Stochastic volatility: Modelling the latent process empirically.

Erik Bølviken Institute of Mathematics, University of Oslo & The Norwegian Computing Centre

Financial variable examined:

- ullet Log-return of stock indexes
- Definition:

The logarithm of **relative** price change

Volatility:

• The same as standard deviation.

What is stochastic volatility?

Phenomena such as this:

The **real** stock index of Oslo (Norway):

Simulations from fitted models ignoring stochastic volatility:

Why is stochastic volatility of importance?

For two reasons:

- Of interest in itself
- Influences evaluations of risk:
 - Tail measures like VaR especially sensistive

Purpose of talk:

- Describe the volatility process using
 - a **weak** mathematical model and **plenty** of historical data

Outline of talk

Main themes:

- Introduction (completed)
- Technical material

Mathematical model (not **parametric** like GARCH)

Estimation: Through pseudo-likelihood

Can it be done? Testing on **simulated** data

- Examination of index series
- Concluding remarks

Mathematical model

Notation:

• Period: k, time resolution: **Day, week, month**

• Log-return: y_k

• State of the market: s_k (unobserved)

Model:

• s_k stationary process, responsible for volatility fluctuations called **latent** or **regime**

- assumed **gaussian**

• ε_k independent random terms
with no relation to s_k

Problem raised:

• Underlying model for s_k ?

Statistical estimation: Method

correlation same for all k

Target:

• Autocorrelation function of s_k , defined as $cor(s_k, s_{k+l})$, l = lag

Estimation:

- Trough a **pseudo**-likelihood criterion
 as explained in the paper
- Conditions too weak for ordinary likelihood
- Technicalities:

A lot of numerical integration Numerical optimization

Simulations: How long must the series be?

Experimental conditions:

- Four and ten years of daily data
- Realistic parameters

Autocorrelation functions reconstructed:

• Solid lines: The truth*

• Dashed/dotted lines: Attempted recontructions

^{*}The parameters a and b are explained in the paper

Example 1: Financial communities of different size

Notation and facts:

• SP: Standard & Poor 500 index

• TOTX: Index of the stock exchange of Oslo (Norway)

• **Daily** data 1983-2000

Estimated autocorrelation functions

Remarks:

- Slow decay with the time lag
- Faster for the small unit (Oslo)
- Interpretation as model: Later

Example 2: New York indexes

Some facts:

• The indexes examined:

Industri, transport, uility, financial

• **Daily** data 1976-2001

Estimated autocorrelation functions

The New York indexes: Autocorrelations for the latent processes

Comment:

• Left: Time lag up to 20 days

 \bullet Right : Time lag up to $100~\mathrm{days}$

Mathematical model identified

Conclusion:

• All estimated autocorrelation functions consistent with

autoregressive, moving average (ARMA) processes of order (1, 1)

In mathematical form:

$$s_k = z_k + \omega_k,$$
 $z_k = az_{k-1} + \eta_k$
 \uparrow \uparrow \uparrow
random process, parameter, random process
independent, defines **decay** independent,
zero mean zero mean

- Mathematical model ambiguous:
 - First form

$$y_k = \sigma \exp(\alpha s_k) \varepsilon_k$$

$$\uparrow$$
gaussian process

- Second form

$$\begin{array}{c} \mathbf{markov} \text{ process} \\ \downarrow \\ y_k = \sigma \exp(\alpha z_k) \varepsilon_k', \qquad \qquad \varepsilon_k' = \varepsilon_k \exp(\omega_k) \\ \uparrow \\ \text{heavy-tailed, non-gaussian} \end{array}$$

Different latent processes

Additional problem:

• Relationship between latent processes for

different financial variables?

Quantity sought:

• The **cross**correlation function

$$cor(s_{1k}, s_{2k+l}), \qquad l = lag$$

$$\uparrow$$
correlation same for all k

• for latent processes s_{1k} and s_{2k} corresponding to **different** log-returns

Method:

• Essentially as described earlier

New York indexes: Crosscorrelations latent processes

Some facts:

• The indexes examined:

Industri, transport, uility, financial

• **Daily** data 1976-2001

Estimated cross correlation

The New York indexes: Cross correlations for the latent processes

Comment:

 \bullet Left : Time lag up to $\bf 20~\rm days$

 \bullet Right : Time lag up to $100~\mathrm{days}$

Latent processes for SP and Oslo indexes

Some facts:

• The indexes examined:

Standard&Poor 500 and Oslo stock exchange (TOTX)

• **Daily** data 1983-2000

Estimated cross and auto correlation

Comment:

- Reasonably parallel curves (?)
- Error (at lag one) for Oslo index

Suggested mathematical model

Remark:

- Crosscorrelations with losely same decay as autocorrelations (?)
- If so, consistent with **one** latent process underlying **all**

Model in summary:

• One **single** latent process,

of **Markov** type

• Non-gaussian noise

Concluding remarks

• Purpose of method presented:

To identify model for regime (latent) process without parametric assumptions

- Worked well for **daily** data; parsimonious model for multiple series suggested
- For **Monthly** data:

Series too short;

Estimates too unstable

Possible approach:

Upscale the daily model?