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Summary 
 

The objective of this paper is to compare two approaches to modelling Credit-

Value-at-Risk: CreditMetrics and CreditRisk+. This is important for regulators 

and for risk managers who are concerned with allocating capital efficiently. The 

few studies already available on this subject focus narrowly on the risk of default. 

This paper incorporates both the risk of default and the risk which arises from 

changes in credit ratings (migration risk). 

 

The paper builds on the work done by Koyluoglu and Hickman(1998), but we 

make a significant extension by assessing the impact of migration risk on credit- 

risk. We make very careful comparison of Credit-Value-at-Risk for the two 

models using Monte Carlo techniques on standardised portfolios of bonds.  

 

The conclusion is that for regulators, the model which is used matters very little. 

This is because regulators are concerned with extreme values and loss 

distributions of both models capture information only about defaults at very high 

confidence levels. However, for internal purposes, where rating migrations matter 

more than default, CreditMetrics can generate higher estimates of risk. 
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1 Introduction 
 

In the last decade, Credit Risk Modelling has become a topic of active research. The progress in 

the area is the result of several factors; such as the success of Credit Derivatives, and the concern 

of banking authorities and risk managers to quantify capital adequacy requirements and economic 

capital. 

 

In the academic literature and within the banking industry, there are two credit risk models which 

have become popular: CreditMetrics of J.P. Morgan (1997) and CreditRisk+ of Credit Suisse 

Financial Products(1997). At first sight, both models are very different as they lie on different 

definitions of credit risk. On the one hand CreditRisk+ is a Default Model. Under this approach 

credit risk is the risk that security’s borrower defaults on their promised obligations. Therefore, only 

borrowers’ defaults can cause losses in the portfolio. On the other hand, CreditMetrics is a Rating 

Model. This approach defines credit risk as the risk that the security holder does not materialise the 

expected value of the security due to the deterioration of the borrower’s credit quality. Therefore in 

CreditMetrics, not only default can cause losses but also downgrading in the credit quality of 

borrowers. 

 

The objective of this paper is to compare Credit-Value-at-Risk (CVaR) as estimated by 

CreditMetrics and CreditRisk+ in fixed income portfolios. For regulators and internal risk managers 

this is important in order to calculate capital adequacy requirements and allocate capital efficiently. 

Few studies have examined the differences between these two models, see for example: 

Gordy(2000), Koyluoglu and Hickman(1998) and Finger (1999). They conclude that CreditMetrics 

and CreditRisk+ are conceptually very similar. However, these papers examine only the default 

component of credit risk and fail to incorporate changes in credit ratings as other source of credit 

losses.  

 

In this paper we extend the analysis carried out by Koyluoglu and Hickman(1998). They formulate 

CreditRisk+ and a restricted version of CreditMetrics (which considers that only default can cause 

losses in the portfolio) under a common mathematical framework. This framework allows comparing 
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the default distributions of both models under equivalent parameters. We extend this analysis in two 

aspects: First by comparing CreditRisk+ and the full version of CreditMetrics that considers 

Migration Risk. Second, by setting up a common mathematical framework to compare the loss 

distributions. Loss distributions are the main output of any credit risk portfolio model, as they allow 

estimating the CVaR and examining the impact on capital requirements. 

 

We use Monte Carlo techniques to implement the new mathematical formulation of both models in 

two simulated bond portfolios. One portfolio has high credit quality and the other low credit quality. 

CVaR is calculated under different values of the parameters in order to carry out sensitivity 

analysis. The analysis is restricted to one-year time horizon. 

 

We attribute the differences in CVaR between the models to three sources: 1) the omission of 

migration risk in CreditRisk+ model; 2) the shape of the default distributions of both models; and 3) 

the definition of “credit exposure” in CreditRisk+. We conclude that for both types of portfolios (low 

and high quality portfolios), most of the differences in CVaR between the models are due to the 

underlying assumptions of the distribution of default. However, for high quality portfolios and low 

confidence intervals of CVaR, the omission of migration risk is also significant to explain the 

differences between the models. 

 

This paper contributes to the existing literature because it provides a comparison between a Default 

Model and a Credit Rating Model. We also assess the impact of migration risk on CVaR and identify 

portfolios for which migration risk is relevant to determine the differences of CVaR between the 

models.  

 

For practitioners, the conclusions of this paper have important implications: 1) For the calculation of 

capital requirements, to choose between CreditMetrics or CreditRisk+ seems to be irrelevant. In the 

extreme tails of the loss distribution, only information about default is captured by any of the two 

models. 2) For internal purposes such as estimation of reserves, where rating migrations matter 

more than default, CreditMetrics could be a better approach.  
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The paper is structured as follows: Section 2 briefly describes the conceptual framework of 

CreditMetrics and CreditRisk+. Section 3 presents a revision of the literature on the comparison 

between these two models. In section 4 we extend the analysis of Koyluoglu and Hickman and 

derive a common mathematical framework for both models. Such formulation allows us to 

parameterise the models in a convenient way so we can perform a valid comparison between their 

loss distributions. In section 5, we implement the models in two types of simulated portfolios. In 

section 6, we analyse the sources of the differences of CVaR between the models. Section 7 is left 

for conclusions.  

 

2 CreditMetrics and CreditRisk+: Description of the 
Models 
 
In this section we briefly describe the structure of each model. 

2.1. CreditMetrics 
 

The fundamentals of CreditMetrics lie in the credit pricing framework of Merton(1974). Merton 

models the debt value of a firm as the difference between the firm value and a call option on the 

value of its assets. In this setting the value of the assets drive the default process of the firm. 

Default can occur only at the debt maturity and when the firm value falls below a specific threshold 

(the value of firm’s liabilities).  

 

In CreditMetrics, Merton’s model is extended by assuming that the assets returns of the firm 

determine not only its probability of default but also the probability of migrating to any other credit 

rating. Returns are assumed normally distributed, therefore a change in the credit quality of the firm 

occurs when its returns fall within certain thresholds in the normal distribution. See Figure 2.1. 

Figure 2.1. Credit quality thresholds 
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For each possible credit rating at the end of the time horizon (usually one year), the price of the 

debt is calculated by using forward rates to discount the remaining cash flows. Forward rates are 

estimated assuming that the term structures of interest rate and credit spreads are deterministic. 

Because CreditMetrics generates estimates for the mark to market value of the debt at the end of 

the time- horizon, this model is also known as a Mark-to-Market Model (MTM). 

 

In order to integrate all the individual exposures in the portfolio, JPMorgan(1977) models the 

correlation between the credit behaviour of the borrowers using their asset correlations as a proxy. 

The distribution of the portfolio value can then be constructed. This allows estimating the expected 

and unexpected value of the portfolio. CVaR is calculated as the difference between these two 

figures.  

 

2.2 CreditRisk+ 
 

In CreditRisk+ default does not depend on firm´s fundamentals but is modelled as an exogenous 

variable, which follows a Poisson distribution with stochastic intensity parameter. This intensity 

parameter represents the default rate or the probability of default over a small time interval. This is 

assumed to be driven by an unknown “economic factor” which follows a Gamma distribution, hence 

the default rate is also Gamma distributed. In the event of default, the debt holder incurs a loss 

equal to the amount of debt less the recovery rate. Contrasting CreditMetrics, the value of the debt 

is not modelled in CreditRisk+. 

 

To deal with portfolios and correlations between borrowers, these are classified into sub- portfolios. 

Each sub- portfolio is affected by a specific economic factor. Such classification allows assuming 

independence between borrowers in the same sub- portfolio. This facilitates the mathematics of the 

model. In addition, within each sub- portfolio, borrowers are classified into bands according to their 

credit exposure. In each band, the size of each credit exposure is adjusted, so each band is 

characterised by a common exposure Vi.  

 

The stochastic default rate in a sub- portfolio affected by an economic factor kX  is:  
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where )(xpi  represents the default rate or conditional probability of default, Vi stands for the 

adjusted credit exposure of the debt, iε  for the expected loss and p k for the unconditional rate of 

default in sub-portfolio k (i.e., the mean of the variable )(xpi ). 

 

The parameters α  and β  are defined as 
2
k

2
kp

σ
=α , 

k

2
k

p

σ
=β , where kσ  is the unconditional default 

volatility in sub-portfolio k1.  

 

To estimate the loss distribution of the portfolio due to default, the model works in three steps. In 

the first step the probability generating function (pgf) of losses for one obligor is calculated. In the 

second step, the individuals in each sub-portfolio are aggregated to calculate the pgf of each sub- 

portfolio. Finally, in the third step, all the sub- portfolios are also aggregated. The loss distribution of 

the portfolio is then obtained from the pgf of the portfolio. The advantage of the model is that it 

generates closed form solutions that facilitates its implementation. 

 

3 Previous research on the comparison of CreditMetrics 
and CreditRisk+ 
 

There is only a small literature on the comparison of credit risk models. Gordy(2000) substitutes the 

distributional assumptions of CreditMetrics into the mathematical structure of CreditRisk+ and in the 

other way around. He shows that the structures of both models are similar when CreditMetrics is 

restricted to measure only default risk. Gordy also carries out an empirical exercise and simulates 

portfolios by assuming a single systematic economic factor and four credit-types of assets. Models 

are calibrated so that they yield the same unconditional expected default rate and default 

correlation. The conclusions of the paper are: 1) there are not dramatic differences in CVaR 

between the restricted form of CreditMetrics and CreditRisk+; 2) on average both models behave 

                                                                 
1 CreditRisk+ suggests obtaining the unconditional rate of default and volatility of default (p k and kσ  
respectively) from rating agencies. 
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similarly for low values of default volatility; and 3) CreditRisk+ is more responsive to the credit 

quality of the portfolio.  

 

Finger (1999) compares CreditRisk+ and also a restricted version of CreditMetrics using two types 

of bond portfolios: low and high credit quality portfolios. Within each portfolio, issuers are assumed 

homogeneous2 and their credit quality driven by one-single economic factor. The bigger 

discrepancies between the models exist when the portfolio is composed of high quality bonds. The 

extreme tails of the default distributions generated by the models are very different. Finger 

concludes that when the asset correlation coefficient of CreditMetrics and the default volatility of 

CreditRisk+ are parameterised in a consistent way, both models produce similar distributions of 

default. However, in practice discrepancies can arise due to inconsistent parameters between the 

models, or technical implementations. 

 

Koyluoglu and Hickman (1998) analyse the theoretical similarities between CreditMetrics and 

CreditRisk+. They assume a simple framework: the Vasicek representation of asset returns, fixed 

recovery rates and homogeneous portfolios. The mathematical structure of the models is 

reformulated in three common steps. 1) The estimation of the Distribution of Default. In both models 

default rates are driven directly or indirectly by stochastic economic factors. Therefore, default rates 

are also random variables and their probability distributions depend on stochastic movements of the 

economic factors. 2) The estimation of the Conditional Distribution of the Number of Defaults in the 

Portfolio. This distribution is estimated as if individual borrowers defaulted independently. This is 

because all the joint behaviour of borrowers has already been considered when calculating the 

conditional default rates. 3) The estimation of the Unconditional Distribution of Number of Defaults 

in the Portfolio. This distribution is obtained by aggregating homogeneous sub-portfolios3 across all 

possible realisations of the economic factor.  

 

The above common set up of the models allows Koyluoglu and Hickman examining their similarities 

in a structural way. They perform comparisons between the distributions of default rather than 

perform comparisons between the loss distributions, arguing that for very large portfolios both 

                                                                 
2 A portfolio is homogeneous if borrowers have similar credit ratings and size exposures. 
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distributions are very similar. Empirically the differences between the default distributions seem not 

to be significant when parameters have been set up consistently. They conclude that CreditMetrics 

and CreditRisk+ are conceptually based on the same philosophy. But the differences between the 

models can arise due to aggregation techniques and the estimation of parameters.  

 

It is important to point out that some of the assumptions used by Koyluoglu and Hickman(1998) or 

Finger(1999) might be considered unrealistic, however it must be said that they are commonly used 

by practitioners. For instance, practitioners often assume that the determinants of credit losses are 

independent. The recovery rate in most cases is a deterministic parameter. Borrowers within same 

specific risk sectors are assumed statistically the same. Practitioners also often assume that 

parameters of the models are stable. Though empirically none of these assumptions seems to be 

true, the lack of data generally limits the formulation of more sophisticated assumptions.  

 

The above analyses contrast with the project on Credit Risk Modelling led by the Institute of 

International Finance and The International Swaps and Derivatives Association (IIF/ISDA 2000), 

which was carried out by practitioners. The objective of this project was to understand the 

performance of credit risk models4 used in 25 banks from 10 countries with different sizes and 

specialities. In this study, risk managers were given standard portfolios and inputs and asked to 

report CVaR. Practitioners were also asked to run models through a variety of implementations and 

scenarios. The objective was to determine whether models used by practitioners were directionally 

consistent (models outputs moved in the same direction), when given similar key inputs. In the end, 

the exercise led to different outcomes and to no very clear conclusions about what are the sizes 

and sources of the differences between the models, as implemented. We should point out that no 

efforts were made to parameterise the models such they yielded consistent results. This might 

explain the wide range in the results.  

 

The IIF/ISDA study concludes that there is consistency within the results of the same type of model. 

For instance, CreditMetrics results resemble other mark- to- market approaches. Credit Risk+ gives 

                                                                                                                                                                                                      
3 Each sub-portfolio is affected by one economic factor. 
4 The examined models were: CreditMetrics (J.P.Morgan), CreditPortfolioView (McKinsey), CreditRisk+ (Credit 
Suisse Financial Products), Portfolio Manager (KMV) and 11 proprietary internal models. 
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the highest estimates of CVaR (in relation to internal models and CreditMetrics). The explanation 

lies in the correlation assumption: whereas CreditMetrics and other mark-to-market models were 

run with equivalent correlation coefficients, CreditRisk+ was fed with a more conservative 

parameter. Hence it is concluded that the calculations of the correlation coefficient play an 

important role in the generation of discrepancies. Finally IIF/ISDA conclude that differences 

between models must be attributed to model inputs, pre-processing of data, valuation and different 

implementations.  

 

In summary, the literature shows that CreditMetrics and CreditRisk+ are conceptually very similar, 

provided that they are fed with proper parameters. 

 

4. A Common Framework for CreditMetrics 
     and CreditRisk+. 
 

This section is the core of the paper. Here we reformulate the mathematical structure of 

CreditMetrics and CreditRisk+ by extending Koyluoglu and Hickman (1998)’s approach. We extend 

their approach in two directions: 1) by constructing a common framework between CreditRisk+ and 

the full version of CreditMetrics, which considers migration risk; 2) by comparing not only the default 

distributions generated by the models but also their loss distributions and CVaR.  

 

The output of any credit risk model is the distribution of losses or the distribution of the portfolio 

value. In this section, we describe how we can reformulate both models to estimate their 

distributions of losses. To estimate the distributions of losses we proceed in four steps, as follows: 

First we determine the rates of default for both models and also the rates of migration to any other 

no-default states for CreditMetrics. All rates are conditional on the behaviour of the economic factor. 

Given the default and migration rates for each realisation of the economic factor, we estimate the 

Conditional Distributions of Default and Migration. Second, we find the Conditional Distributions of 

the Number of Events. These distributions describe the number of defaults and number of changes 

in the credit quality of the borrowers in the portfolio. In the third step, we determine the 

Unconditional Distributions of the Number of Events. Finally we explain how to get the Loss 

Distributions of the portfolio.  
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We should point out that the reformulation of the models that we propose do not modify their 

fundamentals or distributional assumptions but only their implementation. Such way to construct the 

loss distributions is the key to carrying out a structural comparison between the models and 

identifying the sources in the discrepancies of CVaR.  

 

In order to keep calculations simple, we assume a portfolio formed by N bonds equally rated, with 

the same exposure size5, the same time to maturity, and affected by a single economic factor.  

 

The rating system consists of three credit states or ratings: A, B and D. Where A represents the 

highest credit quality, B is an intermediate state and D represents the default state. For each 

borrower in the portfolio, with a given initial credit state, the transition probabilities or unconditional 

rates of migration (including default) are Ap , Bp  and Dp . Where Jp  (J=A, B and D) represents the 

probability of migrating to state J at the end of the time horizon.  

 

At the end of the time horizon, the credit quality of each borrower in the portfolio is determined by 

one single- economic factor. Therefore, given a realisation of the economic factor, the probabilities 

of a borrower migrating to states A, B or D, are xAp , xBp , and xDp , respectively. This 

definition is consistent with the Mark-To-Market version of CreditMetrics. For CreditRisk+ and the 

restricted version of CreditMetrics, in which only default matters, we define the rate of the no default 

state as xDxND p1p −= . 

 

In section 4.1, following Koyluoglu and Hickman, we derive functional forms for the rates of default 

of CreditMetrics and CreditRisk+. We also set up the conditions to generate consistent parameters 

for the default distributions of both models. In Section 4.2, we estimate the functional forms for the 

migration rates of CreditMetrics. Finally, in Section 4.3 we explain how to construct the loss 

distributions for both models. 

 

                                                                 
5 In order to simplify terminology, we refer to “exposure” as the difference between the value of the debt at the 
time of default and the recovery rate. 
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4.1. Estimation of the Default Rates and 
       Parameterisation of the Models. 
 

In CreditMetrics, default is driven by the asset- return process of the firm. Likewise, returns are 

driven by economic factors that are assumed normally distributed. Firm’s returns can then be 

expressed in terms of a set of k orthogonal normal variables that represent economic factors: 

i
k

2
k,i22,i11,ii b1....XbXbr ε−+++= ∑            (4.1) 

Where k,ib are the factor- loadings, Xk represents the k-th economic factor and iε  are movements 

specific to each obligor. Given that Xk and iε  are both standard normal, ri is also a normal standard 

random variable. 

 

Koyluoglu and Hickman(1998) argue that when the portfolio is composed either of one single 

borrower, or of borrowers who are affected by a single economic factor and have similar size 

exposures and credit ratings, the systematic factors in equation (4.1) can be represented by a 

single normally distributed variable X:  

ii 1Xr ερ−+ρ=              (4.2) 

where ∑=ρ
k

2
kb  is the correlation of the borrowers´ assets in the portfolio. 

Using the above representation of the returns, Vasicek (1987) derives a functional form for the 

default process in terms of the driving variable. Therefore, given a realisation of the economic factor 

X, and a correlation between the borrowers of the portfolio, the conditional probability of default or 

default rate for CreditMetrics is: 













ρ−

ρ−
Φ=

1

xc
p 1

x
CM
D               (4.3) 

where X~N(0,1), CM
D1 p)c( =Φ  is the unconditional rate of default and )s(Φ  is the cumulative 

density function of the normal distribution. See appendix A for a full derivation of equation (4.3). 

Remember that the unconditional rate of default is an input in the model and forms part of the 

vector of transition probabilities, which is associated to the initial credit quality of the borrower. 

Observe that in this derivation the probability of default is confined to the [0,1] interval. 
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On the other hand, CreditRisk+ assumes that default is driven linearly by an economic factor which 

is Gamma distributed (see formula 2.1). As a result the conditional probability of default or default 

rate is also Gamma distributed. In order to make models comparable, Koyluoglu and Hickman 

(1998) suggest modifying the distribution of the economic or background factor in CreditRisk+. They 

substitute the gamma distribution of the economic factor for a normal distribution. In order to 

preserve the gamma distribution of the default rate, which is one of the fundamental assumptions of 

CreditRisk+, they transform the functional form between the economic factor and the default rate. 

The transformation function consists of all points ( )ξχ,  that satisfy: 

∫ ∫
ξ ∞

χ

ϕ=βαΓ
0

CR
D dx)x(dp),;p(            (4.4) 

where ),;z( βαΓ  is the Gamma density function with parameters α and β  and )x(ϕ is the Normal 

density function. 

 

The conditional rate of default resulting from the transformation (4.4) is given by: 

( )βαΦ−Ψ= − ,);x(1p 1
x

CR
D         (4.5) 

where ),;z( βαΨ  is the Gamma cumulative distribution.  

Note that in order to define completely the distribution of x
CR
Dp  in (4.5), the parameters α  and β  

have to be specified. As was mentioned in the previous section, these parameters are functions of 

the unconditional mean and standard deviation of the default rate ( CR
Dp  and CR

Dσ  respectively), 

which are inputs of the model. Likewise, the transformation for x
CM
Dp  in (4.3) needs the 

unconditional rate of default CM
Dp and the asset correlation coefficient ρ  to be completely specified.  

 

In order to produce consistent default rates between the models (equations (4.3) and (4.5)), 

Koyluoglu and Hickman argue that their means and standard deviations must be the same across 

the models. Therefore, we set the unconditional default rates CR
D

CM
D pp ≡ .  
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Using expression (4.3), Koyluoglu and Hickman find that the default rate volatility for CreditMetrics 

can be expressed as a function of CM
Dp  and ρ : 

dx)x(p
1

x)p(
2

CM
CM
D

1
2
CM D

ϕ













−













ρ−

ρ−Φ
Φ=σ ∫

∞+

∞−

−
        (4.6) 

 

Set the variance for CreditRisk+ and CreditMetrics as 2
CM

2
CR σ≡σ . From equation 4.6, observe 

that given a specific value of the unconditional default rates CR
D

CM
D pp ≡ , we have implicitly set up 

a relationship between the asset correlation parameter of CreditMetrics (ρ ) and the variance of 

CreditRisk+ ( CRσ ). This relationship is plotted in Figure 4.1.  

     Figure 4.1. Consistent parameters for CreditMetrics and CreditRisk+ 
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From the plot, the higher the assets correlation the higher the volatility of the default rate. Intuitively, 

if asset returns are highly correlated then default of one borrower is likely to be followed by the 

default of another. In other words, as borrowers are correlated through the effect of the same 

economic factor, their default rates will move together, causing high volatility levels. 

 

It is worth mentioning that although unconditional default rates (means) and variances of the 

distributions of default of both models are restricted to be the same, this is not the case for higher 

moments (Skewness and Kurtosis). This will be investigated later in the paper. 
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4.2 Estimation of Migration Rates 
 

So far we have derived the functional forms for the rates of default for CreditMetrics and 

CreditRisk+. Those rates constitute the link between the models. We have parameterised those 

functions such that default rates are consistent between the both models. Here, consistency means 

that means and standard deviations of the default distributions are the same across the models. 

 

We still need to define the migration rates to no- default states for both models. Those are not 

necessarily the same between the models since each model assumes different definitions of credit 

risk. 

 

For CreditRisk+ the no- default rate given a realisation of the economic factor is given by: 

x
CR
NDp ≡ 1- x

CR
Dp                   (4.7) 

For the mark-to-market version of CreditMetrics, we need to calculate three migration rates (or 

conditional probabilities of migration): x
CM
Ap , x

CM
Bp  and x

CM
Dp . The latter has already been 

derived in the previous section.  

 

Under the above assumptions, it is straightforward the derivation of the migration rates to ratings A 

and B (see Appendix A for the full derivation): 

 













ρ−

ρ−
Φ−













ρ−

ρ−
Φ=

1

xc

1

xc
p 12

x
CM
B          (4.8) 

and x
CM
Dx

CM
Bx

CM
A pp1p −−=           (4.9) 

where )pp(c DB
1

2 +Φ= − , Bp is the unconditional migration rate to credit rating B and Dp  is the 

unconditional default rate.  

 

The effect of realisations of the economic factor on migration rates and default rates are illustrated 

in Figure (4.3). The realisations of the economy are modelled by a normal random variable, which is 
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the distribution at the top of the diagram. The five transformations that we have derived (equations 

4.3, 4.5, 4.7, 4.8 and 4.9) map realisations of the economic factor into the default rates.  

 

Assume a borrower with intermediate credit quality B at the beginning of the period. In figure 4.3, 

assume that an observation from the left- tail of the normal distribution Xa has occurred. This 

represents a realisation of the economic factor. Actually a small value Xa indicates an economy in 

recession. An economy in recession leads to more defaults in the portfolio, or equivalently, to high 

values of the borrower’s default rate. In CreditMetrics and CreditRisk+ such default rates are 

represented by 
aXDp and 

aXDp′ respectively. In figure 4.3, the realisation of Xa generates a high 

value of 
aXDp  in CreditMetrics, which means a point at the right- tail of the Default Rate 

Distribution. Similar effect has Xa on CreditRisk+.  

Figure 4.3. Effect of the economic factor on migration rates. 
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diagram for CreditMetrics, only the distributions for the default rate and migration rate to rating B 

are plotted. When the economy is in recession (i.e. for small values of Xa), the probability that a 
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rates to ratings A or B, i.e., 
aXAp and 

aXBp respectively. In the figure, 
aXBp is located close to 

zero, representing a low value for this variable. The reverse is true for a high value of the economic 

factor Xb.  

 

To generate, the distributions of the migration rates in figure 4.3, we need several realisations of the 

economic factor. According to CreditRisk+, the distribution of the default rate follows a Gamma 

distribution, whereas that for CreditMetrics this distribution is: 

( ))p(p

p

)p(1C
1

dp
dP

)p(f
1

1
1

−

−

Φϕ










 Φρ−−
ϕρ−

==  

 

Where )z(ϕ  is the standardised normal density function. See appendix A for a full derivation of this 

equation. 

 

4.3 Estimation of the Loss Distribution 
 
To determine the Loss Distribution for both models we follow an actuarial approach. First we 

determine what will be the credit quality of the borrowers at the end of the time horizon. We can 

then determine the number of borrowers within each credit class (A, B or D). Finally we combine the 

number of individuals in each credit class with the size of the exposures in order to estimate the 

Distribution of Losses of the portfolio.  

 

In the previous sections we estimated the default rate and migration rates. Given a realisation of the 

economy we estimate the probability that the borrower migrates to any credit rating at the end of the 

time period. The second step, in the construction of the distribution of losses is the calculation of the 

number of borrowers that fall in each credit rating category at the end of the period. We should point 

out that given a realisation of the economic factor, borrowers in the portfolio should be assumed 

independent. All the correlation between borrowers has been captured through their relationship 

with the economic factor. 
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On the one hand, in CreditRisk+, given that all individuals in the portfolio are independent and 

homogenous6, and a fixed value of the rate of default, the number of defaults follows a Binomial 

process. Asymptotic properties of the Binomial Distribution state that when the rate of default 

CR
Dp |x is small and the number of bonds (N) in the portfolio is large, then the Number of Defaults in 

the portfolio ( x
CR
DN ) is approximately Poisson distributed with parameter N)p( x

CR
D ⋅=λ : 

)(PoissonN x
CR
D λ≈          (4.10) 

 

Therefore, the number of no-defaults in the portfolio is x
CR
Dx

CR
ND NNN −= . 

 

On the other hand, for computational simplicity, CreditMetrics uses Monte Carlo techniques to 

simulate the changes in the credit quality of the borrowers in the portfolio. Implicitly the model 

assumes a Multinominal distribution to describe the number of individuals that fall in each credit 

rating. At the end of the period, an individual can migrate to any of the three credit states [A, B, D] 

with probabilities [ xAp , xBp , xDp ] respectively. If we sample N individuals independently and 

[ CM
DN , CM

BN , CM
AN ] are the number of defaults, the number of B-rated borrowers and the 

number of A-rated borrowers in the portfolio, then this vector will follow a Multinomial Distribution. 

)N,p,p(lMultinomia
N
N

x
CM
Dx

CM
B

x
CM
D

x
CM
B ≈












         (4.11) 

And CM
D

CM
B

CM
A NNNN −−= . Where N is the size of the portfolio. 

 

Observe that in the restricted version of CreditMetrics (in which only default risk matters), the 

Multinomial distribution becomes a Binomial distribution with parameters: CM
Dp |x and N. As the limit 

distribution of a Binomial distribution is a Poisson, the restricted version of CreditMetrics and 

CreditRisk+ asymptotically yield similar shapes of the default distribution.  

 

At the end of the period, the number of individuals in each state is conditioned on the random 

migration rate or default rate. Hence that the third step in the calculation of the distribution of losses 

                                                                 
6 Recall that because the portfolio is homogeneous, all individuals in the portfolio have the same unconditional  
default rate. 
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involves the aggregation of the conditional distributions of the number of borrowers in each credit 

rating class. We aggregate all conditional distributions, each is the result of an specific migration or 

default rate, which likewise depend on the realisations of the economy.  

 

In CreditRisk+, the number of defaults is conditioned on the random default rate. Therefore the 

unconditional distribution of the number of defaults is given by the following convolution integral: 

∫ βαΓ=
P

xD
CR

CR dp),()p,N(Poisson)N(P
D

        (4.12) 

Likewise, for CreditMetrics the conditional distribution of the number of individuals in each credit 

rating is conditioned on a normally distributed economic factor. The unconditional distribution of the 

number of events is given by: 

dx)x()P,P,N(Mult)N,N(P xBxD
x

CMCM
CM BD

ϕ= ∫        (4.13) 

The fourth and final step is the calculation of the Distribution of Losses of the portfolio. To calculate 

it, the information about the number of events in each state and the size of the exposures should be 

combined.  

 

A distinct feature of CreditRisk+ is that it produces a distribution of losses, whereas CreditMetrics 

produces a distribution of the portfolio value. For comparison of CVaR figures, it is more convenient 

to transform the distribution of portfolio value of CreditMetrics into a distribution of losses. This 

transformation will be explained in the next section.  

 

For CreditRisk+ the expression for the distribution of losses should resemble equation (4.12). Only 

the random variable CR
DN needs to be scaled by the size of the exposures under default. For 

CreditMetrics, the expression for the distribution of losses is more complex, so it will be estimated 

by using Monte Carlo techniques in the next section. 
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5. Implementation of the Models 
    and Estimation of CVaR 
 

In this section we implement CreditMetrics and CreditRisk+ and find the loss distributions following 

the common steps specified in previous sections. In Section 5.1 we construct the default 

distributions of both models. In Section 5.2 we generate the distribution of losses and calculate 

CVaR. 

 

We implement both models on two types of simulated bond portfolios: a Low- Credit Quality 

portfolio (LQ) and a High- Credit Quality portfolio (HQ). The LQ portfolio consists of bonds, whose 

issuers or borrowers have credit quality “B”, whereas the HQ portfolio consists of bonds whose 

borrowers have “A” credit quality. The migration rates for credit ratings A and B appear in Table 5.1. 

Each bond has 2- year to maturity and a face value of $1. Each portfolio has been designed with 

10,000 borrowers. 

  Table 5.1. Unconditional Transition Probabilities 

 

 

 

 

To gain some insights into the performance of the models we run several tests to estimate the 

sensitivity of CVaR to different values of the correlation parameter (ρ =0.05, 0.15, 0.25, 0.35, 0.45) 

and confidence levels ((1-α )%=90, 93, 95, 97, 99, 99.9%). The time horizon for CVaR is one year. 

 

5.1 Generation of the Distributions of Default and Migration 
 
We use Monte Carlo techniques to simulate realisations of the economic factor and construct the 

default distribution and migration distributions for CreditMetrics. The mean and volatility of the 

default distribution of CreditMetrics are then used as input parameters to construct the default 

distribution for CreditRisk+. 

 

 

 

 Transition Probabilities
Rating Low Quality High Quality

A 0.88 89.45
B 92.06 9.55

D (default) 7.06 1.00
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Simulations for the generation of the Default Distribution and Migration Distributions for 

CreditMetrics 

The inputs to generate the default distribution of CreditMetrics are the unconditional default rate and 

migration rates, i.e., Dp , Bp  and Ap , and the correlation between the borrowers in the portfolio ρ . 

The Monte Carlo simulations involve the following steps for each model: 

1. Simulate a standard Normal variable, which represents the economic factor of the portfolio. In 

order to get reliable results we need a large number of simulations. Faure quasi-random sequence 

numbers are used to generate random numbers in the interval [0,1]. Application of the inverse of 

the normal distribution provides us with a standard normal distribution7.  

2. For each realisation of the economic factor calculate the default rate according to equation (4.3).  

3. Repeat the process (1 and 2) 1,000,000 times (the number of realisations of the economic 

factor). 

4. Calculate the mean, standard deviation, skewness, and kurtosis of the sample.  

5. Calculate α  and β  for CreditRisk+ using the estimated mean and standard deviation of 

CreditMetrics. 

 

This procedure is repeated for all the combinations of the vector of transition probabilities 

[ Ap , Bp , Dp ] and the correlation coefficient. See Table 5.1 for the values of the vector of transition 

probabilities. Use following correlation coefficients ρ =0.05, 0.15, 0.25, 0.35, 0.45. 

 

Simulations for the generation of the Default Distribution under CreditRisk+ 

The inputs to generate the default distribution for CreditRisk are α  and β  as estimated by using 

CreditMetrics. 

1. As for CreditMetrics, simulate a standard Normal variable, which represents the economic factor. 

2. For a realisation of the economic factor calculate the default rate according to equation (4.5).8 

3. Repeat the process (1 and 2) 1,000,000 times (number of realisations of the economic factor).  

                                                                 
7 Moro (1995) derivation is used to approximate the inverse cumulative Normal distribution. 
8 The calculation of this equation may not be straightforward. Instead, solve equation [4.4] using numerical 
integration. For a given value of χ , find ξ , such that both integrals are equal. To approximate the cumulative 

distribution of a variable X~ ),( βαΓ , it is more convenient to approximate the integral when Y~ )1,(αΓ  and 

use the fact that YX β=  ~ ),( βαΓ . 
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4. Calculate skewness and kurtosis of the empirical distribution of the default rate. 

Figure 5.1. Default Distributions for CreditMetrics. Low and High quality portfolios.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the simulations for CreditMetrics, we plot in Figure 5.1 some default distributions for different 

values of the correlation parameter. Observe that high correlations (rho=0.45) are associated with 

long and fat tails. Note that the distributions of the HQ portfolios are shifted to the left, which 

indicates higher probability of getting low default rates than for LQ portfolios. 
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In Table 5.2 we report some descriptive statistics for the distributions of both types of portfolios and 

different levels of asset correlation (0.05 to 0.45). 

              Table 5.2 Statistics of the Distributions of Default for CreditMetrics and CreditRisk+ 

 

 

 

 

 

 

 

        Note: Mean and Standard Deviation are the same for both models. 

 

From Table 5.2 we should make the following remarks: 

1. The low quality (LQ) portfolio exhibits significantly higher levels of standard deviation than the 

high quality (HQ) portfolio. If we consider the standard deviation as an indicator of the portfolio 

risk, then higher standard deviations should be associated with the LQ portfolio. As mentioned 

earlier, the higher the correlation, the higher the standard deviation. In addition, the standard 

deviation of the HQ portfolio is more sensitive to changes in the correlation coefficient than the 

standard deviation of the LQ portfolio. For instance, a change of 28% in the asset correlation 

(from ρ =0.35 to ρ =0.45), implies a change of 18% in the standard deviation of the LQ portfolio 

(from 9.51% to 11.29%) and a change of 26% in the standard deviation of the HQ portfolio (from 

2.45% to 3.10%). 

 

2. For both models, skewness and kurtosis of HQ portfolios are more sensitive to changes in the 

correlation parameter than those of LQ portfolios. For example, in CreditMetrics a change of 

28% in the correlation level (from ρ =0.35 to ρ =0.45) produces a change of 10% in the kurtosis 

of the LQ portfolio (from 11.47% to 12.65%). Whereas an equivalent change in the correlation in 

the HQ portfolio produces a change of 27% (from 68.95% to 87.58%).  

 

Correlation Mean Stand Dev. Skewness Kurtosis Skewness Kurtosis

0.05 7.06% 3.10% 0.997 4.531 0.878 4.150
0.15 7.06% 5.66% 1.733 7.394 1.600 6.821
0.25 7.06% 7.67% 2.211 9.735 2.167 10.009
0.35 7.06% 9.51% 2.556 11.472 2.686 13.756
0.45 7.06% 11.29% 2.811 12.652 3.188 18.138

0.05 1.00% 0.64% 1.728 8.183 1.273 5.419
0.15 1.00% 1.26% 3.524 24.714 2.509 12.391
0.25 1.00% 1.84% 5.081 46.651 3.663 22.985
0.35 1.00% 2.45% 6.424 68.945 4.870 38.205
0.45 1.00% 3.10% 7.522 87.575 6.171 59.430

STATISTICS OF THE DISTRIBUTION OF DEFAULT

HIGH QUALITY PORTFOLIO (HQ)

LOW QUALITY PORTFOLIO (LQ)

CreditMetrics CreditRisk+
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CreditRisk+ is more sensitive to changes in the correlation parameter than CreditMetrics. For 

instance, for an equivalent change of 28% in the correlation coefficient (from ρ =0.35 to 

ρ =0.45), the change in kurtosis for CreditRisk+ for LQ portfolio is 32% (from 13.76% to 

18.14%), whereas for CreditMetrics this figure was 10%.  

 

Finally, the discrepancies between those coefficients for both models increase for higher levels 

of the asset correlation parameter. 

 

3. For HQ portfolios, CreditMetrics distributions are dramatically more leptokurtic9 than those for 

CreditRisk+. Only for LQ portfolios and high correlations CreditRisk+ produces higher estimates 

than CreditMetrics. Therefore, for HQ portfolios, and for LQ portfolios which are poorly 

correlated, CreditMetrics forecasts larger credit losses and capital requirements due to default 

than CreditRisk+. This implies that more capital would be required by regulators if migrations to 

other non-default states were considered. 

 

Looking at the distributions of default, we conclude that although the two models can be 

parameterised to yield the same mean and standard deviation of default distribution the differences 

between higher moments suggest that CVaR figures (of credit losses) may differ significantly. This 

difference is even more pronounced for high-quality portfolios than for low-quality portfolios. 

 

5.2 Generation of the Distributions of Losses 
 

To calculate the distribution of losses, for each realisation of the economic factor10 we compute the 

number of individuals in the portfolio that fall into each credit state at the end of the period. These 

numbers can be found through inverting the integrals in equations (4.12) and (4.13) by using Monte 

Carlo techniques. The number of individuals in each rating class is combined with the size of the 

exposures to produce an estimate for the losses in the portfolio. Before describing the Monte Carlo 

                                                                 
9 We say that a distribution is leptoukortic, if its kurtosis coefficient is larger than 3. 
10 Recall that a realisation of the economic factor generates a set of conditional probabilities of migration, 
which are needed to estimate the probabilities of number of borrowers in each credit rating at the end of the 
period. 
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steps to calculate the loss distributions, we explain how the loss function is defined for each of the 

models. 

 

The main output of CreditMetrics is the distribution of the value of the portfolio. CreditRisk+ 

produces a distribution for the losses of the portfolio. To facilitate the comparison between the 

models, the distribution generated by CreditMetrics is transformed into a loss distribution. In the 

traditional version of CreditMetrics, the mark-to-market value of a bond at the end of the time 

horizon is calculated by discounting the remaining cashflows and using the term-structure 

associated with the credit rating of the obligor at the end of period.  

 

Let J,1tP +  be the mark-to-market price of the bond associated to credit rating J (J=A, B, D). 

Therefore the mark- to market value of a bond ( 1tP + ) at the end of the time horizon is: 

∑ ++ =
J

)J(J,1t1t IPP ,  J=A, B, D 

Where I(J) is an indicator function with value 1 when borrower has been rated with credit quality J at 

the end of the period, and 0 otherwise. 

 

Define the credit loss of a bond for the mark-to-market version of CreditMetrics as the difference 

between the expected value of the bond and its value at the end of the time horizon11: 

 

Mark to Market Version of CreditMetrics 

)J(J,1t1tt
J

3CM
1t I)P)P(E(L +++ −= ∑     J=A, B, D       (5.1) 

where )P(E 1tt +  is the expected value of the bond, which is equal to ∑
=

+
D,B,AJ

J,1tJPp . And pJ is the 

probability of migration to rating J (=A, B, D). Also remember that the value of the bond in case of 

default is defined as the recovery rate, which in this case is assumed fixed. 

 

Likewise, for the restricted or default version of CreditMetrics, we define losses as:  
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Restricted Version of CreditMetrics 

)J(J,1t1tt
J

2CM
1t I)P)P(E(L +++ −= ∑            J=D, ND      (5.2) 

where ND is the no-default state and 
















=
∑

∑

=

+
=

+

B,AJ
J

J,1tJ
B,AJ

ND,1t
p

Pp

P  is the value of a non-defaulted bond. 

For CreditRisk+, credit losses occur only when default occurs:  

)D(
CR

1t I)Exposure(L =+
+  

where different definitions of “Exposure” have been used in the literature and among practitioners12. 

 

In order to carry out comparisons between the models, we consider three versions of  CreditRisk+. 

They differ only in the definition of exposure:  

Non-default-Value Version of CreditRisk+ (CR+1) 

)D(D,1tND,1t
1CR

1t I)PP(L ++
+

+ −=                      (5.3) 

Book-Value Version of CreditRisk+ (CR+2) 

)D(D,1tt
2CR

1t I)PBV(L +
+

+ −=                         (5.4) 

Expected-Value Version of CreditRisk+ (CR+3) 

)D(D,1t1tt
3CR

1t I)P)P(E(L ++
+

+ −=                    (5.5) 

 

Where “BV” is the book value of the bond. It is important to recall that the version two of CreditRisk+ 

(the Book-Value version) corresponds to the original framework. 

 

Once we have defined the loss function of a bond for both models, we can describe how to use 

Monte Carlo to generate the distribution of losses for each model. 

 

 

 

 

 

                                                                                                                                                                                                      
11 This definition of losses is consistent with the definition of mark-to-market value of a bond, in the sense that 
the CVaR of both distributions (portfolio value and losses) would yield the same results. 
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Simulations for the generation of the Distribution of Losses under CreditMetrics 

As inputs of this process we use: a) The above generated samples of the rates of migration and 

default generated by using CreditMetrics, under a specific set of transition probabilities (type of 

portfolio) and a specific value of the correlation coefficient ρ . 

 

1. For each set of transition rates, Calculate the conditional number of individuals that fall in each 

rating category. These variables follow a multinomial distribution. Therefore, we apply the Kemp 

and Kemp (1987) algorithm to simulate multinomial random numbers: 

1.1 Simulate the number of defaults x
CM
DN  as a binomial with parameters (N=10,000, x

CM
Dp ). 

1.2 Then simulate CM
BN  as a binomial (N- x

CM
DN , 

X

X

CM
D

CM
B

p1

p

−
). 

1.3 Calculate x
CM
AN =N- x

CM
BN - x

CM
DN  

2. Obtain the portfolio loss by adding the individual losses of each bond according to the following 

equation:  

x
CM
JJ,1t1tt

J
x

3CM
1t N)P)P(E(PL +++ −= ∑ ……J=A,B,D        (5.6) 

Also calculate the portfolio loss for the restricted version of CreditMetrics:  

x
CM
JJ,1t1tt

J
x

2CM
1t N)P)P(E(PL +++ −= ∑ …..J=D, ND          (5.7) 

3. In order to obtain the unconditional distribution of losses, repeat steps 1 and 2 for each set of 

transition rates [ x
CM
Dp , x

CM
Bp , x

CM
Ap ].  

4. Calculate descriptive statistics, including CVaR at the confidence levels: 90%, 93%, 95%, 97%, 

99% and 99.9%. 

5. Repeat 1-4 for all possible samples, i.e., combinations of different portfolios qualities (LQ and 

HQ) and levels of the correlation coefficient ρ  (=0.05, 0.15, 0.25, 0.35, 0.45). 

 

 

 

 

                                                                                                                                                                                                      
12 Recall that “exposure” has been defined as the amount owed minus the recovery rate (which is the actual 
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Simulations for the generation of the Distribution of Losses under CreditRisk+  

For CreditRisk+, the number of defaults is simulated in a similar way, except for steps 1 and 2, 

which are substituted by: 

1. Calculate the conditional number of defaults in the portfolio x
CR
DN  by simulating a Poisson 

variable with parameter λ =N* x
CR
Dp . 

2. Obtain the portfolio loss using ND, and the size of the exposures under each scenario.  

x
CR
DD,1tND,1tx

1CR
1t N)PP(PL ++
+

+ −=  

Also calculate the portfolio loss for the other two versions of CreditRisk+, using equations (5.4) 

and (5.5). 

Table 5.3 shows some descriptive statistics for the MTM version of CreditMetrics and the Book 

Value of CreditRisk+. The latter model produces similar levels of skewness and kurtosis for any 

version. 

Table 5.3 Statistics of the Loss Distributions for CreditMetrics and CreditRisk+ 

 

 

 

 

 

 

 

 

 

In general, the properties of the distribution of losses inherit the properties of the default distribution. 

Therefore we can anticipate that this factor will be determinant in the CVaR of the portfolio. 

Comparing table 5.2 with 5.3, we can observe that the largest differences between skewness and 

kurtosis for both distributions are those for the High Quality portfolio, under the version of 

CreditMetrics. This is consistent with the belief that the tail of the distribution of losses, under 

                                                                                                                                                                                                      
value of the debt under default). 

 

Correlation Skewness Kurtosis Skewness Kurtosis

0.05 0.991 4.513 0.879 4.155
0.15 1.729 7.377 1.600 6.822
0.25 2.207 9.713 2.167 10.009
0.35 2.553 11.455 2.685 13.737
0.45 2.810 12.640 3.188 18.140

0.05 1.669 7.849 1.272 5.409
0.15 3.401 23.214 2.513 12.428
0.25 4.904 43.697 3.664 22.990
0.35 6.209 64.742 4.871 38.245
0.45 7.286 82.665 6.173 59.486

HIGH QUALITY PORTFOLIO

STATISTICS OF THE DISTRIBUTION OF LOSSES
CreditMetrics CreditRisk+

LOW QUALITY PORTFOLIO
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CreditMetrics, incorporates information not only about default but also about downgrading in the 

portfolio. 

 

6. Analysis of the Differences in CVaR between the 
Models 
 

Above, the distributions of losses and CVaR for both models and for each of their versions were 

generated. We attribute the discrepancies in CVaR to three factors: a) the omission of migration risk 

in CreditRisk+; b) the shape of the tails of the default distributions of both models; and c) the 

definition of credit exposure in CreditRisk+. In section 6.1, we examine the  individual impact of 

these three factors in the discrepancies of CVaR. In section 6.2, we put together these three factors 

and analyse their global impact on CVaR. 

 

6.1. Effect of Individual Factors that explain the differences in 
CVaR 
 

a) The effect of Migration Risk 

Consider the two versions of CreditMetrics: the mark-to-market version and its restricted version. In 

the generation of the distribution of losses of both versions, inputs and underlying distributions are 

the same. The difference between the two versions lies in the definition of credit loss. The restricted 

version of CreditMetrics aggregates information from the two non-default states (A and B), leaving 

out the effect of migration risk. In contrast, the full version of CreditMetrics considers both states 

individually (equations (5.1) and (5.2) respectively), taking into account migration risk.  

 

In order to quantify the differences between both versions, we compute the ratio of CVaRs, for a 

given confidence level. This ratio (=CVaR of the restricted version of CreditMetrics divided by the 

CVaR of the mark-to-market version) will be referred as the “Effect of Migration Risk”. As the CVaR 

for the mark-to-market version is always higher than the CVaR for the restricted version, this ratio is 

bounded by one. 

 

A summary of the effect of migration risk for a range of correlations and confidence levels of CVaR 

is reported in Table 6.1. Observe that for the LQ portfolio, most of the ratios are close to one. The 
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omission of non-default credit states or migration risk is practically irrelevant. At high confidence 

levels, the coefficients are one. This indicates that for the LQ portfolio the information contained in 

the tails of the loss distributions for both versions is the same, provided that model inputs are the 

same except for the number of credit states. Therefore, it seems that for LQ portfolios, information 

about losses accumulated in the tails of the loss distribution comes mainly from defaults in the 

portfolio, and not from downgradings to other non- default states. 

 

  Table 6.1. Effect of Migration Risk on CreditMetrics. 

 

 

 

 

 

 

 

 

 

 

The omission of migration risk in the restricted version is more relevant for the HQ portfolio. From 

Table 6.1, figures are significantly less then one for a given correlation coefficient. For a given low 

confidence level (90%, 93%, 95%), the higher the correlation levels the more the information that is 

omitted. For example, for ρ =0.45 and for CVaRs at 90% confidence, the ratio is 0.908, whereas 

this number is 0.954 when ρ =0.05. In percentage terms those numbers are equal to -9.2%(=0.908-

1) and –4.6%(=0.954-1) respectively. Therefore, the default version of CreditMetrics omits up to 

9.2% of information about downgrades. Intuitively, higher correlations are associated to higher 

levels of volatilities of the migration rates. Therefore, more downgrades and losses are expected to 

take place.  

 

Also, for the HQ portfolio and high confidence levels, ratios are closer to one. This suggests that in 

the very extreme tails, distributions contain more information about losses generated by defaults 

than by downgrading events. At 99.9% confidence level, the largest omission of information is only 

for 3% (=0.97-1). For high correlation levels, ratios are even closer to one. This is because high 

Correlation 0.9 0.93 0.95 0.97 0.99 0.999
LOW QUALITY PORTFOLIO

0.05 0.998 0.999 1.000 1.000 1.000 1.000
0.15 1.000 1.000 1.000 1.000 0.999 1.000
0.25 1.000 0.999 1.000 1.000 1.000 1.000
0.35 0.999 1.000 1.000 1.000 1.000 1.000
0.45 0.999 0.999 1.000 1.000 1.000 1.000

HIGH QUALITY PORTFOLIO
0.05 0.954 0.957 0.960 0.962 0.967 0.970
0.15 0.953 0.955 0.961 0.965 0.969 0.979
0.25 0.944 0.952 0.958 0.964 0.973 0.983
0.35 0.932 0.946 0.954 0.963 0.976 0.987
0.45 0.908 0.934 0.946 0.961 0.977 0.991

Confidence Levels
Differences of CVaR: Default version of CreditMetrics vs MTM version of CreditMetrics  
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volatility of the default rate causes more defaults in the portfolio. Therefore, both versions of credit 

risk should be more alike in the tails.  

 

b) The effect of the Distribution of Default  

 

Consider the restricted version of CreditMetrics and the first version of CreditRisk+ (its loss function 

is given by (5.3) and denoted by CR+1). The definitions of credit models for both models ((5.2) vs 

(5.3)) are algebraically the same except for an additive constant. This constant is irrelevant for 

CVaR calculations. As each model uses its own distributional assumptions, the differences in CVaR 

result from the discrepancies between their distributions of default. In order to quantify such 

discrepancies, for a given confidence level, we compute the ratio of CVaRs (=CVaR of CR+1 

divided by the CVaR of the restricted version of CreditMetrics). This ratio will be referred as the 

“Effect of the Distribution of Default”. 

 

A summary of the discrepancies in CVaR due to the distributions of default for a range of 

correlations and confidence levels is reported in Table 6.2.  

 

Note that for the LQ portfolio, most of the ratios are less than one. This means that the distribution 

of default produced by CreditMetrics is thicker and longer. As a consequence, CreditMetrics 

forecasts higher CVaR numbers and capital requirements than CreditRisk+ due to default. Only for 

high confidence intervals (99.9%) and high correlation levels (0.25-0.45), CreditRisk+ produces 

higher CVaRs than CreditMetrics. These conclusions are consistent with the results obtained in 

section 5.1.  

 

Table 6.2. Effect of the Distributions of Default of CreditRisk+ and CreditMetrics.  
 

 

 

 

 

 

 

 

 

 

Correlation 0.9 0.93 0.95 0.97 0.99 0.999
LOW QUALITY PORTFOLIO

0.05 1.002 0.997 0.988 0.982 0.973 0.963
0.15 1.009 0.998 0.991 0.981 0.972 0.972
0.25 1.005 0.992 0.983 0.975 0.974 1.013
0.35 0.990 0.976 0.968 0.962 0.977 1.079
0.45 0.966 0.948 0.940 0.940 0.974 1.154

HIGH QUALITY PORTFOLIO
0.05 1.042 1.020 1.001 0.972 0.929 0.854
0.15 1.159 1.115 1.080 1.034 0.951 0.827
0.25 1.239 1.193 1.153 1.094 0.991 0.838
0.35 1.263 1.236 1.196 1.138 1.018 0.866
0.45 1.217 1.231 1.215 1.157 1.036 0.892

Differences of CVaR: CR+1  vs Default version of CreditMetrics
Confidence Intervals
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For the HQ portfolio, differences in CVaR for both models are more dramatic. For high confidence 

intervals (99.9%), CreditRisk+ produces CVaR up to -17% (=0.827-1) lower than CreditRisk+. This 

is because the tail of the default distribution of CreditMetrics is thicker. For low confidence intervals, 

the opposite occurs: CreditRisk+ produces CVaRs up to 26.3% (=1.263-1) higher than 

CreditMetrics. 

 

c) The effect of the Exposure 

 

Finally, consider the differences between the three versions of CreditRisk+. Corresponding 

definitions of credit losses are given in equations (5.3), (5.4) and (5.5) respectively. We keep the 

same notation for the first version of CreditRisk+ (CR+1). We denote the second and third version 

by “CR+2” and “CR+3” respectively. The distribution of default for all three models is the same. 

Also, the loss functions are algebraically the same except for the definition of credit exposure. 

Hence the difference of CVaRs between any two versions should be a multiplicative constant. This 

constant is equal to the ratio of the exposures. Therefore, CVaR ratios between CR+2 and CR+1 or 

between CR+3 and CR+1 should be interpreted as the “Effect of the Exposure”. Contrary to other 

effects, the effect of the exposure is theoretically a fixed number13 , as the exposures for each 

model are calculated exogenously, under CreditRisk+. 

 

The discrepancies of CVaR due to differences in the definition of “exposure” are shown in Table 

6.3. 

    Table 6.3 The effect of the Exposure in CreditRisk+.  

 

 

 

 

 

6.2 Global effect of the factors that explain the differences in 
CVaR 
 

In this section we examine the interaction of the three factors that explain the discrepancies in 

CVaR. Tables 6.4 and 6.5 illustrate the differences of CVaR between the Book-Value version of 

                                                                 
13 Some differences can arise due to calculation error. 

Differences of CVaR: CR+2 and CR+3  vs CR+1
CR+2/CR+1 CR+3/CR+1

LOW QUALITY PORTFOLIO
1.007 0.929

HIGH QUALITY PORTFOLIO
1.001 0.990
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CreditRisk+ (CR+2) and the mark-to-market version of CreditMetrics14, for the low quality and high 

quality portfolios respectively. Models have been assessed through their performance on low and 

high quality portfolios, asset correlations and confidence levels.  

 

In each table, the first line of each block represents the differences of CVaRs in percentage terms. 

The second line corresponds to the simple ratio of CVaR figures. The third line represents the effect 

of the exposure. The fourth line indicates the effect of the default distribution. Finally, the last line 

corresponds to the effect of migration risk. Observe that numbers in the second line are the 

arithmetic products of the numbers in the following three lines. This means that the variation in 

CVaR can be decomposed into those three factors. 

 

Table 6.4. Differences of CVaR between CR+2 and CreditMetrics. Low Quality Portfolio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the LQ portfolio in table 6.4, we can conclude the following: 

 

Differences of CVaR vary between –5.43% and 16.18%. The most dramatic differences correspond 

to high correlations (0.35-0.45) and high confidence intervals (99%, 99.9%). Observe the joint effect 

                                                                 
14 Similar analysis can be done using the third version of CreditRisk+ (CR+3). Results are found in Appendix 
C. 

correlation quantiles 90% 93% 95% 97% 99% 99.90%

%Variation in CVaR 0.72% 0.35% -0.38% -1.10% -2.16% -3.06%
0.05 Variation in CVaR 1.007 1.003 0.996 0.989 0.978 0.969

Effect of Exposure 1.008 1.007 1.008 1.007 1.006 1.007
Effect of Dist.of Default 1.002 0.997 0.988 0.982 0.973 0.963
Effect of Migration Risk 0.998 0.999 1.000 1.000 1.000 1.000

%Variation in CVaR 1.57% 0.52% -0.24% -1.25% -2.23% -2.06%
0.15 Variation in CVaR 1.016 1.005 0.998 0.987 0.978 0.979

Effect of Exposure 1.006 1.007 1.007 1.007 1.007 1.007
Effect of Dist.of Default 1.009 0.998 0.991 0.981 0.972 0.972
Effect of Migration Risk 1.000 1.000 1.000 1.000 0.999 1.000

%Variation in CVaR 1.15% -0.14% -1.02% -1.83% -1.96% 1.94%
0.25 Variation in CVaR 1.011 0.999 0.990 0.982 0.980 1.019

Effect of Exposure 1.007 1.007 1.007 1.007 1.007 1.006
Effect of Dist.of Default 1.005 0.992 0.983 0.975 0.974 1.013
Effect of Migration Risk 1.000 0.999 1.000 1.000 1.000 1.000

%Variation in CVaR -0.38% -1.70% -2.60% -3.19% -1.65% 8.60%
0.35 Variation in CVaR 0.996 0.983 0.974 0.968 0.983 1.086

Effect of Exposure 1.007 1.007 1.007 1.007 1.007 1.007
Effect of Dist.of Default 0.990 0.976 0.968 0.962 0.977 1.079
Effect of Migration Risk 0.999 1.000 1.000 1.000 1.000 1.000

%Variation in CVaR -2.82% -4.54% -5.43% -5.43% -1.99% 16.18%
0.45 Variation in CVaR 0.972 0.955 0.946 0.946 0.980 1.162

Effect of Exposure 1.007 1.007 1.007 1.007 1.007 1.007
Effect of Dist.of Default 0.966 0.948 0.940 0.940 0.974 1.154
Effect of Migration Risk 0.999 0.999 1.000 1.000 1.000 1.000

Comparison of Distributions of Losses: CR+2 versus CreditMetrics (MTM)
LOW QUALITY  PORTFOLIO
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of the three components that explain CVaR. The effect of omitting migration risk is practically nil on 

the overall difference. These numbers are close to one, therefore they do not make any 

contribution. The most relevant effect is that of the distribution of default.  

 

In most cases, the effect of the exposure reduces the discrepancies due to the effect of the default 

distribution. The negative effect of the distribution of default (numbers less than one) is offset 

partially by the positive effect of the exposure (numbers bigger than one). However, for a very large 

confidence interval, 99.9%, and correlation levels, ρ =0.25, 0.35, 0.45, both effects are positive, 

therefore differences in CVaR become larger. 

 

Table 6.5. Differences of CVaR between CR+2 and CreditMetrics . High Quality Portfolio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the HQ portfolio in table 6.5, we can conclude the following: 

 

The differences of CVaR are wider than those for the LQ portfolio. They vary between –18.96% and 

17.73%. Considering the overall effect of the three factors, we can say that CreditRisk+ generally 

gives higher estimates than CreditMetrics at low confidence levels and lower estimates than 

CreditMetrics at high confidence levels. These differences are mainly due to the discrepancies in 

the distribution of default. At low confidence intervals (90, 93, 95%) CreditRisk+ produces higher 

correlation quantiles 90% 93% 95% 97% 99% 99.90%

%Variation in CVaR -0.05% -2.06% -3.91% -5.84% -10.06% -17.11%
0.05 Variation in CVaR 1.000 0.979 0.961 0.942 0.899 0.829

Effect of Exposure 1.005 1.004 1.001 1.007 1.002 1.000
Effect of Dist.of Default 1.042 1.020 1.001 0.972 0.929 0.854
Effect of Migration Risk 0.954 0.957 0.960 0.962 0.967 0.970

%Variation in CVaR 10.46% 6.77% 3.94% -0.13% -7.70% -18.96%
0.15 Variation in CVaR 1.105 1.068 1.039 0.999 0.923 0.810

Effect of Exposure 1.000 1.003 1.002 1.002 1.001 1.001
Effect of Dist.of Default 1.159 1.115 1.080 1.034 0.951 0.827
Effect of Migration Risk 0.953 0.955 0.961 0.965 0.969 0.979

%Variation in CVaR 17.08% 13.57% 10.44% 5.68% -3.52% -17.46%
0.25 Variation in CVaR 1.171 1.136 1.104 1.057 0.965 0.825

Effect of Exposure 1.001 1.000 1.000 1.002 1.001 1.001
Effect of Dist.of Default 1.239 1.193 1.153 1.094 0.991 0.838
Effect of Migration Risk 0.944 0.952 0.958 0.964 0.973 0.983

%Variation in CVaR 17.73% 16.95% 14.28% 9.69% -0.51% -14.47%
0.35 Variation in CVaR 1.177 1.169 1.143 1.097 0.995 0.855

Effect of Exposure 1.000 1.000 1.002 1.001 1.001 1.001
Effect of Dist.of Default 1.263 1.236 1.196 1.138 1.018 0.866
Effect of Migration Risk 0.932 0.946 0.954 0.963 0.976 0.987

%Variation in CVaR 11.22% 15.06% 15.13% 11.27% 1.24% -11.52%
0.45 Variation in CVaR 1.112 1.151 1.151 1.113 1.012 0.885

Effect of Exposure 1.006 1.000 1.001 1.001 1.001 1.001
Effect of Dist.of Default 1.217 1.231 1.215 1.157 1.036 0.892
Effect of Migration Risk 0.908 0.934 0.946 0.961 0.977 0.991

Comparison of Distributions of Losses: CR+2 versus CreditMetrics (MTM)
HIGH QUALITY  PORTFOLIO
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CVaRs estimates due to default risk (numbers are much larger than one). This positive effect is 

slightly offset by the fact that CreditMetrics measures migration risk. For low confidence intervals, 

the effect of omitting rating changes is less than one. For high confidence intervals, the reverse 

occurs. Overall, CreditRisk+ underestimates CreditMetrics. This is due to important underestimation 

of the default risk respect to CreditMetrics. In addition, CreditRisk+ does not account for migration 

risk therefore differences become larger. 

 

The difference between models due to the definition of exposure in CreditRisk+ is not important. 

This difference accounts for only 1%(=1.007-1) of the overall difference. Perhaps debt with longer 

maturity would produce a more important effect. 

 

To summarise, we find that most of the discrepancies between the models are due to the 

differences in their probabilities of default. The omission of migration risk is relevant only for high- 

quality (HQ) portfolios and low confidence levels. Roughly speaking, if we assume that there are no 

discrepancies in the distributions of default, then the use of a two-credit- state model instead of a 

three-credit- state model will miss out up to 3% of information about downgrading at very extreme 

confidence levels (99.9%). This figure is 9.2% for lower confidence levels (90%).  

 

7. Conclusions and Implications 
 

Having assumed homogeneous portfolios and one-single economic factor, we carried out a 

structural comparison between CreditRisk+ and the mark-to-market version of CreditMetrics. We 

make an extension of Koyluoglu and Hickman (1998) framework and identified common steps to 

derive the distribution of losses. Likewise, we derived consistent parameters, which make both 

models comparable.  

 

We find differences in Credit Value-at-Risk of up to 19% between the models. The model that 

forecasts higher values is not always the same, results depend on the quality of the portfolio, 

parameters values and confidence levels. 
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Three particular factors might explain the difference between models: a) the omission of migration 

risk in the model of CreditRisk+, b) the shape of the probability of default in both models, and c) the 

definition of credit exposure in CreditRisk+. In general, the differences in the shape of the default 

distributions generated by the two models explain most of the differences of CVaR. The omission of 

migration risk is significant only for high-quality portfolios and low confidence levels (lower than 

90%). If we assumed that no discrepancies exist in the distribution of default, then CreditRisk+ 

would estimate lower CVaR than CreditMetrics, up to 10%.  

 

For the low-quality (LQ) portfolio, both models behave similarly for all confidence intervals, except 

for very extreme levels (larger than 99%). In these cases CreditRisk+ estimates CVaRs up to 16% 

higher than CreditMetrics. This might be due to the properties of the gamma distribution, which is 

very sensitive to high unconditional default rates and high volatility levels. For high-quality portfolios 

(HQ), differences are more dramatic. CreditRisk+ again estimates higher CVaRs than 

CreditMetrics, except for high confidence intervals. In all these results the main driver of the 

differences between the models is the shape of the distribution of default of the models. These 

results are important since the use of high confidence levels in the measurement of credit risk is a 

common practice in the banking community. High confidence levels often compensate for the 

inability to test the reliability of the models. Hence capital requirements based on high confidence 

intervals seem to depend highly on which model is chosen.  

 

The implications of the above results for risk management are quite clear. For low-quality portfolios 

we may forget about CreditMetrics, since migration risk accounts for very little in the overall CVaR 

of the portfolio. In this case, CreditRisk+ is a faster and less expensive approach for calculating 

capital requirements. On the other hand, if our purpose to use a credit risk model is to estimate 

reserves of capital, then CreditMetrics may provide more accuracy about the sources of losses. 

 

In answering the question about which is better model to implement in banks, it is necessary to take 

in account the following considerations: 
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• The type of credit risk that is to be measured. In solving this paradigm, it might be helpful to think 

of the objective of the measurement. In the calculation of capital requirements, the main concern 

is the very extreme values of the distributions. Therefore, as was mentioned, default models 

should be sufficient to estimate the overall picture of the losses. However, if the model is needed 

to estimate reserves or provisions for credit risk, CreditMetrics would give more information about 

the size of the reserves needed for non- defaulted loans. 

• The costs and reliability of the inputs. In particular CreditMetrics requires large amount of data. 

Whereas CreditRisk+ is cheaper and easier to implement. 

• The overall environment of the risk management process, i.e., how often the model is to be 

revised, the control processes, the ability of the managerial team to understand inputs and outputs 

of the model, etc. To interpret outputs from the two models demand good technical knowledge 

and skills, as they involve the same level of complexity. However, CreditMetrics seems to be more 

demanding in the administration and control of inputs. 

 

Further research is needed in finding what types of portfolios or parameters produce bigger 

discrepancies. Stress- testing some parameters, such as the unconditional rate of default, the asset 

correlation coefficient, the recovery rate or interest rate could give more insights. Likewise, it would 

be useful to analyse the impact of specific grading systems on the overall performance of the 

models. For example, does the number of grades in the rating system matter? What is the impact of 

ranking borrowers in one credit class or in another? This analysis would provide a better 

understanding of the vulnerability of the models to other inputs. This is particularly important in 

credit risk, because the quality of data is usually the most important restriction in the implementation 

of models. 

 

In this exercise the omission of migration risk in CreditRisk+ seemed to have been marginal. 

However, two broad credit states ( default and no- default) might not represent accurately the 

riskiness of the portfolio for multi-year term loans. 

 

Finally, there are some other caveats to discuss about the models. For instance, neither of these 

two models has been exactly designed to capture economic cycles. Although implicitly there are 

some economic factors that drive the credit quality of the borrowers, transition matrices, standard 
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deviations or correlations are calculated from historical data across many credit cycles. In this 

sense, both models have been criticised, since it is empirically clear that parameters depend on 

business cycles. Hence credit losses might be overestimated in recession periods and 

underestimated in boom periods (Nickell and Perraudin (2000)). It remains to balance the benefits 

of the simplicity of the assumptions against the reliability of the outputs. 
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APPENDIX A 

Derivation of the Migration Rates for CreditMetrics 
 

Assume a credit rating system composes of three states: A, B and D. Where A represents the 

highest credit quality, B represents and intermediate state and D represents the state of default. 

The transition probabilities or migration rates is determined by the vector [ ]QBA p,p,p  

 

Assume that the firms’s returns follow a Vasicek’s representation: 

 

ii 1Xr ερ−+ρ=  

 

Where X and iε  represent the systematic and non- systematic factors of the firm respectively, and 

both are normally distributed. According to CreditMetrics, for very large portfolios, the economic 

factor drives the credit quality of the firms or borrowers in the portfolio.  

 

In CreditMetrics, default occurs when the firm’s returns fall below a threshold C1 in the standard 

Normal. See Figure A.1.  

 

Let  

• x
CM
Dp  be the default rate or conditional probability of default for CreditMetrics 

• C1= )p( D
1−Φ , where Dp  is the unconditional default rate and )s(Φ is the normal 

cumulative density function. 

 

Figure A.1 Distribution of the Credit Quality of the firm 
 

 

 

 

 

 

 

 

 

Then the default rate is the probability that asset returns fall below a specific quantile C1, given a 

specific value of the economic factor X. This rate can be calculated as follows: 

C1 C2 

Bp&&&
Dp&&& Ap&&&

Quantiles 

Firm Firm 

Firm receives 
rating B 



Trans 27th ICA   D. Diaz G. Gemmill (U.K.) 
 

  
 

40 

 

( )











ρ−

ρ−
Φ=












ρ−

ρ−
≤ε=≤ερ−+ρ=≤=

1

xC
)x

1

xC
PxC1xP)xCr(Pp 11

11x
CM
D  

The density function for the default rate can be estimated as follows: 
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Where )z(ϕ  is the standardised normal density function. 

 

According to Koyluoglu and Hickman(1998), the default rate volatility can be expressed in terms of 

ρ  and Dp  as follows: 
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On the other hand, the migration rate to the credit state B can be derived in a similar way. By 

assuming that migration to rating B occurs when returns fall between the thresholds C1 and C2 (see 

figure A.1), where C2= )pp( BD
1 +Φ − , then the migration rate to state B given a specific value of the 

background factor is: 

 












ρ−

ρ−
Φ−












ρ−

ρ−
Φ=<−<=≤≤=

1

xC

1

xC
)xCr(P)xCr(P)xCrC(Pp 12

1221x
CM
B  

 

Finally, the migration rate to the credit state A can be derived using the fact that the sum of the 

transition probabilities should equal one. Therefore: 
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APPENDIX B 
 
 

Figure B.1. Skewness and Kurtosis of the Conditional Distributions of Default of 
CreditMetrics and CreditRisk+. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  p is the unconditional probability of default. Skewness and Kurtosis are plotted against the obligors´s 

asset correlation level. 

 
 
 
 
 

Figure B.2. Statistics of the distribution of migrating to rating B.  
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Correlation Mean Stand.Dev Skewness Kurtosis

0.05 92.06% 2.65% -1.418 5.785
0.15 92.06% 5.09% -2.144 9.352
0.25 92.06% 7.17% -2.482 11.289
0.35 92.06% 9.15% -2.684 12.296
0.45 92.06% 11.10% -2.820 12.759

0.05 9.55% 3.53% 0.695 3.585
0.15 9.55% 6.29% 1.132 4.359
0.25 9.55% 8.35% 1.380 4.800
0.35 9.55% 10.18% 1.554 5.089
0.45 9.55% 11.93% 1.698 5.342

HIGH QUALITY PORTFOLIO

STATISTICS OF THE DISTRIBUTION OF MIGRATION

LOW QUALITY PORTFOLIO

CreditMetrics
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APPENDIX C 

Differences of CVaR between CR+3 and CreditMetrics 
C.1. Low Quality Portfolio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C.2. High Quality Portfolio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

correlation quantiles 90% 93% 95% 97% 99% 99.90%

%Variation in CVaR -7.03% -7.50% -8.08% -8.76% -9.70% -10.49%
0.05 Variation in CVaR 0.930 0.925 0.919 0.912 0.903 0.895

Effect of Exposure 0.930 0.929 0.930 0.929 0.929 0.930
Effect of Dist.of Default 1.002 0.997 0.988 0.982 0.973 0.963
Effect of Migration Risk 0.998 0.999 1.000 1.000 1.000 1.000

%Variation in CVaR -6.30% -7.22% -7.94% -8.87% -9.73% -9.60%
0.15 Variation in CVaR 0.937 0.928 0.921 0.911 0.903 0.904

Effect of Exposure 0.928 0.929 0.929 0.929 0.930 0.930
Effect of Dist.of Default 1.009 0.998 0.991 0.981 0.972 0.972
Effect of Migration Risk 1.000 1.000 1.000 1.000 0.999 1.000

%Variation in CVaR -6.68% -7.85% -8.67% -9.38% -9.50% -5.90%
0.25 Variation in CVaR 0.933 0.921 0.913 0.906 0.905 0.941

Effect of Exposure 0.929 0.929 0.929 0.929 0.929 0.929
Effect of Dist.of Default 1.005 0.992 0.983 0.975 0.974 1.013
Effect of Migration Risk 1.000 0.999 1.000 1.000 1.000 1.000

%Variation in CVaR -8.06% -9.29% -10.08% -10.65% -9.21% 0.26%
0.35 Variation in CVaR 0.919 0.907 0.899 0.893 0.908 1.003

Effect of Exposure 0.929 0.929 0.929 0.929 0.929 0.930
Effect of Dist.of Default 0.990 0.976 0.968 0.962 0.977 1.079
Effect of Migration Risk 0.999 1.000 1.000 1.000 1.000 1.000

%Variation in CVaR -10.27% -11.91% -12.71% -12.69% -9.52% 7.24%
0.45 Variation in CVaR 0.897 0.881 0.873 0.873 0.905 1.072

Effect of Exposure 0.930 0.929 0.929 0.929 0.929 0.929
Effect of Dist.of Default 0.966 0.948 0.940 0.940 0.974 1.154
Effect of Migration Risk 0.999 0.999 1.000 1.000 1.000 1.000

Comparison of Distributions of Losses: CR+3 versus CreditMetrics (MTM)
LOW QUALITY  PORTFOLIO

correlation quantiles 90% 93% 95% 97% 99% 99.90%

%Variation in CVaR -1.40% -3.36% -4.75% -7.09% -11.09% -18.08%
0.05 Variation in CVaR 0.986 0.966 0.953 0.929 0.889 0.819

Effect of Exposure 0.992 0.991 0.992 0.994 0.990 0.988
Effect of Dist.of Default 1.042 1.020 1.001 0.972 0.929 0.854
Effect of Migration Risk 0.954 0.957 0.960 0.962 0.967 0.970

%Variation in CVaR 9.11% 5.48% 2.73% -1.17% -8.71% -19.91%
0.15 Variation in CVaR 1.091 1.055 1.027 0.988 0.913 0.801

Effect of Exposure 0.988 0.990 0.990 0.991 0.990 0.989
Effect of Dist.of Default 1.159 1.115 1.080 1.034 0.951 0.827
Effect of Migration Risk 0.953 0.955 0.961 0.965 0.969 0.979

%Variation in CVaR 15.67% 12.41% 9.29% 4.46% -4.60% -18.37%
0.25 Variation in CVaR 1.157 1.124 1.093 1.045 0.954 0.816

Effect of Exposure 0.989 0.990 0.990 0.990 0.990 0.990
Effect of Dist.of Default 1.239 1.193 1.153 1.094 0.991 0.838
Effect of Migration Risk 0.944 0.952 0.958 0.964 0.973 0.983

%Variation in CVaR 16.57% 15.54% 13.05% 8.54% -1.60% -15.35%
0.35 Variation in CVaR 1.166 1.155 1.131 1.085 0.984 0.847

Effect of Exposure 0.990 0.988 0.991 0.991 0.990 0.990
Effect of Dist.of Default 1.263 1.236 1.196 1.138 1.018 0.866
Effect of Migration Risk 0.932 0.946 0.954 0.963 0.976 0.987

%Variation in CVaR 9.85% 13.69% 13.93% 10.01% 0.13% -12.45%
0.45 Variation in CVaR 1.099 1.137 1.139 1.100 1.001 0.875

Effect of Exposure 0.994 0.988 0.991 0.990 0.990 0.991
Effect of Dist.of Default 1.217 1.231 1.215 1.157 1.036 0.892
Effect of Migration Risk 0.908 0.934 0.946 0.961 0.977 0.991

Comparison of Distributions of Losses:  CR+3 versus CreditMetrics (MTM)
HIGH QUALITY  PORTFOLIO


