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KEYWORDS AND PHRASES 

 

Equilibrium Pricing, Esscher Transform, Wang Transform, Distorted Probability, 

Exponential Tilting, Optimal Exchange. 

 

 

ACKNOWLEDGMENTS 

 

The author thanks Hans Buhlmann, Daniel Heyer, Leigh Halliwell, Stephen Mildenhall, 

and Virginia Young for helpful comments. All errors and omissions remain to be the 

author’s. 

 

                                                 
*  This paper is dedicated to Dr. Hans Buhlmann for his tremendous contributions to the actuarial 
profession and the international actuarial community. 



 2 

1. INTRODUCTION 

 

In the actuarial research literature, there have developed many probability transforms for 

pricing financial and insurance risks.  Since the pricing of risk is always done in an 

economic/market environment, it is theoretically desirable to derive pricing transforms 

from a sound economic model that reflects the collective risk preferences of the market 

participants. Dr. Hans Buhlmann, in his milestone paper published in 1980 ASTIN 

Bulletin, has developed such an economic model. 

 

Buhlmann argued that in real-life situations premiums are not only depending on the risk 

to be covered but also on the surrounding market conditions. He defined an economic 

premium principle as  

H: (X, Z) à Price[X], 

where Z represents the market condition (e.g., aggregate risk, collective wealth, 

correlation, etc). 

 

With the goal of developing a sound economic premium principle, Buhlmann considered 

a risk-exchange model where all individual agents are acting to maximize his/her own 

expected utility. Buhlmann’s risk-exchange model has roots in mathematical economics.  

 

Under a set of assumptions on the aggregate economic environment, Buhlmann derived 

equilibrium premiums as those obtained from the Esscher Transform, which is a simple 

exponential tilting of the probability density: f*(x) = )exp()( xxfc λ⋅⋅ , where c is a re-

scaling constant. The Esscher Transform has shown tremendous successes in pricing 

options, see Gerber and Shiu (1994) and Buhlmann et al. (1998). 

 

In another major line of research, Venter (1991) made an observation that insurance 

prices by (excess-of-loss) layer imply a transformed distribution. This inspired Wang 

(1995, 1996) to propose premium calculation by applying a distortion to the cumulative 

distribution function:  

F*(x)=g[F(x)], 
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where g:[0,1]à[0,1] is an increasing function with g(0)=0 and g(1)=1. Among the 

distortion family, the proportional hazards (PH) transform is widely known to actuaries, 

partially due to its simplicity. A newly emerged distortion, the Wang Transform, extends 

CAPM for underlying assets and Black-Scholes formula for options, which has brought 

the line of research on distortion to a new territory bordering with financial economics. In 

this paper we shall discover how the distortion approach is related to Buhlmann’s 

equilibrium pricing model. 

  

In sections 2, we revisit the economic model of Buhlmann and derive equilibrium pricing 

transforms. We obtain the Esscher Transform and the Wang Transform from the 

equilibrium model, but under distinct sets of assumptions regarding the aggregate 

economic environment. By focusing on assumptions underlying these pricing transforms, 

we gain insights about their differences and connections. 

 

In section 3 we discuss “general exponential tilting” to further explore Buhlmann’s 

results. We show how the exponential tilting is related to the distortion pricing approach. 

 

In section 4 built upon Buhlmann’s results, we discuss how systematic risks can be 

reflected by a distortion function. 

 

In section 5 we give interpretations for the general economic model of Buhlmann (1984). 

 

2. BUHLMANN’S EQUILIBRIUM-PRICING MODEL 

 

Consider risk exchanges among a collective of agents j=1, 2, …, n, (typically reinsurers, 

insurers, buyers of direct insurance, etc).  

 

Each agent is characterized by his/her  

(i)  utility function uj(x), with uj′(x) >0, and uj′′(x)≤0; 

(ii) initial wealth Wj. 
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Each agent j is facing a risk of potential loss Xj(ω) and is buying a risk-exchange Yj(ω), 

where ω represents a state in a probability space (Ω, P). If agent j is an insurance 

company, we can think of Yj(ω) as the sum of all (re)insurance policies bought and sold 

by j as if it were “one” contract. 

 

Whereas the original risk Xj belongs to agent j, the risk exchange Yj can be freely 

bought/sold by agent j in the market. Buhlmann introduced the concept of pricing density  

φ(ω) such that 

∫Ω
Ρ= )()()(][Price ωωφω dYY jj ,    (2.1) 

Buhlmann pointed out that the pricing density φ(ω) could be understood as an alteration 

of the actuarially objective probabilities. 

 

Definition 2.1: The pair { jeY , and eφ } are called in equilibrium if 

(C-1). For all j, ( )[ ]][Price ,, jejejjj YYXWuE −+−  is maximum among all 

possible choices of the exchange variables Yj. 

(C-2). 0)(
1 , =∑ =

ωn

j jeY  for all ω in Ω. 

In the equilibrium, jeY , is called the equilibrium exchange, and eφ the equilibrium 

price density. 

 

Theorem 2.1 [Buhlmann, 1980] Assume that each agent j has an exponential 

utility function )exp(1)( xxu jj λ−−= , the equilibrium price density satisfies: 

)][exp(
))(exp()(

ZE
Z

e λ
ωλωφ = ,     (2.2) 

where  

)()(
1

ωω ∑ =
= n

j jXZ      (2.3)  

is the aggregate risk, and λ satisfies  
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+++= Λ .      (2.4) 

 

From Theorem 2.1, the equilibrium price for any risk X is 

)][exp(
)]exp([

],[
ZE

ZXE
XH Buhlmann λ

λ
λ

⋅
= ,    (2.5) 

with Z in equation (2.3) and λ in equation (2.4). 

 

Buhlmann (1980) further assumed that X and Z−X are independent, and derived that 

)][exp(
)]exp([

))]([exp()][exp(
))]([exp()]exp([

],[
XE

XXE
XZEXE

XZEXXE
XH Buhlmann λ

λ
λλ

λλ
λ

⋅
=

−⋅
−⋅⋅

= .  (2.6) 

 

Theorem 2.2 Under the set of assumptions: 

(AS-1a): The insurance market contains a small number of agents, and 

(AS-1b): Individual risk X is independent from Z−X, where Z is the 

aggregate risk, 

the equilibrium price in equation (2.6) is the same as that obtained from the 

Esscher Transform: 

)][exp(
)exp()(

)(*
XE

xxf
xf

λ
λ

= . 

       

Now we examine more carefully the assumptions underlying the derivation of the 

Esscher Premium in equation (2.6).  

 

For an insurance market with a large number of agents (policy-holders, insurers and 

reinsurers), the size of an individual risk X is negligible relative the industry aggregate 

loss Z. According to equation (2.4), the parameter λ will be close to zero. Using equation 

(2.6) we get 

][
)][exp(

)]exp([lim],[lim 00 XE
XE

XXEXH Buhlmann =⋅= +→+→ λ
λλ λλ .    
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For an insurance market in which any individual risk is negligible relative to the size of 

the aggregate risk, under the assumption that X and Z−X are independent, the equilibrium 

premium for risk X equals the expected loss without risk loading. 

 

To avoid the complexity of dealing with infinitely large Z and infinitely small λ, it is 

useful to re-scale Z to Z0 =(Z−E[Z])/σ[Z] and rewrite (2.5) into the following: 

)][exp(
)]exp([

],[
00

00
0 ZE

ZXE
XHBuhlmann λ

λ
λ

⋅
= .    (2.7) 

 

Note that Z0 has mean=0 and variance=1. For the re-scaled aggregate risk Z0, the 

parameter λ0 represents the market price per unit of risk.  

 

To carry on the analysis of Buhlmann (1980), we make the following set of revised 

assumptions: 

 

(AS-2a). In aggregate, the total loss Z has a normal distribution, thus the re-scaled 

variable Z0 =(Z−E[Z])/σ[Z] has a standard normal distribution Φ. 

(AS-2b). For risk X with cdf F(x), there exists a standard normal variable V such that 

X=F−1(Φ(V)), and {V, Z0} have a bivariate normal distribution with correlation 

coefficient ρ. 

 

Remarks : 

• Assumption (AS-2a) is reasonable for an insurance market in which (i) there are a 

large number of agents and uncorrelated risks, and (ii) each individual risk is 

negligible in size relative to the aggregate industry risk. 

• Assumption (AS-2b) is a direct extension of the multivariate normal assumption 

used in the derivation of CAPM. For risks with general marginal distributions, 

here we are assuming a normal-copula correlation structure between X and Z (see 

Wang, 1998; Frees and Valdez, 1998; Embrechts et al. 1999). 
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Based on assumption (AS-2b), there exists a normal variable Y independent of X such 

that YVZ +⋅= ρ0 . Taking YVZ +⋅= ρ0  into equation (2.7), and using the 

independence between X and Y, we have 

( )[ ] ( )[ ]
( )[ ] ( )[ ]YEVE

YEVXE
XHBuhlmann

00

00

expexp
expexp

],[
λρλ

λρλ
λ

⋅⋅
⋅⋅⋅

= , 

which further leads to 

( )[ ]
( )[ ]VE

VXE
XH Buhlmann λ

λ
λ

exp
exp

],[
⋅

= ,   where λ=ρλ0.   (2.8) 

 

Theorem 2.3 Under the set of assumptions in (AS-2a) and (AS-2b), the 

equilibrium premium in equation (2.8) is identical to that obtained by the Wang 

Transform 

[ ]λ−ΦΦ= − ))(()(* 1 xFxF ,    (2.9) 

with λ=ρλ0.  

 

Proof: See Section 3, Example 3.1. 

 

 

Recall that λ0 represents the aggregate market price per unit of risk and ρ is the 

correlation coefficient between the normalized variables V and Z0. The relation λ=ρλ0 is a 

generalization of the classic CAPM to risks with general probability distributions (see 

Wang, 2000, 2001).  

 

Remark 1. The Wang Transform is a newly emerged distortion function among the 

distortion family that includes the PH-transform. Under a set of axioms, Wang, Young 

and Panjer (1997) showed that all coherent risk measures can be represented by a 

distortion. Among the family of distortions, only the Wang Transform can recover 

CAPM for underlying assets and Black-Scholes formula for options. 

 

Remark 2.  As noted in Buhlmann (1984), the main result in Theorem 2.1 is still valid 

under general utility function assumptions for the participants. Therefore, under the 



 8 

assumptions (AS-2a) & (AS-2b), Theorem 2.3 effectively gives an independent 

derivation of CAPM. 

 

Remark 3.  The correlation between risk X and the aggregate portfolio risk Z is the main 

driver for risk load. The relation λ=ρλ0 is rather intuitive since highly correlated risks 

demand higher risk loading, such as natural or man-made catastrophe risks. In practice, 

the meaning of correlation should be interpreted more broadly than the statistical 

association in the claim generating process. From an insurer’s perspective, the correlation 

between profits of insurance contracts is equally important as the correlation between 

losses. Parameter uncertainty, pricing cycle, and regulatory capital requirements all 

contribute to the correlation between profits. 

 

 

3. EXPONENTIAL TILTING & DISTORTION TRANSFORM 

 

To explore further Buhlmann’s main results in equation (2.2) & (2.5), we define a general 

exponential tilting and discuss its connections with the distortion transform. 

 

Consider variables X and Z in a probability space (Ω, P) with probability distributions F 

and Q, respectively.  

 

Definition 3.1 The transformed probability (density) function 

[ ]
[ ])]exp(

|)exp()()(*
ZE

xXZExfxf
λ

λ =⋅= ,   (3.1) 

is called an exponential tilting of X, induced by Z. 

 

As special cases of Definition 3.1, when Z = X we recover the Esscher Transform; When 

Z= h(X) is an increasing function of X, we recover the generalized Esscher transform by 

Heilmann (1989), including the special case of h(X)=1−exp(−λX) in Kamps (1998). 

For any probability distribution F(x), we define its inverse function as  

{ }uxFxuF <=− )(:sup)(1 ,  for 0≤ u ≤1. 
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Assume that there exists a uniform random variable U such that X=F−1(U) and Z=Q−1(U). 

We say that X and Z are co-monotone. Here “co-monotone” means perfect correlation, 

which extends beyond the concept of perfect linear correlation. There is no 

diversification benefit between “co-monotone” risks, see Wang and Dhane (1998).  

 

When X and Z are co-monotone, it may be impossible to express Z as a direct function of 

X. For example, consider the case that X has a Bernoulli distribution and Q is an 

exponential distribution.  

 

Theorem 3.1 When X and Z are co-monotone, the exponential tilting in equation 

(3.1) implies a transform: F(x)àF*(x) by 

( )duuQ
M

xF
xF

Q
∫ −⋅=

)(

0

1 )(exp
)(

1
)(* λ

λ
,   (3.2) 

where 

( )duuQM Q ∫ −⋅=
1

0

1 )(exp)( λλ  

exists for some λ>0.  

• When F is continuous at x, the transformed probability density at x is  

( )
.

)(
)((exp)(

)(*
1

λ
λ

QM
xFQxf

xf
−⋅⋅

=     (3.3) 

• When F is discrete on {x1, x2, …, xm}, the transformed probability at xj is 

( )∫
−

−⋅=
)(

)(

1

1

)(exp
)(

1
)(*

j

j

xF

xFQ
j duuQ

M
xf λ

λ
.    (3.4) 

 

We call equation (3.2) a co-monotone exponential tilting, induced by the kernel Q. 

 

Consider an important case when the kernel Q is unrelated to the distribution F. 

 

Theorem 3.2 When the kernel Q is independent of the distribution F, the co-

monotone exponential tilting (3.2) is equivalent to a distortion F*(x)=g(F(x)) with 
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)(

))(exp(

)( 0

1

λ

λ

Q

u

M

dvvQ

ug
∫ −⋅

= .    (3.5) 

 

Proof: The key here is that Q is independent of F. It then follows directly from 

the co-monotone exponential tilting equation (3.2). 

ÿ 

 

Example 3.1 When the kernel Q=Φ  is the standard normal distribution, the co-

monotone exponential tilting (3.2) recovers the Wang Transform: 

( )λ−ΦΦ= − ))(()(* 1 yFyF . 

 

Example 3.2 When the kernel Q(t)=1−exp(−t), for t≥0,  is an exponential 

distribution, the co-monotone exponential tilting (3.2) recovers the proportional 

hazards (PH) transform as introduced in Wang (1995): 

( ) λ−−−= 1)(11)(* xFxF , with 0 ≤ λ <1, 

which corresponds to the distortion g(u)= 1−(1−u)1−λ.  

This result gives an interpretation of the parameter λ in the PH-transform. 

 

Example 3.3 When the kernel Q(t)= t, for 0 ≤ t ≤1  is a uniform distribution, the 

co-monotone exponential tilting (3.2) recovers the exponential distortion: 

1)exp(
1)exp()(

−
−=

λ
λuug , for 0 < u ≤1. 

 

Example 3.4 When the kernel Q(z) =Gamma(z; α, β) has a gamma distribution 

with mean=α/β, the co-monotone exponential tilting (3.2) corresponds to the 

following distortion:  

),);((Gamma)( 1 λβα −= − uQug . 
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For the distortion in (3.5) we have 

( ) 0)(exp)(' 1 >⋅= − uQug λ .    (3.6) 

When Q(x) is differentiable, we have  

( ) ))(('/)(exp)('' 11 uQQuQug −−⋅= λλ ≥0,  for λ >0.  (3.7) 

For the Beta family of distortion (Wirch and Hardy, 1999) 

dt
ba
ttxF

xF ba

∫
− −−

Γ
−−=

)(1

0

11

),(
)1(1)(  

to be an exponential tilting with λ>0, it is necessary that a≤1 and b≥1.  

 

Finally we offer a comment on the numerical implementations of co-monotone 

exponential tilting. Computer calculations almost always use discrete data points. 

Consider a discrete representation {x1 < x2 <… <xm} of variable X, where F(xm)=1. One 

would need to perform numerical integration to carry out the exponential tilting as shown 

in equation (3.4). The reader needs to be aware of that the simple approximation by  

( ) )(/))((exp)()(* 1 λλ Qjjj MxFQxfxf −⋅≈     (3.8) 

is often very poor, especially at the tails of the distribution. For the Wang Transform and 

PH-transform, we have Q−1(F(xm))=+∞, thus the approximation f* (xm) in (3.8) is 

undefined. Such numerical difficulties can be avoided by applying the distortion in (3.5) 

directly on the (discrete) cumulative distribution function. 
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4. SYSTEMATIC RISKS & THE DISTORTION APPROACH 

 

Consider Buhlmann’s economic model in section 2, we assume that risk X can be 

decomposed into two parts  

X = Xsys + Xnon, 

where  

• Xsys (being co-monotone with Z) represents the systematic portion of X, and  

• Xnon (being uncorrelated with Z) represents the idiosyncrasy or non-systematic 

portion.  

• By definition, Xsys and Xnon are uncorrelated. 

 

From equations (2.5) & (2.6) we have  

)][exp(

)]exp([
][],[

ZE

ZXE
XEXH sys

nonBuhlmann λ

λ
λ

⋅
+= .   (4.1) 

In other words, Buhlmann’s equilibrium pricing model indicates that only the systematic 

risk requires risk loading. 

 

For convenience, we assume that the distribution F for a risk X only reflects the 

systematic risk of X. For practically minded reader, this is quite in agreement with reality. 

For instance, life insurers are generally not too concerned about the volatility of an 

individual life contract, but rather more concerned about the systematic errors in their 

estimate of mortality rates, and systematic shocks. As a result, in the pricing exercise by 

insurers, only systematic risks enter into the distribution F, manifested in the modeling of 

potential variations for a large block of contracts, or for a whole line of business, etc.  

 

In light of equation (4.1) we now make the following simplifying assumptions: 

 

 (AS-3a). All potential variations that are reflected in the distribution Fj are 

systematic risk only. As a result, risk Xj is co-monotone with the aggregate risk Z. 
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(AS-3b). There are many market participants so that the re-scaled aggregate variable 

Z0 =(Z−E[Z])/σ[Z] has a distribution Q which is unrelated to the individual risk 

distribution Fj. 

 

Theorem 4.1 Under the assumptions in (AS-3a) and (AS-3b), the equilibrium price 

density in equation (2.2) is identical to the distortion F*(x)=g(F(x)) with  

)(

))(exp(

)( 0

1

λ

λ

Q

u

M

dvvQ

ug
∫ −⋅

= . 

Specially,  

• when Q is an Exponential(1) distribution, we recover the PH-transform; 

• when Q is standard normal distribution, we recover the Wang Transform. 
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5. BUHLMANN’S GENERAL ECONOMIC MODEL 

 

In a follow-up paper, Buhlmann (1984) extended his economic premium principle using 

general utility functions for each participant. He discovered that all equilibrium prices are 

locally like the one where agents have exponential utilities; the only difference being that 

risk aversion is no longer constant but depends on the agents’ wealth. His general 

economic model provides further insights on the relation between risk premium and 

aggregate market conditions. 

 

Under general utility assumptions, Buhlmann used the notion of absolute risk aversion of 

Pratt (1964): 

 Aj(x)= −uj′′(x)/ uj′(x),       (5.1) 

which depends on the amount of net wealth x. Note that for an exponential utility 

function )exp(1)( xxu jj λ−−=  we have Aj(x)= λj (constant). 

 

Buhlmann showed that equilibrium exists under only modest theoretical assumptions. He 

pointed out that this equilibrium also coincides with the Pareto optimal exchange in 

Borch (1962).  

 

As an important observation, Buhlmann pointed out that in equilibrium jeY , and eφ should 

depend on ω only through )()(
1

ωω ∑ =
= n

j jXZ . As a result, Buhlmann introduced a 

generic element η=Z(ω).  

 

Theorem 5.1 [Buhlmann, 1984] Under general utility assumptions, the 

equilibrium pricing density satisfies 

),(
)(
)('

η
ηφ
ηφ

WA
e

e = ,      (5.2) 

where A(W,η) is the total risk aversions satisfying 

[ ]∑ = −+−
= n

j
jejejjj YYXWAWA 1

,, )]([Price)()(
1

),(
1

ηηηη
.  (5.3) 
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From equation (5.2) we can see that the local behavior for the equilibrium pricing density 

is the same as that for the exponential utilities.  

 

Theorem 5.1 provides additional insights to the parameter λ=A(W,η). As the total risk-

aversion of the market, the parameter λ depends on the aggregate wealth (or capital) of 

the market participants. The presence of excessive capital will drive down the parameter 

λ=A(W,η) and the resulting insurance prices. A shortage of capital can boost the level of 

λ=A(W,η) and the resulting insurance prices. 

 

The insurance industry has experienced surprises by unexpected catastrophe events; For 

instance, the huge insurance losses due to 1992 Hurricane Andrew, and the September 

11, 2001 Terror Attack on America.  

 

Buhlmann’s economic model can explain some of the after effects of unexpected 

catastrophe events:  

a) As a Bayesian update, the estimated probability of loss will increase, 

especially for large loss amounts. 

b) A catastrophe may simultaneously impact many lines of business. This will 

elevate the perceived correlation between lines of business, and have an effect 

of increasing the systematic risk for Xj. 

c) The market price of risk, λ=A(W, η) in equation (5.3), will increase because of 

the depletion of the aggregate wealth after paying for the occurred catastrophe 

loss.  

d) The compounding effect of these factors is a dramatic increase in risk load 

and premium rates. 

e) Because of the increase in the prospective Sharpe ratio λ=A(W,η) in (5.3), 

“smart” capital may be injected from the outside to take advantage the 

increased Sharpe ratio prospect, as evidenced in new entrants to the insurance 

market after hurricane Andrew & Terror Attack. 
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6. SUMMARY 

 

For financial and insurance risks, their equilibrium prices will generally depend on 

assumptions about the utility functions of the market participants. Buhlmann’s (1980) 

economic model is very profound in that equilibrium pricing transforms can be derived 

under general utility functions of the market participants. Other good reference papers on 

equilibrium risk-exchanges include Aase (1993), Taylor (1992), Gerber and Pafumi 

(1998). In a practical context, Meyers (1996) also takes an equilibrium pricing approach 

to calculating risk load. 

 

There are fundamental differences between option-pricing and insurance pricing (see 

Mildenhall, 1999). It is remarkable that the Esscher Transform (for option pricing) and 

the Wang Transform (for insurance pricing) can both be derived from the same optimal 

risk-exchange model of Buhlmann (1980).  

 

Buhlmann’s model indicates that only non-diversifiable risks require risk loading. In 

practice, there are good reasons to interpret non-diversifiable risks more broadly than loss 

correlation. 

 

 Buhlmann’s general economic model (1984) indicates that industry over-capitalization 

will likely lead to lower risk loading; Likewise, industry under-capitalization will likely 

lead to higher risk loading.  

 

In summary, Buhlamnn’s economic model has much to offer to the actuarial profession. 
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