss events is necessary when estimating the mean param-
eter of the Poisson distribution, which is assumed as a model of the likelihood
distribution. Indeed, it may be desirable to utilize the ratio of the number
of loss events occurring to the total number of transactions since the actual
number itself seems senseless; the more the business grows in the future, the
more errors are likely to happen. Besides, the mean parameter is given by
averaging the loss frequency among several periods.

However, this time we use the actual number of events as parameter for
Poisson distribution by assuming that the size of business will be stable.

Next, we examine the history of the average loss per day and the aggre-
gated loss per day and whether there is a remarkable trend on occurrence of
loss events. Figure 1 displays the average loss per day during the period and
Figure 2 shows aggregated loss per day during the same period.

Since it is supposed that all the loss events independently happen in both
likelihood and severity, it is essential to examine the existence of outstanding
bias on the data. It can be observed that this sample data does not have a
remarkable bias.
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Figure 1: The average of historical
severity per day
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Figure 2: The aggregated severity per
day
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3.2 Parameter estimation of severity distribution

Now, we use the reported data of the business line 1(BL1) and the line 6(BL6)
to estimate parameters of some candidates for severity distribution, that is,
the distribution of the amount of the loss for one event. As for BL1, there
are a lot of numbers of accident data as seen in Table 1 while in fact BL6
contains many samples during a narrow range, so BL6 is chosen so as to
examine the in
uence.

Log-normal(LN), Weibull, Gamma and General Pareto(GPD) distribu-
tion are chosen as candidates for severity distribution here. The speci�cation
of each distribution in this paper is as follows.

1. Log-normal distribution：LN(�; �), � > 0; � > 0

dens. func. ： f(x;�; �) =
1p
2��x

exp
�
�(log x� �)2

2�2

�
x > 0

2. Weibull distribution：Weibull(�; �), � > 0; � > 0

dist. func. ： F (x;�; �) = 1� exp

�
�
�x
�

���

3. Gamma distribution：Gamma(�; �), � > 0; � > 0

dens. func. ： f(x;�; �) =
1

���(�)
x��1 exp

�
�x

�

�
x � 0,

where �(x) is a Gamma function.

4. General Pareto distribution(GPD)：GPD(�; �), � 2 Rnf0g; � > 0

dist. func. ： F (x; �; �) = 1�
�
1 +

�

�
x
�� 1

�

（F (x; �) = 1� exp
�
�x

�

�
if � = 0)

Moreover, parameters of each distribution are estimated based on several
methods; the least-square method(LSM), the maximum likelihoodmethod(MLM),
and the method of moments(MOM). As for GPD, we apply the method of
probability-weighted moments(MOPWM) instead of MOM.

For MLM and MOM, the estimate values are numerically calculated
through a common procedure by using some numerical technique. On the
other hand, the cumulative empirical probabilities on each loss should be
suitably speci�ed for LSE and MOPWM. Originally the cumulative empir-
ical probability for a certain loss stands for the ratio of the numbers of the
loss less than the target loss to the total number of events. However we re-
mark that cumulative empirical probabilities are speci�ed as follows. When
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the entire number of data is N(400 for BL1 and 122 for BL6),
k

N + 1
is the

cumulative empirical probability for k-th smallest amount of the loss. It fol-
lows that the value corresponding to the largest N 'th data becomes a little
smaller than one.

The estimate of LSE is given by solving the problem minimizing the sum
of the square di�erence between the cumulative empirical probability and the
corresponding probability obtained from the estimated distribution.

MOPWM is the method devised in order to make the method of moments
applicable to the distribution whose moments do not exist. The idea of
MOPWM is the following.

Denote by X1; � � �XN the amounts of loss in the ascending order and
assume that they follow a distribution function F (x; �), where � denotes the
set of parameters. Let p1; � � � ; pN be the cumulative empirical probabilities
corresponding to X1; � � �XN in the ascending order too.

Instead of considering the moments E[Xr]; r = 1; 2; � � � , we take ac-
count of either E[XF (X; �)r] or E[Xf1 � F (X; �)gr]; r = 1; 2; � � � . The
probability-weighted moment estimates is obtained by solving the equations
that the probability-weighted moments above coincides with the correspond-
ing cumulative empirical statistics such as 1

N

PN

k=1Xkp
r
k. Refer to Embrechts

et al. [7] for the more explanation for MOPWM.
For each pair of severity distribution function and estimation method,

the P-P plot is showed below (see Figure 3 - 8). The vertical axis means the
probability implied by estimated distribution function while the horizonal
axis stands for the cumulative empirical probability distribution on each loss.

Naturally, the model can seem better if the P-P plot is as close to the
diagonal as possible. The minimum mean square method gives a better �t
than the others in such a meaning.

However, we should observe the upper-right area more carefully where
the cumulative empirical probability is close to one because VaR of 95% or
99% is paid attention to at the quanti�cation of the operational risk.

In point of �tting at the tail of distribution, the method of method (the
method of probability-weighted moments for GPD) seems to give desirable
results as a whole.

Table 2 represents the value of 95% and the value of 95% of the original
data, and ones based on the estimated parameters for each pair of severity
distribution and estimation method. It follows that the result largely varies
for the same distribution according to the estimation method.

Next, we investigate the tail of the severity distribution by observing the
relation between the theoretical maximum value of the estimated distribution
and the largest points of original data.

First of all, we think about the distribution of the theoretical maxi-
mum value of several independent variables following the estimated dis-
tribution. Figure 9 - 14 show that the relation of high-ranking values of
the original data and a survival function of the theoretical maximum value.
When Fmax(x) is assumed to be a distribution function of maximum value
of N variables, MN = max(X1; � � � ; XN), the survival function stands for
�Fmax(x) = 1� Fmax(x) = P (MN > x). That is, it means the probability by
which the maximum value MN exceeds x. (Think about the distribution of
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BL1 BL6
95% 99% 95% 99%

Actual data 80.3 154.7 29.0 45.2
LSM 237.8 1194.9 29.3 70.2

LN MLM 143.7 621.0 33.7 90.9
MOM 67.5 150.2 22.6 46.2
LSM 106.1 250.2 17.6 27.8

Weibull MLM 40.1 148.8 14.0 34.1
MOM 88.4 142.8 27.1 43.3
LSM 76.5 139.3 17.3 27.0

Gamma MLM 10.2 21.7 7.7 12.2
MOM 94.2 188.8 30.9 58.0
LSM 772.5 24184.3 19.7 35.3

GPD MLM 157.7 1414.2 24.5 53.8
MOPWM 66.1 188.8 23.6 47.5

Table 2: 95 percentile and 99 percentile for each pair of severity distribution
and estimation method
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Figure 3: PP-plot for BL1:LSM
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Figure 4: PP-plot for BL6:LSM
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Figure 5: PP-plot for BL1:MLM
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Figure 6: PP-plot for BL6:MLM
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Figure 7: PP-plot for BL1:MOM
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Figure 8: PP-plot for BL6:MOM
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the maximum value in 400 independent variables for BL1 while the maximum
value of 122 independent variables for BL6. )

As the right end of the curve of survival function of the maximum is
closer to 1(for instance, see the LN case of Figure 12), we can judge the tail
of the estimated distribution is fatter than actual data, for it means that
the theoretical maximum exceeds the actual largest severity by quite a high
probability. In short, the risk is too overvalued.

On the othe hand, from the case of Gamma in Figure 12 it follows that
it is hardly probable that the theoretical maximum exceeds the sixth largest
loss, that is, the risk is too undervalued.
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Figure 9: Survival probability of
theoretical maximum for actual
high-ranked data for BL1:LSE
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Figure 10: Survival probability of
theoretical maximum for actual
high-ranked data for BL6:LSE

3.3 The relation between the threshold level in the
POT approach and calculated VaR

Next, the consequence of the parameter estimation when we apply the POT
approach in the extreme value theory by using only the samples that are
more than a certain threshold among BL1 data 3 . The POT approach is the
method to approximate the excess distribution function given the threshold
by GPD(�; �). For a given distribution function F (x), we de�ne the distri-
bution function of the excess over the threshold u by

Fu(y) = P (X � u � yjX > u) =
F (y + u)� F (u)

1� F (u)
; (4)

where u � y � xF = supfcjF (c) < 1g.
Now we denote by G�;�(u)(x) the generalized Pareto distribution with two
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Figure 11: Survival probability of
theoretical maximum for actual
high-ranked data for BL1:MLM
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Figure 12: Survival probability of
theoretical maximum for actual
high-ranked data for BL6:MLM
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Figure 13: Survival probability
of theoretical maximum for
actual high-ranked data for
BL1:MOM(MOPWM)
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Figure 14: Survival probability
of theoretical maximum for
actual high-ranked data for
BL6:MOM(MOPWM)
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parameters � and �, that is,

G�;�(u)(x) =

8<
: 1�

�
1 + �x

�

�� 1

�

if � 6= 0

1� exp
�
�x

�

�
if � = 0

(5)

where � > 0, and x � 0 if � � 0 and 0 � x � �1

�
if � < 0.

If F satis�es some technical conditions, Pickands, Belkema and de Haan
proved that there exists a positive function �(u) such that

lim
u"xF

sup
0<y<xF�u

jFu(y)�G�;�(u)(y)j = 0

Therefore if u is large enough, we can �nd a � � �(u) and approximate
the tail of the distribution F by

F (x) = (1� F (u))G�;�(x� u) + F (u); x > u:

Suppose that N is the total number of samples and c(u) is the number of

samples exceeding the threshold u. Then we might see F (u) = c(u)
N
, so the

estimate of q-VaR(for example q = 0:95 or 0.99) can be approximated by the
following expression:

VaRq(F ) = u+
b�b�
�� N

c(u)
(1� q)

��b�
� 1

�
; (6)

�̂ and �̂ are the estimates of � and � respectively.
Figure 15 - 17 display how the estimated value of shape parameter �, 95%

and 99%VaR change when the threshold is changed under the constrained
condition that the estimated value of � does not become negative. The
number on the top of the �gures corresponds to the number of excess samples
over the threshold level on the bottom. As for each estimation, it is remarked
that the estimated value of � splashes greatly near the threshold of 29, 42, and
57 probably by the in
uence that comparatively many samples concentrated
near the �gures.

In spite of the characteristic of the original data, it is observed that the
estimated value based on MOPWM and the values of VaR following it are
relatively stable for a threshold. Moreover, except for some ranges in the
least square method and the maximum likelihood method, it is noticed that
both 95% and 99% VaR are computed close to the actual level of severity
since 95% and 99% of the original data of BL1 are 80.3 and 154.7 respectively.

While the e�ectiveness of the POT approach should be studied for more
di�erent samples, it may become a very e�ective method for VaR calculation
in the operational risk management.
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Figure 15: The change of the estimated value of shape parameter �, 95% and
99%VaR when the threshold is changed（BL1:LSM)
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Figure 16: The change of the estimated value of shape parameter �, 95% and
99%VaR when the threshold is changed（BL1:MLM)
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Figure 17: The change of the estimated value of shape parameter �, 95% and
99%VaR when the threshold is changed（BL1:MOPWM)

3.4 Simulation results

At last, we present some simple simulation results of the aggregated severity
for business line 1(BL1) during a certain period. Here, the logarithmic nor-
mal distribution(LN) and the general Pareto distribution(GPD) are taken up
as a model of the severity distribution. The consequence of the least square
method excluded because the risk is too overvalued. Hence the maximum
likelihood method(MLM) and the method of moments(MOM) (method of
probability-weighted moments(MOPWM) for GPD) are tested by the sim-
ulation. The average parameter of the likelihood is assumed to be actual
accident number 400 of BL1 for the observation period. The random num-
bers are generated following Poisson distribution.

Figure 18 - 21 are a histogram for the aggregated severity after 10,000
trials of simulation. The value of 95%VaR (the 500th largest value of the
simulation result) and 99%VaR (the 100th largest value of the simulation
result) are speci�ed as well as the aggregated loss of actual data is speci�ed
with the position in the histogram.

It follows from the simulation results based on MLM estimation (Fig-
ure 18 and 20) that the risk is very overvalued for both LN and GPD when
compared with the value of the actual aggregated loss. On the other hand,
the simulation results based on MOM or PWME estimation (Figure 19 and
21) imply that the aggregated actual loss locates near the median of the
aggregated severities obtained from simulation.
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Figure 18: The histogram of the consequences by Monte Carlo simulation of
the aggregated severity based on the estimation for a pair of LN and MLM
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Figure 19: The histogram for a pair of LN and MOM
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Figure 20: The histogram for a pair of GPD and MLM
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Figure 21: The histogram for a pair of GPD and MOPWM
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3.5 Summary

We have shown some illustrations about the parameter estimation of the loss
distribution model and the simulation of operational VaR in some business
line based on the reporting data.

Though it is just a consideration based on the loss data used in this
analysis, we summarize the result.

� The di�erence between the actual data and the value obtained from the
least square method may be quite large around the tail of distribution
function.

� Generally, the estimation consequence by the maximum likelihoodmethod
is not stable, probably because loss samples have concentrated on a
narrow range. Of course, the number of data is crucial to this method.

� The estimation results by the method of moments(or the method of
probability-weighted moments) are comparatively desirable.

� However, it is hard to conclude which distribution is suitable for the
model of severity distribution only through this veri�cation since the
estimation results can be greatly di�erent according to the estimation
method. It can be better to always take account of a pair of distribution
function and estimation method.

� The POT approach may be e�ective in the future when estimating the
tail distribution more exactly.

We insist that such results may help us to see which distribution and
which estimation are desirable, but it is a danger to decide the pair of the
distribution function and method only from these results. Indeed, it is likely
that the best pair depends upon the characteristics of sample data. Therefore
we need to verify the model for a lot of di�erent types of sample data.

4 Notes on the use of external data

In the last section, we present some illustrations of implementation of LDA
for measuring the operational risk from the internal data. However, the value
of VaR obtained from the simulation may be too low in comparison of the
12% - 20% �gure of minimum regulatory capital that the Basel Committee
thinks of as the suitable level of regulatory capital necessary to cover the
bank's operational risk.

Unless the internal data contains a few cases of very large amount of oper-
ational loss, it seems natural to consider that any version of approach derived
from LDA cannot improve such a situation essentially. Thus it is suggested
the use of external data including the cases of huge loss that happened and
were reported in the past or the stress scenario made arti�cially.

In this section we discuss the questions and remarks when not only the
internal data also the external data is used to quantify the operational risk
based on LDA.

The external data might belong to either of the following two types.

17



1. Large loss cases actually happened at another banks in the past.

2. Loss scenario made arti�cially through self-assessment and so on.

It seems that it is signi�cant to supplement internal data as potential
huge loss with the external loss samples if it is possible to identify what
business line the loss belongs to and it is hard to deny that a similar accident
may not happen from a point of the business circumstance around us.

On the other hand, it goes without saying that it is necessary to under-
stand the amount of the risk qualitatively, through not only the accident
data but also the internal audit and the assessment in the operational risk
management. If the risk scenario suitable for an internal situation can be
made and it can be transformed into the same format of internal data, it will
be said that external data is e�ective to capture the potential operational
risk.

However, there are the following questions about the use of external data.

� How should we evaluate consistently with internal data when scaling
a loss of 10,000,000,000 yen occurred outside? Probably the valuation
depends on di�erent factors like the number of employees, the economic
capital, the size of assets, the weights to each business and so on.
However, it is diÆcult to show a reasonable scaling method. An idea is
to convert the amount according to the risk exposure for the underlying
business line.

� Even if the scaling method is established, it is subjective which exter-
nal cases should be added for estimation of the severity distribution.
Besides, it is hard to presume the likelihood that the similar event will
happen. The supervisory authority should show the guideline of han-
dling the actual external case to the �nancial institution objectively.

� When the stress scenario is added to the internal reported data, the
transparency of the internal audit and assessment is indispensable.
Moreover, we should pay attention to the time lag from the stage of
auditing and assessment to the scenario making and the objectivity of
loss scenario making itself.

� It is necessary to think about the cumulative empirical probability if
we estimate the parameters based on the least square method or the
method of probability-weighted moments. When only the internal data
is used, as seen before, the probability is given in proportion to the as-
cending order. Similarly for the external data, we need to give the value
corresponding to the cumulative empirical probability. For example, if
one assumes that some case may happen only once every 100 years and
the average number of loss event is 400, then the estimated cumulative
empirical probability might be

1� 1

400� 100
= 0:999975(99:9975%)

If once a decade, it might be 99.975%. We need to study how to
estimate the likelihood of the external data occurring.

18



� The maximum likelihood method and the method of moments might
be avoided when the external data is added to the sample data for
estimating the parameters of severity because even if the number of the
external data added is only one, it might make a great in
uence on the
estimates. Di�erent from the other methods, a cumulative empirical
probability is not necessary, so the inserted external data is equivalent
to the other internal data in terms of the likelihood if not adjusted.

5 Conclusion

In this paper, we discuss how to implement LDA through the veri�cation of
the operational risk measurement based on the Cram�er-Lundberg model. At
this stage, it is diÆcult to judge whether our model based on LDA is helpful
for operational risk management and control and we should remember that
LDA is just one of many various approach to quantify the operational risk.
Still, we are sure to keep on studying the LDA method in the future since
it is expected that the number and the quality of signi�cant loss data will
increase.

Moreover, this approach motivates us to do research in the statistic theory
about small and non-stationary samples, contrary to the large sample theory
for the asymptotic characteristics.

Furthermore, the original model seems consistent with the valuationmodel
in the insurance �eld. It seems preferable the application of insurance for
hedging operational risk. Insurance product for operational risk will be more
and more demanded in the future, so this approach should be also studied
from a point of risk-mitigating cost by insurance. In the working paper pub-
lished by the Risk Management Group of the Basel Committee [5], the issue
of insurance as an operational risk mitigant is discussed. Now, the Group
seems to intend to limit the total impact of insurance risk mitigation on the
�nal capital amount, but implies that works remains to be done to re�ne a
potential treatment for insurance under the operational risk capital charges".
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Notes

1 This phrase `direct or indirect' is deleted from the working paper published
in September 2001 [5].

2 The likelihood means the number or the frequency of operational loss events
during a given period. The severity stands for the amount of one loss event.

3 See Embrechts et al. [7] and McNeil [13] for Extreme value thoery.
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