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Abstract.

The absolute deviation of the expected return on a portfolio from its required economic risk
cgpital according to the expected shortfdl method identifies with an expected shortfdl
deviation from the mean return, caled portfolio shortfal risk. The natura risk contribution of
each portfolio asset to the portfolio shortfdl risk is caled shortfdl risk of the asset. Replacing
the variance as a mesasure of risk in the classcal portfolio sdection modd by the shortfdl risk
defines meanshortfdl portfolio sdection. For some legitimated cases of meanvariance
portfolio sdection, namdy the multivariate dlipticd return digtributions, both gpproaches
leed to the same conclusons. An important Stuation, for which the dternative approach
gppears tractable under more genera return distributions, is discussed.

Keywords : economic  risk capitd, shortfal rik, meanvaiance andyds dliptica
distributions, Spearman’ s correlation coefficient, copula, covariance identity

1. Introduction.

Mean-variance portfolio selection, pioneered by Markowitz, is one of the cornerstones of
modern portfolio theory. Divers shortcomings of this approach are known. For example, if
one build optioned portfolios using option srateges, the resulting portfolio return distribution
may be rather asymmeric and difficult to cdculate explicitly (eg. Bookstaber and
Clarke(1983)). As a consequence, Scheuenstuhl and Zagst(1996) do not recommend mean
vaiance andyss in such a dtuation. Despite the many recent approaches to the optioned
portfolio selection problem, no satisfactory solution has been proposed, which has a universa
potentia for finance practice (like mean-variance portfolio selection).

In the present paper, an dternative generd gpproach to portfolio selection is considered.
It replaces the variance risk measure by a shortfal risk measure, which can be interpreted as
absolute deviation of the expected return on a portfolio from its required economic risk
capital according to the expected shortfall method (formula (2.4)). In Section 3, it is shown
that meanshortfal and meanvariance portfolio sdection are equivdent methods provided
the digributions of return bedong to the family of dlipticd distributions. In Remark 3.1, this
result is reinterpreted as an dlipticd risk capitd mode. In Section 4, the dternative gpproach
is applied to the portfolio sdection problem for index match funds products, where a dightly
modified market shortfal risk measure is used. Under arbitrary locationscde margind
digributions of return, but with a very gspecific moddling of the dependence Sructure
between the individual asset returns and the market index return, we show that meanshortfal
portfolio sdection approximately reduces to meanvariance portfolio sdection. However,
usng more genera margind didributions of return, no such reduction can be expected, as the
gpecid case of log-norma returns shows. In a future work, mean-shortfall portfolio sdlection
will be gpplied to the important optioned portfolio selection problem.



2. ERC, VaR, CVaR and shortfall risk.

Congder a firm confronted with a risky busness over some time period, and let the
random variable X represent the potentid loss or risk the firm incurs at the end of the period.
To be adle to cover any loss with a high probability, the firm borrows a the beginning of the
time period on the capital market the amount ERC,, called economic risk capital. At the end

of the period, the firm has to pay interest on this at the interest rate  i,. To guarantee with
cetainty the vaue of the borrowed capita a the end of the period, the firm invests  ERC,
a the risk-free interest rate i, <ig. The vaue of the economic risk capital at the end of the
period is thus ERC = ERC, {1+, - i,). The risky business will be successful a the end of

the period provided the event {X > ERC} occurs only withasmal tolerance probability.

There exig severd risk management principles gpplied to evaduate ERC. Two smple
methods that have been consdered so far are the vaue-at-risk and the expected shortfdl
approach (eg. Arztner et a.(1997/99), Arztner(1999), Wirch(1999), Wirch and Hardy(1999),
Testuri and Uryasev(2000), Acerbi(2001), Acerbi and Tasche(2001a/b)). According to the
vaue-at-risk method one identifies the economic risk capitd with the value-at-risk of the loss
Setting

ERC =VaR [X]=Q, @), (2.1)

where  Q, (u) =inf {ijx(x) su} is a quantile fundion of X, with F (X)=Pr(X £x) the
digribution of X. This quantile represents the maximum possble loss, which is not exceeded
with the (high) probability a (caled confidence level). According to the expected shortfal
method one identifies the economic risk cgpitd with the conditional value-at-risk of the loss
Setting

ERC =CVaR [X]:= E[X|X >Var [X]]. 2.2)

This value represents the conditional expected loss given the loss exceeds its vaue-at-risk.
Clearly one has

cvar [X]=Q (@) rm[Q @]=Q@) +2p. @] @3

where m, (X) = E[X - x|X >x] is the mean excess function, p ,(X) :(1- Fy (x))xmx(x) is
the stop-loss transform, and e =1- a is interpreted as loss probability. In Arztner(1999) the
expresson (2.3) is called tail conditional expectation and abbreviated TallVaR there (for tail
value-at-risk). Sometimes (2.3) is dso named expected shortfall, or mean shortfall, and mean
excess loss. Mahematicdly, VaR and CVaR, which have been defined as functions of
random variables may be viewed as functionds defined on the space of probability
distributions associated with these random variables.

It is important to observe that both ERC functionds saisfy two important risk-
preference criteria in the economics of insurance (see Denuit et d.(1999) for a recent review).
They are condgtent with the risk preferences of profit-seeking decison makers respectively
profit-seeking risk averse decision makers. To seethis, recal two partial orders of riskiness.



Definitions 2.1. A risk X s less dangerous than arisk Y in the stochastic order, written
XE,Y,if Quu)EQ(u) foral ul[0l].Arisk X islessdangerous than arisk Y inthe

stop-loss order, written X £, Y ,if p,(X) £p,(x) fordl x.

To compare economic risk capitas usng criteria, which do not depend on the choice of the
loss tolerance leve, let us use two further partid orders of riskiness.

Definitions 2.2. A loss X is less dangerous than a loss Y in the VaR order, written
X £, Y, if the value-at-risk quantities satify VaR [X]£VaR [Y], fordl af [01]. A loss
X is less dangerous than a loss Y inthe CVaR order, written X £,,:Y , if the conditiona
value-at-risk quantities satisfy CVaR [X|£CvaR [Y], fordl a1 [04].

The vaue-at-risk and expected shortfdl methods are condgtent with ordering of risks in the
sene that profit-seeking (risk averse) decison makers require higher VaR (CVaR) by

increasing risk, where risk is compared using the stochastic order £, (stop-loss order £).
Reciprocdly, increesng VaR (CVaR) is dways coupled with higher risk. These ordering
properties are contained in the following result.

Theorem 2.1. If X and Y aetwo loss random variables then X £,.Y U X£_Y
ad X£.,,Y U XEV.

Proof. This has been shown in Hirlimann(2001a), Theorem 1.1. a

Findly, it is important to observe that, except for a world of dlipticd linear portfolio
losses (Embrechts et d.(1998), Fundamentd Theorem of Risk Management), the VaR
functional has severd shortcomings. It is not subadditive and not scdar multiplicative, and it
cannot discriminate between risk-averse and risk-teking portfolios (examples 1 to 3 in
Wirch(1999)). If subadditivity holds, merging two risks does not create extra risk. If a firm
must meet a requirement of extra economic risk capita that did not satisfy this property, the
firm might separate in two subunits requiring less capita, a meatter of concern for the
supervisng adthority. In  dtuations where no diversfication occurs capita  requirement
depends on the sze of the risk as expressed by the scdar multiplicative property. In contrast
to this the CVaR functiond, which is subadditve and scaar multiplicative, is a coherent risk
measure in the sense of Arztner et d.(1997) and gppears thus more suitable in generd
goplications. A recent work devoted to the evduation of economic risk capitd in life-
insurance using the VaR and CVaR agpproachesis Balmann and Hurlimann(2001).

Relevant in risk management is often not CVaR itsdf, but its deviation from the expected
loss, thet isthe quantity

SR [X]=cvaRr [X]- E[X]. (2.4)

This convenient and naturd relaive CVaR measure, caled shortfall risk in the following,
plays the role of the variance in a generad portfolio sdection modd, which goes beyond the
classcad mean-variance portfolio theory by Markowitz(1952/59/87/94).



3. Equivalence of mean-shortfall and mean-variance analysis.

Given a collection of n assets with vector of random returns I'?:(Rl,...,Rn),the man

god of portfolio sdection is the determination of an optima portfolio with respect to some
meaningful criterion. If \7v=(V\4,...,Wn) represent the fractions of the portfolio held in each

ast, then R= \,vT xR describes the portfolio return, which should be optimised in some way.

There exis many different approaches, which have been proposed for portfolio selection.
In the present Section, the classcal meanvariance approach is compared with the dterndtive
mean-shortfall approach.

M ean-variance approach

Let m=(m,....m,) be the vector of expected refurns, and Bt C=(s,) be the covariance

matrix between the returns. The portfolio variance is described by the quantity
sZ= W xC . Further, let &= (1..,1) be the unit vector. In its smplest form (short sales

dlowed but no riskless lending and borrowing) the portfolio sdection problem congds to
minimise the portfolio variance by given expected return :

min i% >(:x\5v§"; under the constraints W' xm=m,, W & =1. (32)
|

M ean-shortfal approach

The portfolio variance as a measure of risk represents the expected square deviaion from the
mean return. If only adverse returns are rdlevant, an dternative messure of risk is the
expected shortfdl deviaion from the mean return, which has found in Section 2 an economic
risk cepitd interpretation and judtification. Denote the shortfall risk a the confidence leve
a of the portfolio return by

r.[Rl=E[R]- E|IRREVaR[R]]. (32)

Requiring the additive property, it is naturd to define the risk contribution of an asst to the
portfolio shortfall risk by

r.|RIRI=E[R]- EIR|REVaR[R], i=1..,n. (323

These quantities are cdled asset shortfall risks and summarised into the shortfal risk \ector
rra[R]:(ra[R1|R], .1.[R|R]). Then the smplest meen-shortfall portfolio sdlection problem
conggts to minimise the portfolio shortfal risk by given expected return :

min {vrvT v A [Il?]} under the congtraints (3.4)
Wochzm, W=,

It is remarkable that in severd important Stuations the mean-shortfal goproach is equivdent
to the mean-variance Markowitz approach.



Example 3.1.

Suppose Il?:(Rl,...,Rn) has a multivariate normd didribution with mean n  and postive
definite covariance matrix C. From Theorem 3.1 below one knows that

ra[R|R]:%Fg’R]xra[R], i=1..n. (3.5)

On the other hand, for anormal distribution with mean m), and variance s 2, one has

ra[R]=f1(_i)>sR, F(z)=a, (3.6)

where f (X) =F'(x) and F (x) isthestandard norma didtribution. It follows that

Wt [Rl=r.[R] :fl(_i) 5 . 3.7)

Therefore, for any fixed confidence level, meanshortfal portfolio sdection is equivdent to
mean-variance portfolio selection.

More generdly, it is known that the meanvariance gpproach is a legitimated theory under
the expected utility modd (maximision of the expected utility of find wedth) if the
digributions of return belong to the family of dlipticd digtributions (Chamberlain(1983)). As
shown by Rosy(1978), an even broader class of didributions implies the meanvariance
capital asset pricing modd. In the dliptical Stuation, mean-shortfal portfolio sdection is aso
equivdent to meanvariance portfolio selection. Indeed, by Theorem 3.1 one has as in (3.7)

tha W 1, |R|=r_[R], ad the resuit follows by the proof of Theorem 1 in Embrechts et
al.(1998) because r,[R] is a postive homogenous and trandation invariant meesure. This

main result for multivariate dliptical distributions generdizes the corresponding result for a
multivariaste normd didribution, which has been shown independently in a less eegant way
by Rockafellar and Uryasev(2000), Proposition 4.1.

Theorem 3.1. Suppose I'?:(Rl,...,Rn) has a multivariate dlipticd dendty function with
mean r and positive definite covariance matrix C

r

Lr T
F(%) = Mg[( M7 C (k- M),

(3.8)

where g: [O, ¥ ) ® [O,¥ ) is some gppropriate function. Then one has

ra[R|R]:%?’R]xra[R], i=1..n. (3.9)



Proof. The necessary background on dlipticad digributions is found in Fang, Kotz and
Ng(1987). The properties of dlipticd digributions imply that the conditiona digtribution of
R given R isagandliptical with conditiona mean

2
R

E[MR]:WM{R-%), i=1,..n, (3.10)

which impliesimmediatdy (3.9). a
Remark 3.1.

In the context of Section 2, Theorem 3.1 yieds a smple covariance principle for dlocating
risk cgpitd in an dliptical economy. Let G=G, +...+G, be the gain of a risky busness
with sub-unit gans G,i=1..,n,adlee X=-G, X, =-G,i=1,...,n, be the corresponding
losses. Since CVaRd[X] + E[G] = ra[G] it is natural to alocate risk capital according to the
additiverde CVaR [X,]+E[G]=r|G|G], whichyiddstheelliptical risk capital model

Cov[G,,G]

T[G]x[cvmd[xh E[c]- E[c] i=1...n. (3.11)

CvaR [ ]|=

Rewritten in terms of losses using (2.3) one obtains the explicit formula

Cov[X;, X]

T[X]){Qx(l' e)+m,[Q, - e)]- E[X], i=1..n. (312)

CcvaR [X|=E[x ]+

Example 3.2.

It appears indructive to illustrate our results with a non-trivid but tractable multivariate
dliptica digribution, which finds wide interest in both Insurance and Finance. The mixture
of a normd with inveted gamma vaiance yidds the Pearson type VII didribution or
generdised Student t (eg. Hogg and Klugman(1984), pp.52-53, Hellmann(1989), example
3.7, Kotz et a.(1995), Section 28.6). It has been proposed to mode financia returns by
Praetz(1972) (see also Blattberg and Gonedes(1974), Kon(1984), Taylor(1992), Section 2.8,
Hurlimann(2001b)). Another recent acltuarid goplication is found in Hudrlimann(1995). The

multivariate density of arandom vector R=(R,,...,R,) defined by

TR S LA )

B(b.3) &/det(jl 613
r_ _ 1\ Vp >G(b)
m=(m), C=(c)), B(b'i)—G(b—Jr%)’ b >0,

has location-scaed transformed Pearson VII margind dengties



£ (x)=B(b,4) 1Cixgl+ E Ci=1..n. (3.14)

C, =+2(b-Dss, . If

b :%,u =12,3,..., one recovers a location-scae transformed Student t with u  degrees of

If b>1 the vaiance s?=Var[R] exigs and one has

freedom. In particular b :% isaCauchy and b =1 isaBowers digribution (for the latter

see  Hirlimann(1993/95/97/98) among others). If b® ¥ the random variable
J2(b - 1) >(R - m)xcl’il converges to a standard norma random variable. On the other hand,
any linear combingtion R=W xR has density

- (b+1)

f.(0) =B(b, 1) %x%. ‘f"rg , (3.15)
with m=w" »n and c¢=W" xC xw. By the proof of Theorem 3.1 one has

r.[RIR] = E2 éaw x——xr IR i=1.., (3.16)
where ra[R] remans to be cdculated. It is convenient to define
1(X) = (E[R]- E[RRE x|)xFo(x) . A partial integration and rearrangemert yields

() = (x- m)>XFe(X) +pr(), (3.17)

where Fo(X) =1- Fo(x) is the survivd function and  po(x) = E[(R- x).] the stop-loss
transform. It is not difficult to show that (e.g. HUrlimann(2001b))

_c:2+(x-m)2>< e P
pR(x)——_ 1 fr(X) - (X- m) X (x), (3.18)
from which one gets
¢’ +(x- m? fa(u,) .
r [R] b -1 1 a , with Fg(u,)=1-a. (3.19)

Snce ¢?=2(b-1)?: for b>1, the formula (3.19) converges to (3.6) for b ® ¥ as
should be. The specid case b =1 has interesting applications. This is due to the fact that

Bowers digribution, which is extremd with respect to the sop-loss order, yidds the
maximum sop-1oss transform by given mean and variance (consult the references).



4. Mean-shortfall portfolio selection for index match funds.

An index match fund product, as introduced on the financial market by the Credit Suisse
Group during 1999, should achieve a return close to the peformance of a financid market
index. This situation can be modelled as follows. Consider the random variables

RM  : thereurn of the market index with margina distribution F™ (x)
R . thereturn of assat number i intheindex family with margind digtribution
F(x),i =1,...,n.

Then an optima vector w= (W,,...,w,) of weights should be chosen such that the portfolio

return R:\yvT XIIQ approximately matches the market return, that is R » R™ . Ingtead of
r.|RIR| as shortfall risk of asset i, we propose to use the slightly modified market shortfall

risk vector rra [IIQ|RM ]z (r A [R|RM ] r. [Rn|RMJ) with

r.|R|R"]=E[R]- ER|R" £var [R*]} i=1...n, (4.1)
and to minimise the overd| portfolio measure
ro[RRY =W, [RRY | (4.2)

It is interesting to note tha in this context meanshortfal portfolio sdection reduces
goproximately to mean-variance portfolio sdection for a generd but very specific moddling
of the dependence structure between the individud asset returns and the market index return
(comments after Theorem 4.3).

Some prdiminary results on bivariate didributions are required. Consder the one-
parameter copula function defined for a parameter g1 [O]] by

4.3

andfor qT [- 1,0] by
(1+q):uv, u+v<y

(4.9
uv+qg X1- u)yX1-v), u+vs3il

i
G, (u,v) =%

For gl [0]] this copua is family B11 in Jog(1997), p.148. It represents a mixture of perfect
dependence and independence. If X and Y ae uniform(0,1), Y =X with probability q
and Y isindependent of X with probability 1-q, then (X,Y) hasthe linear Spearman
copula This digribution has been fird conddered by Konijn(1959) and motivated in
Cohen(1960) adong Cohen's kappa datistic (see Hutchinson and Lai(1990), Section 10.9).
For the extended copula, the chosen nomenclaiure linear refers to the piecewise linear
sections of this copula, and Spearman refers to the fact that the grade correlation coefficient

r ¢ by Spearman(1904) coincides with the parameter q . Thisfollows from the calculation



rq=12 Xéé{Cq (u,v) - uv]dudv:q , (4.5)

where a proof of the integrd representation is given in Nesen(1991). The linear Spearman
copula, which leads to the so-cdled linear Spearman bivariate distribution, has a sngular
component, which according to Joe should limit its fiedd of gpplicability. Despite of this it has
many interesting and important properties and is wuitable for anayticad computation. It
appears important to note that the linear Spearman copula leads to a smple tail dependence
dructure, which is of interet when extreme vadues are involved. The coefficient of (upper)
tail dependence of acouple (X,Y) isdefined by

I =1 (X,Y)=1Iim Pr(Y>Q((a)|X >Q,@)), (4.6)

a®l
provided a limit | in [01] edss If 17 (01] then the couple (X.Y) is caled
asymptotically dependent (in the upper tal) while if | =0 one speaks of asymptotic

independence. Tal dependence is an asymptotic property of the copula. Its cdculation
follows eadly from the relaion

Pr(Y >Q (@)X >Q,(a))
_1-P(X£Q@)- PY£Q (@) +Pr(X £Q (a),Y£Q (a)) (4.7)
- 1- Pr(X £Q,@)) '

For alinear Spearman couple one obtains

L,y =lim 222G @3) (14 vga) =g . (4.8)

a®r 1-a a®r

Therefore, unless X and Y ae independent, a linear Spearman couple is adways
asymptoticaly dependent. This is a dedrable property in insurance and financid moddling,
where data tend to be dependent in their extreme vaues. In contrast to this, the ubiquitous
Gaussan copula yieds dways asymptotic independence, unless pefect corrdation holds
(e.g. Embrechts et a.(1998), Section 4.4).

Let (X,Y) be arandom vector with absolutdy continuous margins F(x) and G(y).

Then the copula representation

H, (%, Y) = G, [F(%),G(y)] (4.9)

defines the so-cdled linear Spearman bivariate distribution. It saidfies the monotone
guadrant dependence dsructure introduced by Lehmann(1966). For q 3 O the family is
positive quadrant dependent such that H, (x,y) * F(X)G(y), and for g £0 itis negative
quadrant dependent suchthat H_ (x, y) £ F(X)G(Y) .

To modd the dependence sructure between the individud asset returns and the
maket index return, assume tha the random pars  (R,RY),i=1..,n, folow linear
Spearman bivariate digtributions

H(xY) =C, [F(.F* ()] i=1..n, (4.10)
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where g =1 (R,R") is Speaman’'s grade corrdation of the par (R,R"). In finance
markets, it is naturd to assume postive quadrant dependence, that is g, 2 0 (Smilar results

for g, £0 can dso be deived). The consdered modd will be cdled linear Spearman
bivariate model of asset returns. The following result holds.

Theorem 4.1. The maket shortfdl risk of the liner Spearman bivariate model of asset
returns is determined by the formula

r.|R|R"|=a{E[R]- E[F[e(RM)]R" £varR [R* ]} i=1...n. (4.11)

Proof. Let (X,Y) be alinear Spearman bivariate random couple with margins F(X),
G(y) and joint digribution H(x,y) =C,[F(X),G(y)], @32 0. Consider the shortfal risk
measureof X on Y defined by

r XIV]=E[X]- EX|Y£u,}, u =VvaR][Y]. (4.12)
In terms of the copula function, the conditiond digtribution of X given Y isdetermined by

F(x) +aF (x), x3 FYG(y)]

4.13
1-q)F(x), x<FIG(y)] @29

F(4y) :“—ﬂch[F(x),ay)]: i
|

Since F(xly) IS nortincreasing in y, one notes by passing that X is positively regression
dependent on Y after Lehmann(1966), or in more recent terminology X is stochastically
increasingin Y (e.g. Jog(1997)). In generd, the regression functionof X on Y isgiven by

E[X|y]= 5[1 FOqydx - ), F({y)dx. (4.14)
For the lineer Spearman bivariate mode with g 2 0, one obtains

E[X|y|= E[X]- a {E[X]- F e ()] (4.15)
from which it follows thet

X ¥l=aAEX]- ElF[eyly £u,]). (4.16)

Sating (X,Y) = (R,R") showsthe desired formula. a
A generd covariance identity will be helpful.

Theorem 42. Let (X,Y) be a linear Spearmen bivariate random couple with margins
F(X), G(y) and joint disribution H(x y) =C,[F(X),G(y)], g3 0. Asume Y satisfies
the following regularity assumption



1

lmy (¥)G(y) =0,

_ J 1 5 (RA)
limy (VEEX](y) - ¢, F[G(nldey =0,
where y (y) issome differentiable function. Then one has the covariance identity
cov[Xy M)]=a>€|(Fem)]- E[X])¥ (V)] (4.17)

Proof. Applying a wel-known formula by Hoeffding(1940) and Lehmann(1966), Lemma 2,
one obtains

cofxy ()= g, §,[H(xy) - FEIGMY "(y)dely

(‘Ji CiG(y)[FMYE y)- F() (y)dxdy

= c‘i G(Y)g(‘i F(X|Y £ y)dx- (‘i F (x)dx +©¥ F(x)dx - (‘5[]__ F(XIY £ y)dx]g, '(y)dy
- C\i (E[X]' E[XIY £ YDG(V)Y '(y)dy.

Insarting the formua  E[X]- E[X)Y £ y]=q XE[X]- E[F{G()|VEy]) derived from

(4.15), usng further partid integration and the assumption (RA), one obtans the desred
identity asfollows:

Cofxy (1]=q ), EExIe) - §, Flemlieng vy

=qy MEEXIeM- g F'l[G(y)]dG(wg: +q¢,y W(FG(y)]- E[x]kc(y)
=qE|Fem)]- E[X])y )| a

We are ready for our main result on location-scale asset models.

Theorem 4.3. Le (R,RY),i=1..,n, be alinear Spearman bivariate model of asset returns
with locationscde margins  F,(x)=D("), G(y)=D(x™), m=E[R] m, = E[R"],

Ci Cm

c.c, the scae parameters. Suppose the variances s 2 =Var[R], s 2 :Var[RMJ exist, and
asume y (y)=y satidfies the regularity assumption (RA) of Theorem 4.2. Then the market
shortfdl risk is determined by the formula

M
ra[R|RM]:@:'2@]>¢a[RM], i =1..n. (4.18)
R
Proof. The locationscale assumption impliesthe relation

Fe(y)]=m+xy-m,).
[G(y)] m+CM><(y m,)



Inserting the formula of Theorem 4.1, one obtains immediately
M G m] .
ra[R|R ]:qixc—'xra[R ] i=1..,n.
M

On the other hand, insarting the same expression into the covariance identity (4.17) with
y (y)=y, one obtains

Cov[R,RM]:qi x(::—‘xs 2, i=1..,n,

M

which impliesthe desired result. a

M
Some commerts are in order. In Financid Economics, the quantity b," :@{R‘;’—Rl is

M
cdled beta factor of the asset number i, and represents the market risk of the asset (e.g.
Sharpe(1985)) Under the assumptions of Theorem 4.3, the market shortfal risk of a linear

portfolio R= W ><R is proportiond to the linear weighted sum of the beta factors
r[RRY]= gaWXbM x,[RY], (4.19)
4]

which for an optima portfolio sdection should be minimised under the condrants
W xm= M, W >e=1. This linear problem can be solved in an dementary way. On the
other hand, the portfolio manager of an index match fund, whose benchmark is the market
return, will approximately hold the market portfolio with return R » R . In this Stuation,

M M
one has approximatdy b," »QSRZQ] and ra[R; RM]»s xJSR—] This identifies
M M
mean-shortfdl portfolio sdection of an index maich fund approximately with mean-variance
portfolio sdlection. In paticular, the latter appears useful for some non-dliptica digtributions
of asset returns.
To conclude, let us show that the above mean-shortfal portfolio sdection modd
differsin generd from meanvariance portfolio sdection.

Example4.1.

Assume the liner Spearman bivariate model of asset returns  (R,RY),i=1...,n, has log
location-scae marginssuch that F (x) = D('”(XS"'”‘), G(y) = D('“‘VS)—A'A”‘M).Then one has

Fe]=engn+ Z-(n(y) - m, )y (4.20)

M
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and Theorem 4.1 yields the relationship

. RIR"]=q <E[R]- eofin- Stsm, SRR 2w, u =ver[R']. (421
7 g Swm g € %

In the important specid case of log-normd assst marging, with D(x) =F (X) the standard
normd digtribution, one obtains without difficulty the formula

e _an(u,)- m, ou

e F S - S0

Ml_q & M 20
CRR R S st e

e F s

e Su @ 0

On the other hand, Theorem 4.2 yidds the covariance formula
CovR,R" |=q, E[R]E|R" |[{e*=~ - 1). (4.23)
Comparing (4.22) and (4.23) one obtains

ng -SI0
> Bl ! (4.24)

Far(ua)_mﬂg g E[RM]{SiSM'l‘)’
STV

. [RR"]=colr.R"]

(MO ('Di@) D> D

which shows that the factor multiplying the covariance depends on the individud asset
characterigtics. As a consegquence, the market shortfdl risk of the portfolio is not exactly
proportiona to the variance (or standard deviation) of the portfolio return, and meanshortfal
portfolio sdection differs (a least dightly) from mean-variance portfolio selection.
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