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ABSTRACT

In this paper we revist an economic modd of Buhlmann (ASTIN Bullein, 1980) ad

derive equilibrium pricing trandforms. We obtain the Esscher Trandorm and the Wang

Transform under different sets of assumyptions on the aggregate economic environment.

KEYWORDS AND PHRASES

Equilibrium  Pricing, Esscher Trandorm, Wang Trandform, Didorted Probability,

Exponentid Tilting, Optima Exchange.

ACKNOWLEDGMENTS

The author thanks Hans Buhlmann, Danid Heyer, Leigh Hdliwdl, Stephen Mildenhdl,

and Virgnia Young for hepfu comments All erors and omissons reman to be the
author’s.

" This paper is dedicated to Dr. Hans Buhlmann for his tremendous contributions to the actuaria
profession and the international actuaria community.



1. INTRODUCTION

In the actuarid research literature, there have developed many probability transforms for
pricing financid and insurance risks.  Since the pricing of risk is dways done in an
economic/market  environment, it is theoreticdly desrable to derive pricng transforms
from a sound economic modd that reflects the collective risk preferences of the market
paticipants. Dr. Hans Buhimann, in his miletone paper published in 1980 ASTIN
Bulletin, has deve oped such an economic modd.

Buhimann argued that in red-life Stuations premiums are not only depending on the risk
to be covered but dso on the surrounding market conditions. He defined an economic
premium principle as

H: (X, 2 > PricgX],
where Z represents the market condition (eg., aggregate risk, collective wedth,

correlaion, etc).

With the god of devedoping a sound economic premium principle, Buhimann conddered
a risk-exchange modd where dl individud agents are acting to maximize hisher own
expected utility. Buhlmann's risk-exchange modd has roots in mathematica economics.

Under a st of assumptions on the aggregete economic environment, Buhimann derived
equilibrium premiums as those obtaned from the Esscher Transform, which is a smple
exponentid tilting of the probebility dendty: f*(x) =c: f (x):>exp(l x), where ¢ is a re-
scding congant. The Esscher Tranform has shown tremendous successes in pricing
options, see Gerber and Shiu (1994) and Buhlmann & al. (1998).

In another mgor line of research, Venter (1991) made an obsarvation that insurance
prices by (excess-of-loss) layer imply a trandormed didribution. This inspired Wang
(1995, 1996) to propoe premium cdculdion by goplying a digotion to the cumulaive
digribution function:

F* (X)=9[F(X)].



where g[01]->[01] is an incessng function with g(0=0 and g(1)=1. Among the
digortion family, the proportiond hezards (PH) transform is widdy known to actuaries,
patidly due to its smplicdty. A newly emerged digtortion, the Wang Trandform, extends
CAPM for underlying assets and Black-Scholes formula for options, which has brought
the line of research on digortion to a new teritory bordering with finencid economics. In
this pgper we dhdl discover how the digortion approach is rdaed to Buhlmann's
equilibrium pricing modd.

In sections 2, we revidt the economic modd of Buhlmann and derive equilibrium pricing
tranforms. We obtan the Esscher Trandorm and the Wang Transform from the
equilibium modd, but under diginct s#ts of assumptions regading the aggregae
economic environment. By focusng on assumptions underlying these pricing transforms,
we gain ingghts about their differences and connections.

In section 3 we discuss “generd  exponentid tilting” to further explore Buhlmann's
results. We show how the exponentid tilting is related to the distortion pricing gpproach.

In section 4 built upon Buhlmann's results we discuss how systematic risks can be
reflected by a digtortion function.

In section 5 we give interpretations for the generd economic modd of Buhlmann (1984).

2. BUHLMANN'’'S EQUILIBRIUM-PRICING MODEL

Congder risk exchanges among a collective of agents j=1, 2, ..., n, (typicdly rensurers

insurers, buyers of direct insurance, etc).

Each agent is characterized by hisher
(@) utility function u;(x), with u;&x) >0, and y&X)£O;
(i) initial wedlth W.



Each agent | is facing a risk of potentia loss Xj(w) and is buying a risk-exchange Y;(w),
where w represents a date in a probability space (W, P). If agent j is an insurance
company, we can think of Yj(w) as the sum of dl (re)insurance policies bought and sold
by| asif it were“one’ contract.

Wheress the origind risk X, belongs to agent j, the risk exchange Y can be fredy
bought/sold by agent j in the market. Buhlmann introduced the concept of pricing density
f (W) such that

PricelY,] = QYJ. (W)f (w)dR(w), 21
Buhimann pointed out that the pricing dengty f(w) could be understood as an dteraion
of the ectuaridly objective probabilities.

Definition 2.1: Thepair {Y,; and f .} arecaledin equilibriumif
(C1). For dl j, Elu, (W, - X, +Y,, - PricelY, ])| is maximum among 4l
possible choices of the exchange variables ;.
(C2). &".Y. (W) =0 foral win W,

j=1 &l
In the equilibrium, Y, ;is cdled the equilibrium exchange, and f the equilibrium

pricedensity.

Theorem 2.1 [Buhlmann, 1980] Assume that each agent j has an exponentid
utility function u; (x) =1- exp(- | ;x), the equilibrium price density sdtifies

¢ = 200 ZO0) -

M) Elop(l 2) @2
where

zZw)=a",x,;w) 23

isthe aggregaterisk, and | satisfies



Ii +—+L +|—. (29

From Theorem 2.1, the equilibrium price for any risk Xis

E[ X exp(l Z2)]
H X,I]= , 2.
Buhlmanr[ ] E[exp(l Z)] ( 5)
with Z in equation (2.3) and | inequetion (2.4).
Buhlmann (1980) further assumed that X and Z- X are independent, and derived that
Ho x1 = EDCeR X Ele(l (Z- X)) _ EIX el X)] 26

Elexp(l X)]>Eexp(l (Z - X))] Elexp(l X)]

Theorem 2.2 Under the set of assumptions
(AS-18): The insurance market contains a smal number of agents, and
(AS1b): Individud rik X is independent from Z X, where Z is the
aggregaerisk,
the equilibrium price in equaion (26) is the same as tha obtaned from the
Esscher Transform:

f* (x) _ fOyexp(l ¥
Elexp(l X)] -

Now we examine more carefully the assumptions underlying the derivaion of the
Esscher Premium in equetion (2.6).

For an insurance market with a large number of agents (policy-holders, insurers and
reinsurers), the dze of an individud risk X is negligible rdaive the indusry aggregate
loss Z. According to equation (24), the parameter | will be dose to zero. Usng equetion
(2.6) we get

E[X exp(l X)] _
Ef[exp(1 X)]

M | oor Heunimand Xo 1] = 1M g0,

E[X].



For an insurance market in which any individud risk is negligible relative to the sze of
the aggregate risk, under the assumption that X and Z- X are independent, the equilibrium
premium for risk X equals the expected loss without risk loading.

To avoid the complexity of deding with infinitdy lage Z and infinitdy smdl |, it is
useful to re-scale Zto Zo =(Z- E[Z])/s[Z] and rewrite (2.5) into the following:
E[Xexp(l oZ)]

Elexp(l oZ)]

HBuhImalnn[X’I 0] = (27)

Note tha Zy has mean=0 and variance=l. For the rescded aggregae risk Zp, the
parameter | o represents the market price per unit of risk.

To cary on the andyds of Buhimann (1980), we make the following st of revisd

assumptions:

(AS23). In aggregate, the totd loss Z has a normd digribution, thus the rescaed
vaiable Zy =(Z- E[Z])/s[Z] has astandard normd didribution F .

(AS2b). For risk X with odf F(x), there exigs a gandard normd varigble V such that
X=F(F(V), and {V, Z} have a bivaiage normd disribution with correaion
coefficient r .

Remarks:

Assumption (AS29) is reasonable for an insurance market in which (i) there are a
large number of agents and uncorrdaed risks, and (i) each individud risk is
negligible in Sze rdative to the aggregete indudtry risk.

Assumption (AS2b) is a direct extensgon of the multivariae normd assumption
used in the deivaion of CAPM. For risks with generd margind didributions,
here we are assuming a norma-copula correlation dructure between X and Z (see
Wang, 1998; Frees and Vadez, 1998; Embrechts et d. 1999).



Based on assumption (AS-2b), there exids a normd vaiadle Y independent of X such
thaZ,=r ¥ +Y. Ta&king Z,=r ¥+Y ino egudion (27), ad usng the
independence between Xand Y, we have

Hgunimand X1 1= Eg@?g?;;giﬁ;{i?g?;ﬁ)] ’

which further leadsto
E[X:exp(I V)]

—E[W]—, wherel = | 0- (28)

HBuhIrrann[Xl| ] =

Theorem 23 Under the sat of assumptions in (AS28) and (AS-2b), the
eguilibrium premium in equetion (2.8) is identicd to tha obtaned by the Wang
Transform

F*(X)=F[F *(F)- 1], 29

withl =r | o.

Proof: See Section 3, Example 3.1.

Recdl tha | represents the aggregate market price per unit of risk and r is the
correlation coefficient between the normdized varigbles V and Z,. The rdation | =rl ¢ isa
genadization of the cdassc CAPM to risks with generd probability distributions (see
Wang, 2000, 2001).

Remark 1. The Wang Trandorm is a newly emerged didortion function among the
digortion family tha indudes the PHtrandorm. Under a st of axioms Wang, Young
and Panjer (1997) showed that dl coherent risk measures can be represented by a
digortion. Among the family of ddortions, only the Wang Trandorm can recover
CAPM for underlying assets and Black-Scholes formula for options.

Remark 2. As noted in Buhimann (1984), the main result in Theorem 2.1 is 4ill vdid
under generd utility function assumptions for the paticpants Therefore, under the



assumptions (AS2a) & (AS2b), Theorem 23 dffectivdy gives an  independent
derivation of CAPM.

Remark 3. The corrdation between risk X and the aggregate portfolio risk Z is the main
driver for risk load. The rddion |=rl( is raher intuitive Snce highly corrdaed risks
demand higher risk loading, such as naturd or manmade catagtrophe risks. In practice,
the meaning of corrdation should be interpreted more broadly than the daidicd
association in the cdam generdting process. From an insurer’s perspective, the correation
between profits of insurance contracts is equaly important as the corrdation between
losses. Parameter uncertainty, pricing cycle, and regulatory capitd requirements  dl
contribute to the correlaion between profits.

3. EXPONENTIAL TILTING & DISTORTION TRANSFORM

To explore further Buhlmann's main results in equation (22) & (2.5), we define a generd
exponentid tilting and discuss its connections with the distortion transform.

Congder varidbles X and Z in a probability space (W, P) with probability digributions F
and Q, respectively.

Definition 3.1 The transformed probability (dengty) function

Elexp(1 2)| X = ]

0= T e 2)]

: 3.1)

is cdled an exponentid tilting of X, induced by Z.

As specid cases of Definition 3.1, when Z= X we recover the Esscher Transform; When
Z= h(X) is an increasing function of X, we recover the generdized Esscher transform by
Heilmann (1989), induding the specid case of h(X)=1- exp(- | X) in Kamps (19998).
For any probability digribution F(x), we defineitsinverse function as

FY(u) =sup{x: E(x) <u}, for Eu£L



Assume that there exists a uniform random variable U such that X=F 1(U) and Z=Q (U).
We sy that X and Z are comonotone. Here “comonotone’ means perfect correation,
which extends beyond the concept of pefect liner corrdaion. There is no
diversfication benefit between “co-monotone’ risks, see Wang and Dhane (1998).

When X and Z are co-monaone, it may be impossible to express Z as a direct function of
X. For example, condder the case that X has a Benoulli digribution and Q is an
exponentid didribution.

Theorem 3.1 When X and Z are co-monotone, the exponentid tilting in equation
(3.1 impliesatransform: F(x)>F*(x) by

F()

ol QL) (32)

0

NG

where
Mo(l) = g‘f—'Xp(l Q™ (u) pu
exists for somel >0.
When F is continuous & X, the transformed probability dengty a xis
£ ) = 1000l Q7 F )

. 33
Mot ) 33
When F isdiscrete on {x1, %, ..., Xm}, the transformed probability &t x; is
F(x;)
00 = el Qu)Ju. (34)
Q F(X.1)

We cdl equation (3.2) a co-monotone exponential tilting, induced by the kernel Q.

Congder an important case when the kernd Q isunrelated to the distribution F.

Theorem 3.2 When the kernd Q is independent of the didribution F, the co-
monotone exponentid tilting (3.2) is equivaent to adigortion F* (X)=g(F(x)) with



ol >Q H(v)av

_0
g(u) YR : (35

Proof: The key here is that Q is independent of F. It then follows directly from
the comonotone exponentid tilting equation (3.2).

Example 3.1 When the kernd Q= is the dandard normd didribution, the co-
monotone exponentid tilting (3.2) recovers the Wang Trandform:

F*(y)=F(F*(F(y)-1).

Example 3.2 When the kernd Q(t)=1-exp(-t), for 30, is an exponentid
digribution, the comonotone exponentid tilting (3.2) recovers the proportiond
hazards (PH) transform as introduced in Wang (1995):
F*(x)=1- (1- F()*' ,with0£1 <1,
which corresponds to the distortion g(u)= 1- (1- u)*"'.
Thisresult gives an interpretation of the parameter | in the PHtransform.

Example 3.3 When the kernd Q()=t, for O £ t £1 is a uniform didribution, the
co-monotone exponentid tilting (3.2) recovers the exponentid digtortion:

_exp(lu)-1

,forO<uf£l
exp(l)-1

g(u)

Example 3.4 When the kernd Q@2 =Gamma(z, a, b) has a gamma didribution
with mean=a/b, the comonotone exponentid tilting (3.2) corresponds to the
fallowing digortion:

g(u) =Gamma (Q *(uj;a,b - 1).

10



For the digortion in (3.5) we have

g'(u) =exp(l Q"*(u))>0. (39)
When Q(X) is differentigble, we have
g"(u) =1 ep(l Q X(u))/Q@Q (w)20,  forl >0. 37)
For the Beta family of digortion (Wirch and Hardy, 1999)
F(x)=1- ’ Fggdta_l(l' Ml t
O "Gab)

to be an exponentid tilting with | >0, it is necessary that a£l and b3 1.

Fndly we offer a comment on the numeicd implementations of co-monotone
exponentid  tilting. Computer cdculaions admost dways use discrete data  points.
Condder a discrete representetion {x1 < xo <¥a <xm} of variable X where F(xm)=1. One
would need to peform numericd integration to carry out the exponentid tilting as shown
in equation (3.4). The reader needs to be aware of that the Smple approximation by

£2(x)» f(x,) el XQF(x,))/My() (38)
is often very poor, egecidly a the tals of the digribution. For the Wang Transform and
PH-tranform, we have Q *(F(xm))=+¥, thus the approximation f* (xn) in (38) is
undefined. Such numericd difficulties can be avoided by goplying the digortion in (35)
directly on the (discrete) cumulative digtribution function.

1



4. SYSTEMATIC RISKS & THE DISTORTION APPROACH

Condder Buhlmann's economic modd in section 2, we assume that risk X can be
decompaosed into two parts
X= Xys + Xnon,

where

Xsys (being co-monotone with Z) represents the systemeatic portion of X, and

Xnon (being uncorrdaed with 2) represents the idiosyncrasy or non-systemétic

portion.

By definition, Xsys and Xnon are uncorrelated.

From equations (2.5) & (2.6) we have

_ E[Xgs rexp(l Z)]
Buhln‘rann[x’| ] - E[Xnon] + E[exp(l Z)] .

In other words, Buhimann's equilibrium pridng modd indicates tha only the sysemdic
risk requires risk loading.

H 4.1

For convenience, we assume tha the didribution F for a risk X only reflects the
sysematic risk of X. For practicaly minded reeder, this is quite in agreement with redlity.
For ingance, life insurers are generdly not too concerned about the volaility of an
individud life contract, but rather more concerned about the sysematic errors in ther
edimate of mortdity rates, and sysematic shocks. As a result, in the pricing exercise by
insurers, only sysemdic risks enter into the didribution F, manifested in the modding of
potentia variaions for alarge block of contracts, or for awhole line of busness, etc.

Inlight of equation (4.1) we now make the fallowing smplifying assumptions:

(AS3d). All potetid varidions that ae reflected in the didribution F are
systematic risk only. Asaresult, risk X is co-monotone with the aggregete risk Z



(AS3b). There are many market participants so that the re-scaed aggregate variable
Zy =(Z-E[Z])s[Z] hes a didribution Q which is unrdated to the individud risk
digribution F;.

Theorem 4.1 Under the assumptions in (AS-38) and (AS-3b), the equilibrium price
dengty in equation (2.2) isidenticd to the digtortion F*(x)=g(F(X)) with

ol QH(v))dv
-0
g(u)= Mol )

Specidly,
when Q is an Exponentid(1) digtribution, we recover the PHtransform;
when Q is andard normd didtribution, we recover the Wang Transform.
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5. BUHLMANN’S GENERAL ECONOMIC MODEL

In a follow-up paper, Buhlmann (1984) extended his economic premium princple usng
generd utility functions for esch participant. He discovered that dl equilibrium prices are
locdly like the one where agents have exponentid utilities, the only difference being that
rnsk averson is no longer condant but depends on the agents wedth. His generd

economic modd provides further indghts on the rdation between risk premium and
aggregate market conditions.

Under gengrd utility assumptions, Buhlmann usad the notion of absolute risk averson of
Pratt (1964):

AX)= - U BX)/ uj€x), (5.)
which depends on the amount of net wedth x. Note that for an exponentid utility

function u; (x) =1- exp(- | ;x) wehave A(X)= 1 (constant).

Buhimann showed that equilibrium exids under only modest theoreticd assumptions He
pointed out that this equilibium aso coincides with the Pareto optimd exchange in
Borch (1962).

As an important observation, Buhimann pointed out thet in equilibrium Y, ; and fshould
depend on w only through Z(W)Zér;:lxj(W). As a result, Bunlmann introduced a

generic dement h=2(w).

Theorem 5.1 [Buhlmann, 1984] Unde genad utlity assumptions the
equilibrium pricing density satisfies

fo'(h)
——=AW,h), (5.2
fe()
where A(Wh) isthetotd risk aversons satisfying
1 o n 1
=a. (GX)]

AW) iAW X () +Y,, () - PricelY,, ()]

14



From equetion (5.2) we can see that the locd behavior for the equilibrium pricing densty
is the same as that for the exponentid utilities.

Theorem 5.1 provides additiond indghts to the paameter | SA(Wh). As the totd risk-
averdon of the market, the parameter | depends on the aggregate wedth (or capitd) of
the market participants. The presence of excessve capitd will drive down the parameter
| =A(W,h) and the resulting insurance prices. A shortage of capitd can boogt the levd of
| =A(Wh) and the resulting insurance prices.

The insurance industry has experienced surprises by unexpected catastrophe events, For
instance, the huge insurance losses due to 1992 Hurricane Andrew, and the September
11, 2001 Terror Attack on America

Buhlmann's economic modd can explan some of the after effects of unexpected
catastrophe events.

d As a Bayesan updae, the edtimated prdocbility of loss will increese
especidly for large loss amounts.

b A caadrophe may Smultaneoudy impact many lines of busness This will
elevate the percelved corrdation between lines of business, and have an effect
of increasing the systematic risk for X;.

0 The make price of rik, | =AW, h) in equation (5.3), will increase because of
the depletion of the aggregate wedth after paying for the occurred catastrophe
loss

d The compounding effect of these factors is a dramdic increese in risk load
and premium retes.

€ Because of the increase in the prospective Sharpe raio | =A(Wh) in (5.3),
“gnat” cgpitd may be injected from the outdde to take advantage the
increased Sharpe raio prospect, as evidenced in new entrants to the insurance
market after hurricane Andrew & Terror Attack.

15



6. UMMARY

For finenda and insurance risks, ther equilibrium prices will generdly depend on
assumptions about the utility functions of the market participants. Buhimann's (1980)
economic modd is very profound in that egquilibrium pricng tranforms can be derived
under generd utility functions of the market participants. Other good reference papers on
equilibrium  rideexchanges indude Aase (1993), Taylor (1992), Gerber and Pafumi
(1998). In a practicd context, Meyers (1996) dso takes an equilibrium pricing approach
to caculaing risk load.

There are fundamentd differences between optionpricing and insurance pricing (see
Mildenhdl, 1999). It is remarkeble that the Esscher Trandorm (for option pricing) and
the Wang Transform (for insurance pricing) can both be derived from the same optimd
risk-exchange modd of Buhlmann (1980).

Buhlmann's modd indicates that only non-diversfidble risks require risk loading. In
practice, there are good reasons to interpret non-divergfiadle risks more broadly than loss
correlation.

Buhimann's generd economic modd (1984) indicates that indusry over-capitdization
will likdy leed to lower risk loading, Likewise indudry under-capitdization will likdy

leed to higher risk loading.

In summary, Buhlamnn’s economic modd has much to offer to the actuarid professon.

16
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