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Abstract. We analyze the following problems concerning Cox, Ingersoll & Ross
model: Linear risk premiums, pricing defaultable bonds in a structural approach,
and asset options pricing with CIR as a short rate. The last two problems are
closely related to price bonds in the Longstaff double square root model.

Solutions are given in terms of the Laplace transform and to avoid compli-
cated formulas, we shall give corresponding references.
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Introduction

The Cox, Ingersoll & Ross Model r(t) for interest rates was constructed in 1980.
Since then it has been the object of many even recent studies and extensions.

Little is known about how to place it in a financial market: usually there
are assumed so called Risk Premiums proportional to

√
r(t); and linear risk

premiums are considered inadmissible cf. Rogers (1995).
However, if one wants to work with CIR Model in Risk Neutral World (RNW)

—the only world that can be observed for interest rates (IR) alone—, then it
results (in some cases) that linear risk premiums are allowed. In this case the
IR in the physical world follow a different model. We shall analyze this question
in section 1.

In section 2, we show how to solve the problem of pricing bonds in double
square root Longstaff model. The wrong solution was presented by Longstaff
(1989) and a simple version was solved by Beaglehole & Tenney (1992).

In the analysis of the original double square root model the local time should
appear (ommited by Longstaff). In section 3, we offer a short discussion of
problems that are essentially equivalent or similar to the Longstaff one, with
CIR as a short rate:
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i) Pricing of options on assets.

ii) Pricing of default bonds in Merton’s Structural Approach.

In both cases we assume that Asset Prices follow geometric Brownian mo-
tion, and are correlated with IR. The problem ii) was solved by Wang
(1999) assuming independency.

In section 4, we present a simplified approach to pricing bonds if default
can occur any time. We only know how to solve one part of our problem.

1 Linear Risk Premiums

We stress that everything we can say about interest rates is deduced from prices
of bonds or other interest rate derivatives, and these are priced in so called Risk
Neutral World (RNW). In other words, dealing only with interest rates the RW
(Real World) is non-existent or at least can not be observed. Therefore in this
case the concept of risk premium is dim.

If one wants to consider the RW for interest rates, this RW must be taken
from assets.

We proceed with the construction of the RW for IR (interest rates) such that
in the RNW the IR follow the CIR model.

For the CIR model in RW, so called linear risk premiums are inappropriate
cf. Cox et al. (1985) Rogers (1995).

We will clarify what can be done and what can not in one dimensional finan-
cial market driven by Brownian motion, and asset prices that in the RW (under
the law P ) follow geometric Brownian motion:

dS(t) = S(t) [σdW (t) + µdt] .

Set (discounted prices) Zt = St

βt
, where

βt = e
R t
0 r(s)ds,

and r(s) is the spot IR in the RW. Now,

dZ(t) = Z(t) [σdW (t) + (µ− r(t))dt] .

The RNW is defined as the probability law Q (Q ∼ P ), t ≤ T that under Q

dZ(t) = σZ(t)dW ∗(t).

It can be shown that if r(t) is CIR (in real world) then such Q does not exist.
An easy argument is based on explosion until T = 1 of the process defined by:

dx(t) = dW (t) + x2dt.

This argument was explained to me by Chris Rogers in 1997. Also cf. Revuz
& Yor (1998) p. 384.
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But what we really want is CIR in the RNW. We prove the following:
Theorem 1 If under P

dr(t) = 2σ̃
√

r(t)dW (t) +
[
δ + 2

µ

σ
σ̃
√

r(t)−
(

2β r(t) +
2σ̃

σ
r

3
2 (t)

)]
dt, (1)

then for any T > 0 exists Q ∼ P , for the process considered until time T such
that under Q the interest rates follow:

dr(t) = 2σ̃
√

r(t) dW ∗(t) + (δ − 2β r(t)) dt, σ̃, δ, β > 0

Proof. Set σ̃ = 1 = σ.
Because the law Q = Qβ is equivalent to the law Q0 of the corresponding

BESQδ process, (β = 0), and similarly P = P β ∼ P 0, then it is sufficient to
prove the equivalence of P 0 and Q0.

Applying Itô-Tanaka to f(x) = |x| 32 and occupation times formulas together
with the fact that for BESQδ, La

t = 0 for a ≤ 0 and δ > 0, we have that under
Q0 the exponential local martingale

exp
{
−

∫ t

0

X(s)dW ∗(s)− 1
2

∫ t

0

X2(s)ds

}
=

exp

{
−X

3
2
t

3
+

X
3
2
0

3
+

1
2

(δ + 1)
∫ t

0

√
X(s)ds− 1

2

∫ t

0

X2(s)ds

}
,

is bounded by a constant k(T ).
Now easily

ηt = E
[∫ ·

0

(X(s)− µ) dW (s)
]

t

is a true martingale.
Moreover ηt > 0, Q0 almost everywhere. We conclude that Q0 ∼ P 0, and

Q ∼ P on FT . A similar proof works if in the RW

dS(t) = S(t) [(λ + 1) (r(t) + µ) dt + σdW (t)] , for any λ < 0.

Namely, that there exist the corresponding model in RW such that in the
RNW the IR follow CIR model. We have just proved that in some cases the
linear risk premiums for CIR model are admissible, of course in our formulation
of the problem.
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Important Remark

If one have “extra degrees of freedom”, for example:

dS(t) = [σ1dW1(t) + σ2dW2(t) + µdt] dS(t) (2)

and in the RW r(t) = r1(t) ⊕ r2(t), independent sum of CIR models driven by
W1 and W2 respectively, that one can drop the drift for discounted prices. This
occurs because

E
(∫ ·

0

r1(s)dW2(s)
)

t

is clearly true martingale (simply take the conditional expectation).
Therefore one can drop the drift term applying Girsanov Theorem twice.

Clearly the incompatibility of CIR in RW and RNW persists.
Assume now that r1⊕ r2 can be reduced to one factor model. This occurs if

σ̃i = σ̃2, β1 = β2 in dri(t) = σ̃
√

ri(t)dWi(t)+(δi − βiri(t)) dt by the Pythagoras
Theorem, cf. Revuz & Yor(1998).

In this case dr(t) = σ̃
√

r(t)dW ∗(t) + (δ1 + δ2 − βr(t)) dt σ̃ = σi, β = βi.

Rewriting (2) as dS(t) =
(√

σ2
1 + σ2

2dW (t) + µdt
)

S(t) we conclude that in
this case there exists an equivalent martingale measure for discounted prices and
CIR model in RW. Here W and W ∗are correlated in a complicated way.

2 Longstaff Model

Note:

The idea of this presentation is not to come to terminal closed formulas, but
only to show how to solve the problem of bonds pricing in terms of their Laplace
transform.

In (1989) Longstaff constructed the so called double square root model de-
fined in Risk Neutral World by:

dr(t) = 2
√

r(t) dW (t) +
(
1− κ

√
r(t)− 2λr(t)

)
dt, κ, λ > 0

Note a similarity with (1)!
In this study, for simplicity sake, we set σ = 1 in the original model r̃(t) =

σr(t). Clearly:

r(t) = y2(t), where

dy(t) = dW ∗(t)−
(
λy(t) +

κ

2
sgn y(t)

)
dt.

In 1992 Beaglehole & Tenney showed that Longstaff’s wrong formula for
Bond Prices in his model gives the correct bond prices in the case of:
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r1(t) = y2
1(t) and dy1(t) = dW (t)−

(
λy(t) +

κ

2

)
dt.

We will show first how to calculate:

Ex

(
e−
R t
0 r1(s)ds

)
(3)

by very simple and transparent martingale method.
We start with an obvious fact:
Let f(s) and g(s) are differentiable functions,

then for any t

E
[
e
R t
0 f(s)W (s)+g(s)dW (s)− 1

2

R t
0 (f(s)W (s)+g(s))2ds

]
= 1.

In the sequel we shall use the notation ∝ for “=” if multiplied by a deter-
ministic function.

By Girsanov Theorem:

(3) ∝ Ex

(
e
−
�

λ2
2 +1

� R t
0 W 2(s)ds−λκ

2

R t
0 W (s)ds−λ

2 W 2(t)−κ
2 W (t)

)

∝ Ex

(
e
R t
0 (f(s)W (s)+g(s))dW (s)− 1

2

R t
0 (f(s)W (s)+g(s))2ds

)

if and only if in (0, t)

f ′(s) + f2(s) = λ2 + 2

g(s)f(s) + g′(s) =
λκ

2
, and

f(t) = −λ,

g(t) = −κ

2
.

Therefore the problem of bonds pricing in the Beaglehole & Tenney model
is reduced to entirely elementary calculations.

Note:

The same matching procedure (being simply particular cases) can be used in
calculations of:

E
(
e−
R t
0 X2(s)

)
, where

i) X is Ornstein-Uhlenbeck process.

ii) X is Brownian Motion with drift, compare with Yor (1992).
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In both cases we use Girsanov theorem twice. Firstly, changing the measure
into Brownian Motion measure, and secondly matching two functions.

This matching procedure does not work in the original Longstaff model, it
means for calculations of:

P (0, t) = E
(
e−
R t
0 r(s)ds

)
.

An application of Girsanov theorem leads to

P (0, t) ∝ Ex

[
e
−
�

λ2
2 +1

�R t
0 W 2(s)ds−κλ

2

R t
0 |W (s)|ds−λ

2 W 2(t)−κ
2 (|W (t)|−L0

t)
]

.

The positive term +κL0
t makes impossible the direct Feynman-Kac approach

to the calculation of the Laplace transform of P (0, t) cf. Karatzas (1991), or
equivalently to calculations of P (0, T ) where T is an exponential random variable
independent of the process.

We shall calculate P (0, T ) conditioning with respect to W (T ) and LT as in
Yor (1992) proposition 3.2. But in this proposition the process starts at zero,
and not at arbitrary x. If one wants to solve the problem reducing first the
process to zero, one should know the density of the hitting time of y for the
Ornstein-Uhlenbeck process starting at x. This is not an easy problem if y 6= 0.

Leblanc et al. (2000) claimed that they solved this problem for general y. But
their calculations are erroneous. Neither

∫ t

0
W 2(s)ds nor the BES(3) are invari-

ant under translations! They use the translation Ex

[
exp

(∫ Ty

0
W 2 (s) ds

)]
=

Ex−y

[
exp

∫ T0

0
W 2 (s) ds

]
which of course is incorrect. More discussions in this

setting can be found in Göing (1997).
Writing P (0, T ) = Ex

(
e−A(T )

)
, and T0 the hitting time of zero by W (t) we

have:

P (0, T ) = Ex

(
e−A(T ); T0 ≥ T

)
+ Ex

(
e−A(T );T0 < T

)
= I + II.

Assume for example that x > 0.
Because in the first term local time and absolute value do not appear, it is

easy to obtain the analytical expression for “I” by changing the initial point, the
law into Ornstein-Uhlenbeck one, the parameter of the exponential distribution,
and using the corresponding formula from Borodin & Salminen (1996) p. 412.

Now, by an elementary argument

Ex

(
e−A(T ), T0 < T

)
= Ex

(
e−A(T0), T0 < T

)
E0

(
e−A(τ)

)

= Ex

(
e−

≈
A(T0), T0 < T

)
E0

(
e−A(τ)

)
, where

≈
A (t) = −

(
λ2

2
+ 1

) ∫ t

0

W 2(s)ds− λκ

2

∫ t

0

W (s)ds,
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and τ is another exponential time (the same parameter) independent of the
process.

Therefore, the first expectation in the product can be expressed as:

Ex

(
e−

≈
A(T ), T > T0

)

E0

(
e−

≈
A(τ)

)

and we can use the former procedure.
Now we shall calculate E0

(
e− eA(τ)

)(
τ ∼ exp θ2

2

)
where

Ã(t) = −
(

λ2

2
+ 1

) ∫ t

0

W 2(s)ds− λκ

2

∫ t

0

|W (s)| ds.

By the proposition 3.2 from Yor (1992),

E0

(
e− eA(τ) | lτ = l,Wτ = a

)
∝ E

[
e− eA(τl)− θ2

2 τl

]
Ea

(
e− eAT0− θ2

2 T0

)

and τl is the inverse local time at zero.
Therefore we have to calculate:

∫ ∞

0

dl e
κ
2 lE0

[
e
−θ2

τl
2
− eA(τl)

] ∫ ∞

−∞
Ea

(
e−θ2 T0

2 − eA(T0)
)

e−
λ
2 a2−κ

2 |a|da.

Calculations of Ea

(
e−θ2 T0

2 − eA(T0)

)
by the same argument as calculations of

I, reduce the problem to the formula 2.0.1 page 429 from Borodin & Salminen.
On the other hand this formula represents the solution of the equation:

1
2
v′′(a) =

(
θ2

2
+ f(a)

)
v(a), 0 ≤ v(a) ≤ 1 , v(0) = 1, (4)

where

f(a) =
(

λ2

2
+ 1

)
a2 +

λκ

2
|a| .

For further calculations we will need another solution h(m) of the equa-
tion (4) written as

h(m) = mu(m), where h(m) = v(m)
∫ m

0

1
v2(s)

ds, (5)

cf. Jeanblanc et al. (1996).
Elementary calculations show that u(0) = 1, u(m) > 1, for m > 0
The final part (the most interesting from the point of view of stochastic

analysis) is the calculation of
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∫ ∞

0

dl e
κl
2 E0

(
e−θ2 τl

2 − eA(τl)
)

(note that of course the integral does exist). There are two possibilities of
calculations of this integral:

i) Calculations in terms of Ray-Knight theorem.

By occupation time and Ray-Knight theorems, cf. Revuz & Yor (1994), we
have

∫ τl

0

dsf(W (s)) =
∫ +∞

−∞
f(x)Lx

τl
dx

=
∫ +∞

−∞

((
λ2

2
+ 1

)
x2 +

λκ

2
|x|

)
Lx

τl
dx

=
∫ ∞

0

((
λ2

2
+ 1

)
x2 +

λκ

2
x

)
(X1 (x) + X2 (x)) dx

=
∫ +∞

0

g(x) (X1(x) + X2(x)) dx

where X1, X2 are two independent squared Bessel processes of dimension zero
starting at l. Putting θ2τl

2 inside the integral and applying Pitman & Yor formula
for squared Bessel processes we have that:

E0

(
e−

θ2τl
2 − eA(τl)

)
= elv+(0),

being v+ right hand derivative at zero, of the function v defined by formula (4).
Therefore the solution can be written as

∫ ∞

0

exp
(

κl

2

)
exp

(
lv+ (0)

)
=

1
−v+ (0)− κ

2

.

ii) The second way of calculations is given in terms of the excursion theory
and this will lead to more explicite formula. We follow closely the general
approach from Yor (1994). Results easily from the multiplicative formula
for excursions that

θ2

2

∫
eκlE0

(
e−θ2 τ

l
2 − eA(τl)

)
dl =

θ2

2(Dθ − κ
2 )

,

where

Dθ(f) =
∫

n(dε)
[
1− e−

θ2
2 V−R V

0 dsf(εs)
]
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cf. Yor (1994) pages 69 and 75.
We know a priori that Dθ > κ

2 .
Now Dθ is given by:

∫ ∞

0

dm

m2

(
1− 1

u(m)

)2

.

This, because of Williams representation of excursions, 1
m2 is the ’law’ of

the maximum and conditioning we have to calculate

E
(3)
0

(
e−

θ2
2 Tm−

R Tm
0 dt f(R(t))

)
, where

R(t) is BES3 process starting at zero, Tm is the hitting time of m, and therefore
u(m) is given by (5).

3 Related Problems

In this section we review briefly another problems concerning CIR. These prob-
lems are closely related to the Longstaff model.

a. Default bonds in the structural Merton approach. For discussion we refer
to the paper by Wang(1999), who solved the problem in the case of:

i. Default occuring at the time t (the horizon).

ii. The value on the firm follows geometric Brownian motion indepen-
dent of the CIR interest rates.

In our solution we do not assume independency. We solve the problem in
this setting if we know how to price options on assets with CIR as a short
rate.

b. Options on assets with CIR as a short rate. Assume that an asset fol-
lows geometric Brownian motion driven by W (t), and interest rates follow
r1(t)⊕ r2 (t) , where ⊕ stands for the independent sum.

Here r2(t) is CIR, and r1(t) is one dimensional CIR model driven by W (t).
The analytical solution of pricing options is equivalent to the knowledge of

the joint law of
∫ t

0
r1 (s) ds and W (t). To calculate the Laplace transform of

E
(
e−λ

R t
0 r1(s)ds+µW (t)

)

we use Girsanov theorem and the problem is equivalent to price bonds in the
Longstaff model. Note that even in Wang’s case, one has to invert Laplace
Transform!
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4 Dynamical approach to default

In this section we present a very simple approach to pricing bonds if a default
occurs when the value of the firm falls below a given level anytime between 0
and t.

We are interested in the computation of

P̃ = E

(
exp

(
−1

2

∫ 1

0

W 2 (s) ds

)
I

{
∀

s∈[0,1]
β(s) + εs ≥ −d

})
,

where β(s) =
∫ s

0
sgnW (u) dW (u), ε = ±1.

The motivation is that W 2(s) is BESQ1 driven by β (s). We do not know
how to calculate this expectation if ε = +1.

On the other hand, if ε = −1 we are able to compute this expectation
applying brute force of conditional expectations. It is easy to see that in this
case if default occurs, it occurs also after g1, the last zero of W (t) before 1.

Given g1 = u,

P̃ = E
(
e−

1
2

R u
0 W 2(s)ds | W (u) = 0

)
∗

∫
E

[
e−

1
2

R 1
u

W 2(s)ds I

{
∀

(u,1]
W (s) ≥ s+u−d+l

}
| W (s) > 0, s ∈ (u, 1]

]
∗

fLu|g1(l | u)dl,

being L the local time at zero.
The first term is explicite, and the conditional density is known, cf. Revuz

& Yor (1998). Condition now with respect to W (1) = a, and invert time.
We have to calculate

Ea

(
exp

(
−1

2

∫ T0

0

W 2(s)ds

)
I

{
∀

s∈[0,ũ]
W (s) ≥ −s− d̃ | T0 = ũ

})
(6)

where d̃ = d− 1− u− l, ũ = 1− u, and T0 is the hitting time of zero (If −d̃ < 0
default does not occur).

Now change the law into the one of Ornstein-Uhlenbeck process X (s) . It
remains to calculate

Ea

(
I

{
∀

s∈[0,ũ]
X (s) > −s− d̃ | T0 = ũ

})
. (7)
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Let T be the hitting time of the line −s − d̃ by X(s) starting at a. A
manipulation of densities for s < ũ

f
(a)
T |T0

(s | ũ) =
f

(a)
T0|T (ũ | s) f

(a)
T (s)

f
(a)
T0

(ũ)

=
f
(−s−d̃ )
T0

(ũ− s) f
(a)
T (s)

f
(a)
T0

(ũ)

allows to express (6) using known terms.
For the first hitting time of a linear barrier by Ornstein-Uhlenbeck process

see for example Shepp (1969).

5 Final Remarks

We have analyzed problems concerning CIR Model for interest rates placed in a
financial market and correlated with asset prices.

We were particularly interested in the joint law of W (t) and
∫ t

0
r(s)ds where

r(s) was driven by W (t).
Finding its Laplace transform is equivalent to pricing bonds in Longstaff’s

Double Square Root Model. The main difficulty was the appearance of a local
time (omitted by Longstaff) and this forced calculation of bonds expiring in
exponential time. Because solutions are given by complicated formulas, they
can not be put into practice.

Avoiding local time was the spirit of the simplified model by Beaglehole &
Tenney.
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