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Financial variable examined:
e Log-return of stock indexes
e Definition:

The logarithm of relative price change

Volatility:

e The same as standard deviation.



What is stochastic volatility?

Phenomena such as this:

The real stock index of Oslo (Norway):

Log-returns for TOTX 1983-2000 (daily data)
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Simulations from fitted models ignoring stochastic volatility:
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Why is stochastic volatility of importance?

For two reasons:
e Of interest in itself
e Influences evaluations of risk:

— Tail measures like VaR especially sensistive

Purpose of talk:
e Describe the volatility process using

a weak mathematical model

and plenty of historical data



Outline of talk

Main themes:

e Introduction (completed)

e Technical material

Mathematical model (not parametric like GARCH)
Estimation: Through pseudo-likelihood

Can it be done? Testing on simulated data

e Examination of index series

e Concluding remarks



Mathematical model

Notation:
e Period: k, time resolution: Day, week, month
e Log-return: yj

e State of the market: s; (unobserved)

Model:
volatility
—N—
e y;. = o exp(asy) ek
T 7

parameter parameter

e s, stationary process, called latent or regime

responsible for volatility fluctuations

— assumed gaussian

e ¢, independent random terms

with no relation to s

Problem raised:

e Underlying model for s;?



Statistical estimation: Method

Target:

e Autocorrelation function of sy,
defined as cor(sg, Sk+1), [ =lag

T

correlation same for all &

Estimation:
e Trough a pseudo-likelihood criterion
as explained in the paper

e Conditions too weak for ordinary likelihood

e Technicalities:

A lot of numerical integration

Numerical optimization



Simulations: How long must the series be?

Experimental conditions:

e Four and ten years of daily data

e Realistic parameters

Autocorrelation functions reconstructed:

e Solid lines: The truth*

e Dashed/dotted lines: Attempted recontructions
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*The parameters a and b are explained in the paper




Example 1: Financial communities of different size

Notation and facts:
e SP: Standard & Poor 500 index
e TOTX: Index of the stock exchange of Oslo (Norway)
e Daily data 1983-2000

Estimated autocorrelation functions

SP and TOTX New York indexes
= =
~— \ =
| Solid line: SP Solid line: Industrial
o \ Dashed line: Oslo o Dashed line: Financial
= Period: 1983-2000 = Period: 1976-2001
© «©
o o
= <
P o
f) o
o
o ~
P o
(@) 20 40 60 80 100 (@) 5 10 15 20
Lag (days) Lag (days)
Remarks:

e Slow decay with the time lag
e Faster for the small unit (Oslo)

e Interpretation as model: Later



Example 2: New York indexes

Some facts:

e The indexes examined:

Industri, transport, uility, financial
e Daily data 1976-2001

Estimated autocorrelation functions

The New York indexes: Autocorrelations for the latent processes

The New York indexes: Autocorrelations for the latent processes
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Comment:

e Left : Time lag up to 20 days

e Right : Time lag up to 100 days



Mathematical model identified

Conclusion:

e All estimated autocorrelation functions consistent with

autoregressive, moving average (ARMA) processes

of order (1,1)

In mathematical form:

Sk = 2 + Wk, 2 = QZp—1 + N
random process, parameter, random process

independent, defines decay independent,

Z€ro 1mearn Z€ro 1mearn

e Mathematical model ambiguous:

— First form

non-markov process

i

yr = o exp(asg)er

T

gaussian process

— Second form

markov process
1
yr = o exp(azg)el, el = € exp(wi)

T

heavy-tailed, non-gaussian



Different latent processes

Additional problem:

e Relationship between latent processes for
different financial variables?

Quantity sought:

e The crosscorrelation function
cor(S1g, Sok+1), [ =lag

T

correlation same for all &

e for latent processes s1; and sop
corresponding to different log-returns

Method:

e Essentially as described earlier



New York indexes: Crosscorrelations latent processes

Some facts:
e The indexes examined:

Industri, transport, uility, financial

e Daily data 1976-2001

Estimated cross correlation

The New York indexes: Cross correlations for the latent processes The New York indexes: Cross correlations for the latent processes
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Latent processes for SP and Oslo indexes

Some facts:

e The indexes examined:
Standard&Poor 500 and Oslo stock exchange (TOTX)
e Daily data 1983-2000

Estimated cross and auto correlation

Auto and cross correlations for latent prosesses
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Comment:

e Reasonably parallel curves (7)

e Error (at lag one) for Oslo index



Suggested mathematical model

Remark:

e Crosscorrelations with losely same decay as
autocorrelations (7)

e If so, consistent with one latent process
underlying all

Model in summary:
e One single latent process, of Markov type

e Non-gaussian noise



Concluding remarks

e Purpose of method presented:
To identify model for regime (latent) process
without parametric assumptions

e Worked well for daily data;
parsimonious model for multiple series suggested

e For Monthly data:
Series too short;
Estimates too unstable

Possible approach:
Upscale the daily model?



