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Abstract. 
 
The absolute deviation of the expected return on a portfolio from its required economic risk 
capital according to the expected shortfall method identifies with an expected shortfall 
deviation from the mean return, called portfolio shortfall risk. The natural risk contribution of 
each portfolio asset to the portfolio shortfall risk is called shortfall risk of the asset. Replacing 
the variance as a measure of risk in the classical portfolio selection model by the shortfall risk 
defines mean-shortfall portfolio selection. For some legitimated cases of mean-variance 
portfolio selection, namely the multivariate elliptical return distributions, both approaches 
lead to the same conclusions. An important situation, for which the alternative approach 
appears tractable under more general return distributions, is discussed. 
 
Keywords :  economic risk capital, shortfall risk, mean-variance analysis, elliptical 
distributions, Spearman’s correlation coefficient, copula, covariance identity 
 
 
1. Introduction. 
 

Mean-variance portfolio selection, pioneered by Markowitz, is one of the cornerstones of 
modern portfolio theory. Divers shortcomings of this approach are known. For example, if 
one build optioned portfolios using option strategies, the resulting portfolio return distribution 
may be rather asymmetric and difficult to calculate explicitly (e.g. Bookstaber and 
Clarke(1983)). As a consequence, Scheuenstuhl and Zagst(1996) do not recommend mean-
variance analysis in such a situation. Despite the many recent approaches to the optioned 
portfolio selection problem, no satisfactory solution has been proposed, which has a universal 
potential for finance practice (like mean-variance portfolio selection). 

  In the present paper, an alternative general approach to portfolio selection is considered. 
It replaces the variance risk measure by a shortfall risk measure, which can be interpreted as 
absolute deviation of the expected return on a portfolio from its required economic risk 
capital according to the expected shortfall method (formula (2.4)). In Section 3, it is shown 
that mean-shortfall and mean-variance portfolio selection are equivalent methods provided 
the distributions of return belong to the family of elliptical distributions. In Remark 3.1, this 
result is reinterpreted as an elliptical risk capital model. In Section 4, the alternative approach 
is applied to the portfolio selection problem for index match funds products, where a slightly 
modified market shortfall risk measure is used. Under arbitrary location-scale marginal 
distributions of return, but with a very specific modelling of the dependence structure 
between the individual asset returns and the market index return, we show that mean-shortfall 
portfolio selection approximately reduces to mean-variance portfolio selection. However, 
using more general marginal distributions of return, no such reduction can be expected, as the 
special case of log-normal returns shows. In a future work, mean-shortfall portfolio selection 
will be applied to the important optioned portfolio selection problem. 
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2. ERC, VaR, CVaR and shortfall risk. 
 
      Consider a firm confronted with a risky business over some time period, and let the 
random variable  X  represent the potential loss or risk the firm incurs at the end of the period. 
To be able to cover any loss with a high probability, the firm borrows at the beginning of the 
time period on the capital market the amount  0ERC , called economic risk capital. At the end 
of the period, the firm has to pay interest on this at the interest rate  Ri . To guarantee with 
certainty the value of the borrowed capital at the end of the period, the firm invests   0ERC   
at the risk-free interest rate  Rf ii < . The value of the economic risk capital at the end of the 

period is thus  ( )Rf iiERCERC −+⋅= 10 . The risky business will be successful at the end of 

the period provided the event  { }ERCX >   occurs only with a small tolerance probability. 
      There exist several risk management principles applied to evaluate  ERC. Two simple 
methods that have been considered so far are the value-at-risk and the expected shortfall 
approach (e.g. Arztner et al.(1997/99), Arztner(1999), Wirch(1999), Wirch and Hardy(1999), 
Testuri and Uryasev(2000), Acerbi(2001), Acerbi and Tasche(2001a/b)). According to the 
value-at-risk method one identifies the economic risk capital with the value-at-risk of the loss 
setting 
 

[ ] )(: αα XQXVaRERC == ,     (2.1) 
 

where  { }uxFxuQ XX ≥= )(inf)(   is a quantile function of  X, with  )Pr()( xXxFX ≤=   the 
distribution of  X. This quantile represents the maximum possible loss, which is not exceeded 
with the (high) probability  α   (called confidence level). According to the expected shortfall 
method one identifies the economic risk capital with the conditional value-at-risk of the loss 
setting 
 

[ ] [ ][ ]XVaRXXEXCVaRERC αα >== : .   (2.2) 
 

This value represents the conditional expected loss given the loss exceeds its value-at-risk. 
Clearly one has 
 

[ ] [ ] [ ])(
1

)()()( απ
ε

αααα XXXXXX QQQmQXCVaR +=+= ,  (2.3) 

 
where  [ ]xXxXExmX >−=)(   is the mean excess function, ( ) )()(1)( xmxFx XXX ⋅−=π   is 
the stop-loss transform, and  αε −= 1   is interpreted as loss probability. In Arztner(1999) the 
expression (2.3) is called tail conditional expectation and abbreviated TailVaR there (for tail 
value-at-risk). Sometimes (2.3) is also named expected shortfall, or mean shortfall, and mean 
excess loss. Mathematically, VaR and CVaR, which have been defined as functions of 
random variables, may be viewed as functionals defined on the space of probability 
distributions associated with these random variables.  
      It is important to observe that both  ERC  functionals satisfy two important risk-
preference criteria in the economics of insurance (see Denuit et al.(1999) for a recent review). 
They are consistent with the risk preferences of profit-seeking decision makers respectively 
profit-seeking risk averse decision makers. To see this, recall two partial orders of riskiness. 
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Definitions 2.1.  A risk  X  is less dangerous than a risk  Y  in the stochastic order, written  
YX st≤ , if  )()( uQuQ YX ≤   for all  [ ]1,0∈u . A risk  X  is less dangerous than a risk  Y  in the 

stop-loss order, written  YX sl≤ , if  )()( xx YX ππ ≤   for all  x. 
 
To compare economic risk capitals using criteria, which do not depend on the choice of the 
loss tolerance level, let us use two further partial orders of riskiness. 
 
Definitions 2.2.  A loss  X  is less dangerous than a loss  Y  in the VaR order, written  

YX VaR≤ , if the value-at-risk quantities satisfy  [ ] [ ]YVaRXVaR αα ≤ ,  for all  [ ]1,0∈α . A loss  
X  is less dangerous than a loss  Y  in the CVaR order, written  YX CVaR≤ , if the conditional 
value-at-risk quantities satisfy  [ ] [ ]YCVaRXCVaR αα ≤ ,  for all  [ ]1,0∈α . 
 
The value-at-risk and expected shortfall methods are consistent with ordering of risks in the 
sense that profit-seeking (risk averse) decision makers require higher VaR (CVaR) by 
increasing risk, where risk is compared using the stochastic order  st≤   (stop-loss order  sl≤ ). 
Reciprocally, increasing VaR (CVaR) is always coupled with higher risk. These ordering 
properties are contained in the following result. 
 
Theorem 2.1.  If  X  and  Y  are two loss random variables, then  YXYX stVaR ≤⇔≤   
and  YXYX slCVaR ≤⇔≤ . 
 
Proof. This has been shown in Hürlimann(2001a), Theorem 1.1.  ◊ 
 
      Finally, it is important to observe that, except for a world of elliptical linear portfolio 
losses (Embrechts et al.(1998), Fundamental Theorem of Risk Management), the VaR 
functional has several shortcomings. It is not subadditive and not scalar multiplicative, and it 
cannot discriminate between risk-averse and risk-taking portfolios (examples 1 to 3 in 
Wirch(1999)). If subadditivity holds, merging two risks does not create extra risk. If a firm 
must meet a requirement of extra economic risk capital that did not satisfy this property, the 
firm might separate in two subunits requiring less capital, a matter of concern for the 
supervising authority. In situations where no diversification occurs capital requirement 
depends on the size of the risk as expressed by the scalar multiplicative property. In contrast 
to this, the CVaR functional, which is subadditve and scalar multiplicative, is a coherent risk 
measure in the sense of Arztner et al.(1997) and appears thus more suitable in general 
applications. A recent work devoted to the evaluation of economic risk capital in life-
insurance using the VaR and CVaR approaches is Ballmann and Hürlimann(2001). 
      Relevant in risk management is often not CVaR itself, but its deviation from the expected 
loss, that is the quantity 
 

[ ] [ ] [ ]XEXCVaRXSFR −= αα .    (2.4) 
 

This convenient and natural relative CVaR measure, called shortfall risk in the following, 
plays the role of the variance in a general portfolio selection model, which goes beyond the 
classical mean-variance portfolio theory by Markowitz(1952/59/87/94). 
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3. Equivalence of mean-shortfall and mean-variance analysis. 
 

Given a collection of  n  assets with vector of random returns ),...,( 1 nRRR =
ρ

, the main 
goal of portfolio selection is the determination of an optimal portfolio with respect to some 
meaningful criterion. If ),...,( 1 nwww =

ρ
  represent the fractions of the portfolio held in each 

asset, then  RwR T
ρρ

⋅= describes the portfolio return, which should be optimised in some way. 
There exist many different approaches, which have been proposed for portfolio selection. 

In the present Section, the classical mean-variance approach is compared with the alternative 
mean-shortfall approach. 
 
Mean-variance approach 
 
Let  ( )nµµµ ,...,1=

ρ
  be the vector of expected returns, and let  C ( )ijσ=   be the covariance 

matrix between the returns. The portfolio variance is described by the quantity  
=2

Rσ wCwT ρρ
⋅⋅ . Further, let ( )1,...,1=e

ρ
  be the unit vector. In its simplest form (short sales 

allowed but no riskless lending and borrowing) the portfolio selection problem consists to 
minimise the portfolio variance by given expected return : 
 







 ⋅⋅ wCwT ρρ

2
1

min   under the constraints  1, =⋅=⋅ eww T
R

T ρρρρ
µµ .  (3.1) 

       
Mean-shortfall approach 
 
The portfolio variance as a measure of risk represents the expected square deviation from the 
mean return. If only adverse returns are relevant, an alternative measure of risk is the 
expected shortfall deviation from the mean return, which has found in Section 2 an economic 
risk capital interpretation and justification. Denote the shortfall risk at the confidence level  
α   of the portfolio return by 
 

[ ] [ ] [ ][ ]RVaRRRERER ααρ ≤−= .    (3.2) 
 

Requiring the additive property, it is natural to define the risk contribution of an asset to the 
portfolio shortfall risk by  
 

[ ] [ ] [ ][ ] niRVaRRRERERR iii ,...,1, =≤−= ααρ .  (3.3) 
 

These quantities are called asset shortfall risks and summarised into the shortfall risk vector  
[ ] [ ] [ ]( )RRRRR nααα ρρρ ,...,1=
ρρ

. Then the simplest mean-shortfall portfolio selection problem 
consists to minimise the portfolio shortfall risk by given expected return : 
 

[ ]{ }RwT
ρρρ

αρ⋅min   under the constraints   (3.4) 

    1, =⋅=⋅ eww T
R

T ρρρρ
µµ .       

 
It is remarkable that in several important situations the mean-shortfall approach is equivalent 
to the mean-variance Markowitz approach. 
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Example 3.1. 
 
Suppose  ),...,( 1 nRRR =

ρ
  has a multivariate normal distribution with mean  µ

ρ
  and positive 

definite covariance matrix  C. From Theorem 3.1 below one knows that 
 

[ ] [ ] [ ] niR
RRCov

RR
R

i
i ,...,1,

,
2 =⋅= αα ρ

σ
ρ .   (3.5) 

 
On the other hand, for a normal distribution with mean  Rµ   and variance  2

Rσ , one has 
 

[ ] ασ
α

φ
ρ α

α
α =Φ⋅

−
= )(,

1
)(

z
z

R R ,    (3.6) 

 
where  )(')( xx Φ=φ   and  )(xΦ   is the standard normal distribution. It follows that 
 

[ ] [ ] R
T z

RRw σ
α

φ
ρρ α

αα ⋅
−

==⋅
1

)(ρρρ
.    (3.7) 

 
Therefore, for any fixed confidence level, mean-shortfall portfolio selection is equivalent to 
mean-variance portfolio selection. 
 
      More generally, it is known that the mean-variance approach is a legitimated theory under 
the expected utility model (maximisation of the expected utility of final wealth) if the 
distributions of return belong to the family of elliptical distributions (Chamberlain(1983)). As 
shown by Ross(1978), an even broader class of distributions implies the mean-variance 
capital asset pricing model. In the elliptical situation, mean-shortfall portfolio selection is also 
equivalent to mean-variance portfolio selection. Indeed, by Theorem 3.1 one has as in (3.7) 
that  [ ] [ ]RRwT

αα ρρ =⋅
ρρρ

, and the result follows by the proof of Theorem 1 in Embrechts et 
al.(1998) because  [ ]Rαρ   is a positive homogenous and translation invariant measure. This 
main result for multivariate elliptical distributions generalizes the corresponding result for a 
multivariate normal distribution, which has been shown independently in a less elegant way 
by Rockafellar and Uryasev(2000), Proposition 4.1. 
 
Theorem 3.1.  Suppose  ),...,( 1 nRRR =

ρ
  has a multivariate elliptical density function with 

mean  µ
ρ

  and positive definite covariance matrix  C 
 

[ ])()(
)det(

1
)( 1 µµ

ρρρρρ
−⋅⋅−= − xCxg

C
xf T ,   (3.8) 

 
where  [ ) [ )∞→∞ ,0,0:g   is some appropriate function. Then one has 
 

[ ] [ ] [ ] niR
RRCov

RR
R

i
i ,...,1,

,
2 =⋅= αα ρ

σ
ρ .   (3.9) 
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Proof.  The necessary background on elliptical distributions is found in Fang, Kotz and 
Ng(1987). The properties of elliptical distributions imply that the conditional distribution of  

iR   given  R  is again elliptical with conditional mean 
 

[ ] [ ] ( ) niR
RRCov

RRE R
R

i
ii ,...,1,

,
2 =−⋅−= µ

σ
µ ,  (3.10) 

 
which implies immediately (3.9).  ◊ 
 
Remark 3.1.   
 
In the context of Section 2, Theorem 3.1 yields a simple covariance principle for allocating 
risk capital in an elliptical economy. Let  nGGG ++= ...1   be the gain of a risky business 
with sub-unit gains  niGi ,...,1, = , and let  niGXGX ii ,...,1,, =−=−= , be the corresponding 
losses. Since  [ ] [ ] [ ]GGEXCVaR αα ρ=+   it is natural to allocate risk capital according to the 

additive rule  [ ] [ ] [ ]GGGEXCVaR iii αα ρ=+ , which yields the elliptical risk capital model 
 

[ ] [ ]
[ ] [ ] [ ][ ] [ ] niGEGEXCVaR
GVar

GGCov
XCVaR i

i
i ,...,1,

,
=−+⋅= αα .  (3.11) 

 
Rewritten in terms of losses using (2.3) one obtains the explicit formula 
 

[ ] [ ] [ ]
[ ] [ ] [ ][ ] niXEQmQ
XVar

XXCov
XEXCVaR XXX

i
ii ,...,1,)1()1(

,
=−−+−⋅+= εεα .     (3.12) 

 
Example 3.2. 
 
It appears instructive to illustrate our results with a non-trivial but tractable multivariate 
elliptical distribution, which finds wide interest in both Insurance and Finance. The mixture 
of a normal with inverted gamma variance yields the Pearson type VII distribution or 
generalised Student t (e.g. Hogg and Klugman(1984), pp.52-53, Heilmann(1989), example 
3.7, Kotz et al.(1995), Section 28.6). It has been proposed to model financial returns by 
Praetz(1972) (see also Blattberg and Gonedes(1974), Kon(1984), Taylor(1992), Section 2.8, 
Hürlimann(2001b)). Another recent actuarial application is found in Hürlimann(1995). The 
multivariate density of a random vector   ),...,( 1 nRRR =

ρ
  defined by 

 

[ ] ( )

( )

( ) ,0,
)(
)(

,),(),(

,
)det(,

)()(1
)(

2
12

1

2
1

1 2

>
+Γ
Γ⋅

===

⋅
−⋅⋅−+

=
+−−

β
β

βπ
βµµ

β
µµ

β

BcC

CB
xCx

xf

iji

T
n

ρ

ρρρρ
ρ

   (3.13) 

 
has location-scaled transformed Pearson VII marginal densities 
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( ) ni
c

x
c

Bxf
ii

i

ii
i ,...,1,1

1
,)(

)(2
1

2
1

2
1

=


















 −
+⋅=

+−

−

β

µ
β .  (3.14) 

 
If  1>β   the variance  [ ]ii RVar=2σ   exists, and one has  iiic σβ ⋅−= )1(2 . If  

,...3,2,1,
2

== υ
υ

β , one recovers a location-scale transformed Student t with  υ   degrees of 

freedom. In particular  
2
1

=β   is a Cauchy and  1=β   is a Bowers distribution (for the latter 

see Hürlimann(1993/95/97/98) among others). If  ∞→β   the random variable  

( ) 1)1(2 −⋅−⋅− iiii cR µβ   converges to a standard normal random variable. On the other hand, 

any linear combination  RwR T
ρρ

⋅=   has density 
 

( ) ,1
1

,)(
)(2

1
2
1

2
1+−

−


















 −

+⋅=
β

µ
β

c
x

c
BxfR    (3.15) 

 
with  µµ

ρρ
⋅= Tw   and  wCwc T ρρ

⋅⋅= . By the proof of Theorem 3.1 one has 
 

[ ] [ ] ,,...,1,
1

niR
c
c

wRR
n

j

ij
ji =⋅








⋅= ∑

=
αα ρρ    (3.16) 

 
where  [ ]Rαρ   remains to be calculated. It is convenient to define  

[ ] [ ]( ) )()( xFxRRERExI R⋅≤−= . A partial integration and rearrangement yields 
 

)()()()( xxFxxI RR πµ +⋅−= ,    (3.17) 
 

where  )(1)( xFxF RR −=   is the survival function and  ( )[ ]+−= xRExR )(π   the stop-loss 
transform. It is not difficult to show that (e.g. Hürlimann(2001b)) 
 

)()()(
12

)(
)(

22

xFxxf
xc

x RRR ⋅−−⋅
−
−+

= µ
α

µ
π ,  (3.18) 

from which one gets 

[ ]
αβ

µ
ρ α

α −
⋅

−
−+

=
1

)(
12

)( 22 ufxc
R R ,  with  αα −= 1)(uFR .  (3.19) 

 
Since  22 )1(2 Rc σβ ⋅−=   for  1>β , the formula (3.19) converges to (3.6) for  ∞→β   as 
should be. The special case  1=β   has interesting applications. This is due to the fact that 
Bowers’ distribution, which is extremal with respect to the stop-loss order, yields the 
maximum stop-loss transform by given mean and variance (consult the references). 
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4. Mean-shortfall portfolio selection for index match funds. 
 

An index match fund product, as introduced on the financial market by the Credit Suisse 
Group during 1999, should achieve a return close to the performance of a financial market 
index. This situation can be modelled as follows. Consider the random variables 
 

MR  :  the return of the market index with marginal distribution  )(xF M  

iR  :  the return of asset number  i  in the index family with marginal distribution  
  nixFi ,...,1),( = . 

 
Then an optimal vector  ),...,( 1 nwww =

ρ
  of weights should be chosen such that the portfolio 

return  RwR T
ρρ

⋅=   approximately matches the market return, that is  MRR ≈ . Instead of  
[ ]RRiαρ   as shortfall risk of asset  i, we propose to use the slightly modified market shortfall 

risk vector  [ ] [ ] [ ]( )M
n

MM RRRRRR ααα ρρρ ,...,1=
ρρ

  with 

 
[ ] [ ] [ ][ ] niRVaRRRERERR MM

ii
M

i ,...,1, =≤−= ααρ ,  (4.1) 

 
and to minimise the overall portfolio measure 
 

[ ] [ ]MTM RRwRR
ρρρ

αα ρρ ⋅=:; .    (4.2) 

 
It is interesting to note that in this context mean-shortfall portfolio selection reduces 
approximately to mean-variance portfolio selection for a general but very specific modelling 
of the dependence structure between the individual asset returns and the market index return 
(comments after Theorem 4.3). 

Some preliminary results on bivariate distributions are required. Consider the one-
parameter copula function defined for a parameter  [ ]1,0∈θ   by 
 





=),( vuCθ

[ ]
[ ] ,,)1(

,,)1(
uvuvv
uvvuu

>⋅−+
≤⋅−+

θ
θ

   (4.3) 

and for  [ ]0,1−∈θ   by 





=),( vuCθ

( )
.1),1()1(

,1,1
≥+−⋅−⋅+

<+⋅+
vuvuuv

vuuv
θ

θ
  (4.4) 

 
For  [ ]1,0∈θ   this copula is family B11 in Joe(1997), p.148. It represents a mixture of perfect 
dependence and independence. If  X  and  Y  are uniform(0,1),  XY =   with probability  θ   
and  Y  is independent of  X  with probability  θ−1 , then  ),( YX   has the linear Spearman 
copula. This distribution has been first considered by Konijn(1959) and motivated in 
Cohen(1960) along Cohen’s kappa statistic (see Hutchinson and Lai(1990), Section 10.9). 
For the extended copula, the chosen nomenclature linear refers to the piecewise linear 
sections of this copula, and Spearman refers to the fact that the grade correlation coefficient  

Sρ   by Spearman(1904) coincides with the parameter  θ . This follows from the calculation 
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[ ] θρ θ =−⋅= ∫ ∫
1

0

1

0
),(12 dudvuvvuCS ,    (4.5) 

 
where a proof of the integral representation is given in Nelsen(1991). The linear Spearman 
copula, which leads to the so-called linear Spearman bivariate distribution, has a singular 
component, which according to Joe should limit its field of applicability. Despite of this it has 
many interesting and important properties and is suitable for analytical computation. It 
appears important to note that the linear Spearman copula leads to a simple tail dependence 
structure, which is of interest when extreme values are involved. The coefficient of (upper) 
tail dependence of a couple  ),( YX   is defined by 
 

))()(Pr(lim),(
1

ααλλ
α

XY QXQYYX >>==
−→

,  (4.6) 

 
provided a limit  λ   in  [ ]1,0   exists. If  ( ]1,0∈λ   then the couple  ),( YX   is called 
asymptotically dependent (in the upper tail) while if  0=λ   one speaks of asymptotic 
independence. Tail dependence is an asymptotic property of the copula. Its calculation 
follows easily from the relation 
 

.
))(Pr(1

))(),(Pr())(Pr())(Pr(1

))()(Pr(

α
αααα

αα

X

YXYX

XY

QX
QYQXQYQX

QXQY

≤−
≤≤+≤−≤−

=

>>
  (4.7) 

 
For a linear Spearman couple one obtains 
 

( ) θθαα
α

ααα
λ

α

θ

α
=+−=

−
+−

=
−− →→

1lim
1

),(21
lim),(

11

C
YX .  (4.8) 

 
Therefore, unless  X  and  Y  are independent, a linear Spearman couple is always 
asymptotically dependent. This is a desirable property in insurance and financial modelling, 
where data tend to be dependent in their extreme values. In contrast to this, the ubiquitous 
Gaussian copula yields always asymptotic independence, unless perfect correlation holds 
(e.g. Embrechts et al.(1998), Section 4.4). 
      Let  ),( YX   be a random vector with absolutely continuous margins  )(xF   and  )(yG . 
Then the copula representation 
 

[ ])(),(),( yGxFCyxH θθ =      (4.9) 
 

defines the so-called linear Spearman bivariate distribution. It satisfies the monotone 
quadrant dependence structure introduced by Lehmann(1966). For  0≥θ  the family is 
positive quadrant dependent such that  )()(),( yGxFyxH ≥θ , and for  0≤θ   it is negative 
quadrant dependent such that  )()(),( yGxFyxH ≤θ . 
 To model the dependence structure between the individual asset returns and the 
market index return, assume that the random pairs  niRR M

i ,...,1),,( = , follow linear 
Spearman bivariate distributions 
 

[ ] niyFxFCyxH M
ii i

,...,1,)(),(),( == θ ,   (4.10) 
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where  ),( M

iSi RRρθ =   is Spearman’s  grade correlation of the pair  ),( M
i RR . In finance 

markets, it is natural to assume positive quadrant dependence, that is  0≥iθ   (similar results 
for  0≤iθ   can also be derived). The considered model will be called linear Spearman 
bivariate model of asset returns. The following result holds. 
 
Theorem 4.1.  The market shortfall risk of the linear Spearman bivariate model of asset 
returns is determined by the formula 
 

[ ] [ ] [ ] [ ][ ]{ } niRVaRRRGFERERR MMM
iii

M
i ,...,1,)(1 =≤−= −

αα θρ . (4.11) 

 
Proof.  Let  ),( YX   be a linear Spearman bivariate random couple with margins  )(xF , 

)(yG  and joint distribution  [ ])(),(),( yGxFCyxH θ= ,  0≥θ . Consider the shortfall risk 
measure of  X  on  Y  defined by 
 

[ ] [ ] [ ] [ ]YVaRuuYXEXEYX ααααρ =≤−= , .  (4.12) 
 

In terms of the copula function, the conditional distribution of  X  given  Y  is determined by 
 

[ ]




=
∂

∂
= )(),()( yGxF

v
C

yxF θ
[ ]

[ ].)(),()1(

,)(),()(
1

1

yGFxxF

yGFxxFxF
−

−

<−

≥+

θ

θ
  (4.13) 

 
Since  )( yxF   is non-increasing in  y, one notes by passing that  X  is positively regression 
dependent on  Y  after Lehmann(1966), or in more recent terminology  X  is stochastically 
increasing in  Y  (e.g. Joe(1997)). In general, the regression function of  X  on  Y   is given by 
 

[ ] [ ] .)()(1
0

0 ∫∫ ∞−

∞
−−= dxyxFdxyxFyXE    (4.14) 

 
For the linear Spearman bivariate model with  0≥θ , one obtains  
 

[ ] [ ] [ ] [ ]( ))(1 yGFXEXEyXE −−⋅−= θ ,   (4.15) 
 

from which it follows that 
 

[ ] [ ] [ ][ ]( )αα θρ uYyGFEXEYX ≤−⋅= − )(1
.   (4.16) 

 
Setting  ),(),( M

i RRYX =   shows the desired formula.  ◊ 
 
A general covariance identity will be helpful. 
 
Theorem 4.2.  Let  ),( YX   be a linear Spearman bivariate random couple with margins  

)(xF , )(yG  and joint distribution  [ ])(),(),( yGxFCyxH θ= ,  0≥θ . Assume  Y  satisfies 
the following regularity assumption 
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[ ] [ ] ,0)()()()(lim

,0)()(lim

1 =




 −

=

∫ ∞−

−

∞→

−∞→

y

y

y

ydGyGFyGXEy

yGy

ψ

ψ
   (RA) 

 
where  )(yψ   is some differentiable function. Then one has the covariance identity 
 

[ ] [ ] [ ]( )[ ].)()()(, 1 YXEYGFEYXCov ψθψ ⋅−⋅= −   (4.17) 
 

Proof.  Applying a well-known formula by Hoeffding(1940) and Lehmann(1966), Lemma 2, 
one obtains 
 

[ ] [ ]

[ ]
[ ]

[ ] [ ]( )∫

∫ ∫∫∫∫

∫ ∫
∫ ∫

∞

∞−

∞

∞−

∞∞

∞−∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

≤−=





 ≤−−+−≤=

−≤=

−=

.)(')(

)(')(1)()()()(

)(')()()(

)(')()(),()(,

00

00

dyyyGyYXEXE

dyydxyYxFdxxFdxxFdxyYxFyG

dxdyyxFyYxFyG

dxdyyyGxFyxHYXCov

ψ

ψ

ψ

ψψ

 

 
Inserting the formula  [ ] [ ] [ ] [ ][ ]))(( 1 yYYGFEXEyYXEXE ≤−⋅=≤− −θ   derived from 
(4.15), using further partial integration and the assumption (RA), one obtains the desired 
identity as follows : 
 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]( )∫∫

∫ ∫
∞

∞−

−
∞

∞−

−

∞

∞− ∞−

−

−⋅+



 −⋅=






 −⋅=

)()()()()()()(

)(')()()()(,

11

1

ydGXEyGFyydGyGFyGXEy

dyyydGyGFyGXEYXCov

y

a

y

Y

ψθψθ

ψθψ
 

[ ] [ ]( )[ ].)()(1 YXEYGFE ψθ ⋅−⋅= −   ◊ 
 
We are ready for our main result on location-scale asset models. 
 
Theorem 4.3.  Let  niRR M

i ,...,1),,( = , be a linear Spearman bivariate model of asset returns 

with location-scale margins  ( )
i

i
c

x
i DxF µ−=)( ,  ( )

M

M
c

yDyG µ−=)( ,  [ ] [ ]M
Mii RERE == µµ , ,  

Mi cc ,   the scale parameters. Suppose the variances  [ ] [ ]M
Mii RVarRVar == 22 , σσ    exist, and 

assume  )(yψ =y  satisfies the regularity assumption (RA) of Theorem 4.2. Then the market 
shortfall risk is determined by the formula 
 

[ ] [ ] [ ] niR
RRCov

RR M

R

M
iM

i ,...,1,
,

2 =⋅= αα ρ
σ

ρ .  (4.18) 

 
Proof.  The location-scale assumption implies the relation 
 

[ ] ( )M
M

i
i y

c
c

yGF µµ −⋅+=− )(1 .      
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Inserting the formula of Theorem 4.1, one obtains immediately 
 

[ ] [ ] niR
c
c

RR M

M

i
i

M
i ,...,1, =⋅⋅= αα ρθρ .     

 
On the other hand, inserting the same expression into the covariance identity (4.17) with  

)(yψ =y, one obtains 
 

[ ] ni
c
c

RRCov M
M

i
i

M
i ,...,1,, 2 =⋅⋅= σθ ,     

 
which implies the desired result.  ◊ 
 

Some comments are in order. In Financial Economics, the quantity  
[ ]

2

,

M

M
iM

i
RRCov

σ
β =   is 

called beta factor of the asset number  i, and represents the market risk of the asset (e.g. 
Sharpe(1985)). Under the assumptions of Theorem 4.3, the market shortfall risk of a linear 
portfolio  RwR T

ρρ
⋅=   is proportional to the linear weighted sum of the beta factors 

 

[ ] [ ]M
n

i

M
ii

M RwRR αα ρβρ ⋅







⋅= ∑

=1

; ,    (4.19) 

 
which for an optimal portfolio selection should be minimised under the constraints      

1, =⋅=⋅ eww T
R

T ρρρρ
µµ . This linear problem can be solved in an elementary way. On the 

other hand, the portfolio manager of an index match fund, whose benchmark is the market 
return, will approximately hold the market portfolio with return  MRR ≈ . In this situation, 

one has approximately  
[ ]

2

,

M

M
iM

i
RRCov

σ
β ≈  and  [ ] [ ]

2
2;

M

M

R
M R

RR
σ

ρ
σρ α

α ⋅≈ . This identifies 

mean-shortfall portfolio selection of an index match fund approximately with mean-variance 
portfolio selection. In particular, the latter appears useful for some non-elliptical distributions 
of asset returns. 
 To conclude, let us show that the above mean-shortfall portfolio selection model 
differs in general from mean-variance portfolio selection. 
 
Example 4.1. 
 
Assume the linear Spearman bivariate model of asset returns  niRR M

i ,...,1),,( = , has log-

location-scale margins such that  ( )
i

ix
i DxF σ

µ−= )ln()( ,  ( )
M

MyDyG σ
µ−= )ln()( . Then one has 

 

[ ] ( )







−+=−

M
M

i
i yyGF µ

σ
σ

µ )ln(exp)(1
,   (4.20) 
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and Theorem 4.1 yields the relationship 
 

[ ] [ ] ( ) [ ]MMM
M

M

i
iii

M
i RVaRuuRRERERR M

i

αααα
σ
σ

µ
σ
σ

µθρ =












 ≤⋅








⋅−−⋅= ,exp .   (4.21) 

 
In the important special case of log-normal asset margins, with  )()( xxD Φ=   the standard 
normal distribution, one obtains without difficulty the formula 
 

[ ] [ ]




























 −
Φ









−

−
Φ

−⋅⋅=

M

M

i
M

M

ii
M

i u

u

RERR

σ
µ

σ
σ

µ

θρ
α

α

α )ln(

)ln(

1 .  (4.22) 

 
On the other hand, Theorem 4.2 yields the covariance formula 
 

[ ] [ ] [ ] ( )1, −⋅⋅⋅= MieRERERRCov M
ii

M
i

σσθ .   (4.23) 
 

Comparing (4.22) and (4.23) one obtains 
 

[ ] [ ] [ ] ( )1
1

)ln(

)ln(

1,
−⋅

⋅




























 −
Φ









−

−
Φ

−⋅=
MieREu

u

RRCovRR M

M

M

i
M

M

M
i

M
i σσ

α

α

α

σ
µ

σ
σ

µ

ρ ,  (4.24) 

 
which shows that the factor multiplying the covariance depends on the individual asset 
characteristics. As a consequence, the market shortfall risk of the portfolio is not exactly 
proportional to the variance (or standard deviation) of the portfolio return, and mean-shortfall 
portfolio selection differs (at least slightly) from mean-variance portfolio selection. 
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