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1 Introduction

Log-returns of share prices and other financial data are autocorrelated through their volatil-
ity. Numerous mathematical models have been invented to deal with this; many belonging
to the very popular ARCH/GARHCH type originating with Engel (1982). An alternative
approach is to link volatility to an underlying, unobserved state of the market, say to its
degree of agitation, nervousness and optimism. As these attributes fluctuate, then so does
the volatility. The precise formulation mathematically is in terms of a stochastic process;
see e.g. Breidt, Crato and de Lima (1998), Pitt and Shepard (1999) or Aguillar and West
(2000) for some fairly recent contributions. One of the challenges is that this state process
is only latent. How it develops is only observed indirectly through its impact on the prices
quoted.

There is an enormous scientific literature in engineering and statistics on the theory and
applications of models with latent processes. A relevant reference is West and Harrison
(1997). Attempts of using such models in finance have been through fully specified para-
metric models; see e.g., the references above. One model is used for the latent process and
another one for its relationship to the data. The purpose of this article is to point out
that it should be possible to deduce some of the features of the latent process from the sole
assumption that it is stationary. It is then assumed that the process does not systematically
alter its behavior with time, which seems a reasonable view to take on the stock market in
a long-run perspective.

The statistical and numerical features of such an approach will be outlined in Section 2
and estimates of autocorrelation functions of financial index series given in Section 3. Note
the similarity with the elementary statistical methods for directly observed time series in
textbooks like Shumway (1988). It is then routinely recommended that autocorrelation
functions should be identified prior to the fitting of parametric models. What is done here
is to suggest a similar procedure for time series that are only observed indirectly. We
shall only consider univariate series, but the same technique could be used for studying
relationships between different series based on different latent processes that were strongly
interrelated. Another extension is to introduce a feedback between the latent process and
the prices quoted. This is briefly discussed in Section 4.

2 Statistical methods

2.1 The model

Let yx be the log-return at time k, i.e. yr = log(zr/zr—1) where zj is the actual price of
the equity. The standard stochastic volatility model by means of a latent process {s;} is to
specify

Yk = Oklk, o = ogexp(asg). (1)



Here o is the volatility at time k, which fluctuates around the fixed ¢ according to the
realizations of {s;}, the parameter o defining the size of the oscillations. The trading at
time k is represented by the random term e, which has unit variance and also zero mean
if we ignore any (small) drift in the long run. The sequence €1,¢€3, ... should be regarded
as an an independent one; the whole point behind the introduction of the latent process is
that the memory in the log-returns is captured by it.

It will be assumed that {s;} is Gaussian. This condition lacks conviction, but it is at
least a reasonable baseline case under which to carry out the present analyses; see also
Section 4. Usually a parametric model is imposed on {s;}. That is where we differ in that
only stationarity is assumed. The autocorrelation function

p1 = cor(sg, spt1), [=1,2... (2)

is our target. Note that it may without loss of generality be assumed that {s;} has zero
mean and unit variance; if not, these parameters are absorbed into oy and «a.

A Gaussian model will be introduced for ¢ as well, but that is much less restrictive than
might appear at first glance, since there is an important indeterminateness in the set-up.
This is dealt with next.

2.2 An ambiguity
Any Gaussian stationary process with zero mean and unit variance may be written
sk = bsl, + (1 — %) 2wy, (3)

where {s}} and {w;} are mutually independent processes, the latter consisting of inde-
pendent terms wg. Both these processes are to have zero mean/unit variance, and b is a
parameter. The expression (3) may be inserted into (1). This yields

yr = oy exp(a’sy)el (4)
where

o — ab (5)

oh = s exp{202(1 — b)) (©)

&) = epexpfa(l - 0%)/ 2wy, — 20%(1 - 42)), ()

From its appearance (4) is a model of the same type as (1), and the way o and ¢}, are
defined ensures that the two models are actually identical, except for the distribution of the
heavy-tailed distribution ), being non-Gaussian. To see this, first note that {€}.} is an inde-
pendent process and is independent from {s}} as well. Moreover, since F(fwy) = exp(26?),
it follows from (7) that var(e},) = 1 and clearly E(e},) = 0. The kurtosis of €}, turns out to



be 3{exp(4a®(1 — b%)) — 1}, which grows from zero for b = 1 to some maximum for b = 0.

The argument shows that by changing the latent process according to (3) we change the
distribution of the process {e}}. In all other ways the two models (1) and (4) are equal.
We shall in Section 3 see that this opens for two equally valid interpretations of the results
obtained for the financial series considered there.

2.3 Pseudo-likelihood

The estimation of the autocorrelation function (2) from an observed set of log-returns
Yi,--., Y, can not be obtained from their full likelihood, since a full model for the latent
process is not available, but a so-called pseudo-likelihood technique works. Let fo(yx) be
the probability density function of each observation yx and fi(yk, yx+:) the joint density
of pairs at intervals [. Note that the stationarity assumption means that neither of these
functions depend on k. Consider, in particular,

Mo =3 log{fo(u)), ®)

k=1

which is the ordinary likelihood for the log-returns if the autocorrelation in the stochastic
volatility is ignored. It is possible to obtain from Ag consistent estimates of the parameters
0o and « defining the marginal distribution fy as long as the latent process does not carry
memory of infinite length.

Information on the autocorrelation p; at lag [ rests with the pairs (y, yp41) for k =1,2,.. .,
and the bivariate likelihood

n—I
M= log{ fiyr: yr+1)}, (9)
k=1

which can be maximized with respect to p; for an estimate. The technicalities are outlined
in the appendix. When considering the feedback effect in Section 4 below each A; depends
on more than one of the parameters, and it is necessary to consider

I
A=Y\ (10)
=1

for some maximal lag L chosen. This criterion then has to be maximized jointly in all the
autocorrelations, using modern numerical software; see e.g, for example Press, Teukolsky,
Vetterling and Flannery (1992).



a=0.9, b=0.8 History: 4 years ‘\‘ a=0.9, b=0.8 History: 10 years

0.2 04 06 0.8 1.0
=

0.2 04 06 0.8 1.0
v
=

\ \
SR e\
v N\\\\ N \//N#A\
NAND Ve M\\R
VO T ; 2
VAN ~
N AN N
] E ?
0 5 10 15 20 0 5 10 15 20
Lag (days) Lag (days)
o o
A \ a=0.9, b=1.0 History: 4 years = | a=0.95,b=0.6 History: 4 years
© A\ ©
ERE N S
© DA ©
S { \"/\\ o
< AATIARNY: <
o PN o _ L
o N«\ “ o | AT \
°© WL T S Vel N R
F N \/ £ \/\/’ /\/ A
\//\ \ N \\ /”K // \
SN v
~ VI «~ ¥ \//w
o o
0 5 10 15 20 0 5 10 15 20
Lag (days) Lag (days)

Figure 1: Estimates of the autocorrelations based on simulated data.

2.4 Verification

The purpose of this section is to examine through simulated data how long the time series
must be to recover the essential structure of the autocorrelation function and indicate the
random error in such estimates. Monte Carlo series of the form (1) where generated. The
latent process {s;} was defined by (3) where

s = ash_y + (1= a®) (11)

is an autoregressive process of order one. The three series {¢;} in (1), {wx} in (3) and {7}
in (11) were all Gaussian with zero mean/unit variance and mutually independent. The
true auto-correlation function of {s;} is then

pr=0b%"  1=1,2,... (12)

An alternative interpretation of the model for {s;} defined by (3) and (11) is as a first order
ARMA in both the AR and MA part; see Schumway (1988). Further clarification will be
given in Section 3.
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Figure 2: Estimates of the autocorrelations based on real index data.

The parameters chosen for the experiment are characteristic for daily index data. We
took g = 0.01 and o = 0.5 and varied a and b as shown in the panel in Figure 1. The true
autocorrelation function is the smooth, solid curve in the middle of the plots. Estimates
based on the five replicated Monte Carlo data oscillates around it. Note that random error
is quite small in the upper right corner of the panel based on 5000 daily observations, cor-
responding to a data history of ten years. But even four years in the other examples seem
sufficient to gauge the main structure of the underlying phenomenon.

3 Results

The technique has been applied to the industrial and financial index of the stock exchange
of New York for the period from January 1th 1976 to July 1th 2001 and to the Standard
& Poor index (denoted SP) and the total index (TOTX) of the Oslo (Norway) stock ex-
change. The latter two were from January 1th 1983 to April 1th 2000. All indexes were
daily, and they were detrended by subtracting prior to the analysis the overall mean of their
log-returns during the period.

Estimates of the autocorrelations based on all the data are shown in Figure 2. For the
SP and TOTX financial indexes only each fifth day have been plotted. The long memory
in the latent process is evident everywhere, but it is shorter in the much smaller financial
community in Norway where it approaches zero after 80 — 100 days. The shape of all the
autocorrelation functions is consistent with the model in Section 2.4; see (12). The decay
factor a is rather close to one, say at least 0.98 the American indexes, but smaller for the



Period
83-87 87-90 91-97 97-00 83-00
SP oo .007 .008 .005 .010 .008
o 37 .54 40 41 .50
TOTX o9 .008 .010 .009 .009 .009
o 45 .55 42 .55 .50

Table 1: Estimates of the parameters og and a for the SP and TOTX indexes.

Norwegian one. The parameter b could be around 0.6.

There are two alternative positions to be taken on the interpretation of these results. They
were derived from an assumption that the daily variation in log-returns, i.e. the process
{ex} in (1), are Gaussian. The latent process then follows the model in Section 2.4 with a
value of b considerably smaller than one. This is not a Markov model, but it contains a core
{s}.} which is of the Markov type. According to this view the log-returns are influenced by
a latent process which hides daily fluctuations that are not absorbed into the basic attitude
of the market as it is perceived over time. Alternatively, these daily oscillations in investor
frame of mind is indistinguishable from other types of daily randomness and may be ab-
sorbed into them. This yields the model (4) with a non-Gaussian, heavy-tailed distribution
for {e;} and a Markov model for the latent process. Now the attitude of today completely
determines how the degree of agitation, anxiety and so on is likely to develop tomorrow

We have investigated the stability of the estimates by dividing the data into four equal parts
and estimating each quarter of the data separately. The series were split within the middle
of the year, and no thought was given to the plausibility of the partitions from an economic
point of view. The estimates of the parameters og and « defining the marginal distribution
of log-returns are shown in Tables 1 and 2. Their variation between periods follows each
other closely. The autocorrelation function estimated in each quarter are shown for the SP
and TOTX indexes in Figure 3. The discrepancy between periods and the random variation
is now considerable, but not necessarily inconsistent with the random variation obtained
for the simulated data; see Figure 1 lower right, in particular, which is the one where the
underlying model is closest to the real data. More work is needed to judge random error in
Figure 3 properly and evaluate the stability of estimates between periods.

4 Extensions

The method presented can be extended in several directions. It appears interesting to exam-
ine cross-correlations between latent processes underlying different series. The aim would
then be to identify simplifying structures, and it might confirm studies in Ball and Thorus
(2000) and Longin and Solnik (2001) which argues that correlations between log-returns



Period
76-82 83-89 90-96 96-01 76-01
Industrial o  .008 .008 .006 .008 .007
@ .29 .53 46 44 46
Financial o9 .008 .008 .006 011 .008
@ 37 .56 45 41 .51

Table 2: Estimates of the parameters og and «a for the New York industrial and financial
indexes.

vary with time. Such effects could also be the consequence of using skew distributions for
some of the variables defining the model.

Another possibility is the introduction of feedback effects. Most applications of latent
process modeling assume the two processes {s;} and {e;} in (1) to be stochastically in-
dependent, but surely this is not so obvious in the present situation. If s; is to represent
the attitude of the operators in the market, conceivably they might revise their views by
the results of the current trading. The simplest way to represent this idea within the
non-parametric set-up used here is to introduce the additional parameter

T = cor(Sk, €x—1|Sk—1), (13)

which expresses that the change in the market view on risk from one day to another is
influenced by the trading that has taken place. This is the only change in the relationship
between the two processes {€j} and {sy}; i.e. each €;_; is still independent of the history
Sk—1,Sk—2, ... and conditionally independent of the future sgiq, Sgy2,... given sg.

A preliminary study on the feasibility of this will now be presented. The detailed method-
ological development is around the lines outlined, albeit more complicated, and are skipped,
but the results of a small simulation study seems worthwhile to give. The model in Section
2.4 was used exactly as there, except for the error term 7; on the right in (11) now having
to be made dependent of €1 in (1). It can be proved that their correlation must be

cor(n, ep—1) = 70~ H{(1 — ab*) /(1 — a?)}'/? (14)

to ensure that (13) is satisfied. The experiments were replicated 100 times with daily series
of 1000 observations (i.e. 4 years) with parameter values og = 0.01, @ = 0.5, ¢ = 0.9 and
b = 0.8 and using 7 = 0 and 7 = 0.3. The estimates of 7 turned out to be unbiased to
two decimals in both cases, with a standard deviation slightly below 0.05. Thus it seems
possible to detect feedback effects from the machinery presented. A preliminary try on the
ST and TOTX financial indexes gave estimates of 7, roughly to the order of 0.1. Whether
this is large enough to be of any importance has not been investigated.
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Figure 3: Estimates of the autocorrelations in 4 different periods.

5 Conclusions

It has been suggested that empirical modeling of latent processes in models with dynamic
volatility and correlations can be carried out by means of a simple pseudo-likelihood tech-
nique. The autocorrelation functions of four financial index series were examined. It was
shown that a first order autoregressive process, i.e. a Markov model, provides a good
description if the day-to-day variation in log-returns is heavy-tailed. An alternative inter-
pretation based on Gaussian daily variation was also given. Now the latent process followed
an ARMA model which meant that the attitude of the market contained some random
component, settled on a daily basis and not transferable to the next day and beyond. It
was impossible to choose between these two explanations on empirical grounds.
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A Details to section 2.3

The marginal and pairwise probability density functions fy and f; in (8) and (9) are under
the assumptions in Section 2.1 computed as follows. Let fo(y|s) be the conditional density
of y = y; given s = s;. Since o(s) = opexp(as) is the conditional volatility under the
model (1), it follows that fo(y|s) = ¢o(s)(y), writing ¢, (y) = (2n0) =2 exp(—y?/20?) to
denote the centered Gaussian density. But then

Jow) = [ o9 en(s)ds,
which is easily computed by numerical integration.

For the pairwise density function fi(y,y:) suppose that [ > 0 and note that y and y; are
conditionally independent given s and s;. Hence

Tilty, wils, s1) = folwilst) fo(yls),

and
fl(y7yl) = /_OO /_Oo ¢a(sl)(yl)¢cr(s)(y)¢(57Sl;pl)desl

where ¢(s, s;; p1) is the bivariate Gaussian density with zero means and unit variances and
correlation p;. Again numerical integration is required.
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