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SImmary

A number of research works in finance rdy on the sdection of factors affecting the
behaviour of one or more undelying vaidbles Factor Andyss (FA) and Principd
Components Andyss (PCA) are datidicd tools dlowing for sdecting a reduced number
of factors explaining the variations of a sat of vaiables Of paticular interest has been
the sudy of the factors explaining the behaviour of the yidd curve It is well known that
a leest three factors are reevant for explaning variations in bonds and money market
returns, these factors are level, dope and curvature. Financia practitioners use the set of
components for portfolio hedging draegies This document ams to test the dability of
the factors over time. It is assumed tha the factors change in a continuous time basis.
Another hypothess is that they are the same for a period but the variance explained for
each one of them changes congantly. Technicdly, it means tha the off-diagond dements
of a number of covariance matrices reman are the same but the diagond dements are
specific to each one of them. Three agpproaches were use to test the hypothess of
common principad components for the Mexican experience. The results are mixed and
though in some cases they gppear to support the hypothess of dability of some of the
factors, | found a number of problems particulaly computationd and numericd, for
aopropriatey tegting it.
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Resumen

Un nimero importante de trabgos de investigacion en finanzas 2 basan en la sdeccion
de factores que afectan @ comportamiento de una 0 més vaores subyacentes. Andiss de
Factores y Andiss de Componentes Principdes son herramientas eddidicas que
permiten la seleccidn de un nimero reducido de factores 0 componentes que explican las
variaciones de un conjunto dado de variables De interés particular han sdo @ egtudio de
los factores que determinen @ comportamiento de la curva de rendimiento. Knez,
Litterman y Shenkman en su trabgo “Common Factors Affecting Bond Returns’ (1991)
nos muedran que a mencs tres factores son relevantes para explicar vaiaciones en
precios de Bonos y retornos sobre indrumentos dd mercado de dinero, nivel, pendiente y
curvatura. Financieros utilizan este conjunto de factores para implantar edrategia de
cobertura. Ede trabgo tiene como objetivo probar la etabilidad de los componentes en €
tiempo. Generdmente s2 asume que los factores cambian en € tiempo. Alternativamente,
Se asume que s mantienen congtantes excepto que las varianzas explicadas por cada uno
de dlos cambian congantemente. Tcnicamente eso Sgnifica que todos los dementos de
la matriz de covarianzas permanecen condantes exceptuando por la diagond. Tres fueron
los méodos utilizados para probar la hiptess de componentes principdes comunes para
la curva en México en € peiodo 1996-99. Los resultados no son contundentes, Sn
embargo en agunos casos soportan dicha hipdtesis



Trans 27" ICA Victor M. Jiménez E (México)

CONTENTS

1 Introduction
2. An Overview of the Mexican Economy
21 The“Tequild’ crigs of 1995-%6
22  Thesucceeding crigs
221 The"Tige” and “Bear” crigsof 1997-93
222 The“Sambd’ crigsin Brazl 199899

3. The Term Structure of Interest Ratesin Mexico
31  Daadeription
32  HtingtheYidd Curve
321 SlineInterpolation
3.22 TheBond Price Curve
3.23 TheYidd Curve

4. Principa Components Andysis (PCA) — Theoretical Framework
41.  Propatiesof Principd Component Andlyss
42  Saidicd Inferencein Principad Components
43  Comparison between PCA and FA

5. Resaults of the PCA over the yidd curve in Mexico
51  Prindpa Component Analyss— for the whole period
52  Prindpd Component Andyssfor sub-periods

6. Common Principd Component Andlyss (CPCA)
6.1  Maximum Likdihood Edimetion of CPCA
6.2  Cross-Approach for lllustrating CPCA
6.3  Krzanowski’s Approach for CPCA
6.4  Maximum Likdihood Esimation of CPCA
6.5 Fnd Remarkson CPCA

7. Condusons



Trans 27" ICA Victor M. Jiménez E (México)

1. Introduction

A number of research works in finance rdy on the sdection of factors affecting the
behaviour of one or more undelying varigbles which ae consdered rdevant for a
ressarcher or a finance practitioner. For ingtance, a portfolio manager is interested in
hedging agang shifts of the yidd curve; in a case like this one, the factor is a vector
which determines the leve of the curve and a duraion technique could be aufficient to
cover agang the mentioned risk. But what would be the result if the curve moves in a
different way? In other words, what would happen if only the long-end would move up or
down? What if only the short-end does it? Is it traditiond duraion enough to cover these
cases? Moreover, isit possble for the interest rates to move in different fashions?

Factor Andyss (FA) and Principd Components Andyss (PCA) ae datidicd tools
dlowing for sdecting a reduced number of factors, in order to explan the varidions of a
st of underlying vaiddles Although, these tools are dmilar in gpirit, they ae very
different one ancther. The differences will be explaned in section four; however, from
now on the words factor or component will be used indigincly during the entire
document.

The fird works | know directly rdated to finance usng this type of technique were usd
to test multifactor-pricing models such as Arbitrage Pricing Theory (APT). Roll and Ross
(1980); Cho, Elton and Gruber (1988); Connor and Korgczyk (1988) ae some of the
examples of the use of FA for testing the APT.

Regarding money and bond markets the paper by Litterman and Schenkman “Common
Factors Affecting Bond Returns’ (1991) seems to be one of the most influentid works.
Theregfter in 1996, Knez, Litterman and Schenkman (KLS) used the same technique,
i.e, FA, in order to develop modds of factors influencing bond returns.

Thee authors andysed weekly returns of 38 money-market indruments with meaturities
from 1 to 12 months, representing five different risk-segments in the United States for the
period January 1985 to August 1988. They are able to identify and interpret at least three
factors. The firg one, which they name the “levd” factor, corresponds to shifts of the
whole yidd curve this component explans 62% of the totd variaion on returns. The
second one, “sepness’, equivdent to the dope of the curve, explains 11% of changes in
returns. Finaly, the “Treasury or curvature’ fador named this way because as they point
out “its effect is to increase the curvature of the yied curve in the range of maturities
beow 20 years’. The explanatory power of the third factor is dose to 13%. As it can be
directly inferred from these numbers, the three factors account for 86% of the variation in
money market returns.

Babd axd Coppa (BC) in thar “Immunisaion Usng Principd Component Andyss’
(1996), present the dterndive tool PCA for obtaining the components affecting bond
reurns. These authors used a different data set, sdecting spot rates with maturities
ranging from 1 month to twenty years from August 1985 to February of 1991. Despite the
differences, these authors are able to interpret factors in a Smilar way that those of KLS.
In addition, BC use the egenvectors and the egenvaues of the covariance matrix of the
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yiedd curve to demondrate that it is possble to hedge agangt movements in different
directions.

Both andlyses teke us to the question, why do we need to get these factors? Hedging is
one aswe. The works by Retano (1996), “Non-Padld Yidd Curve Shifts and
Sochadic Immunisation”, Duate and Mendes (1998), “Robust Hedging Using Futures
Contracts with an Applicaion to Emerging Markets’ are good illudrations of how to use
PCA for hedging portfolios Likewise, the pgper by Golub and Tillman, “Measuring
Yidd Curve Risk Usng Principd Components Andyss Vdue a Rik, and Key Rae
Durations’ dlows usto contrast PCA againg other hedging techniques widely used.

A soond gpplication of the components is to determine parameters of the volaility
functions in a modd of the term dructure. This mekes it possble to modd the term
dructure of interest rates under a Heeath, Jarow and Morton (HIM) or a Bruce, Gatarek,
Musea(BGM) frameworks.

One of the implict assumptions when hedging usng PCA is tha the components ae
dable through time but is it a sengble assumption? A method known as Common
Principd Component Andyss dlows comparing variance — covariance matrices in cross
sections or time series and thus to tet a kind of “datigticadl or econometric Structurd
change’.

The man objective of this work is to sudy the behaviour of the components of the yidd
curve in Mexico in four different periods One am is to andyse the dability of the
components of the yied curve and if possible to identify the possible causes of change.

2. An Overview of the Mexican Economy

During the lagt five years the Mexican economy has experienced a number of
difficulties, some of them emerging from its own economic and financid dHructures and
others because of its links with the internationd community. Among others, it is possble
to mention the “Tequila crigs’ in 1995, the “Adan - Tigas’ and “Russan-Bear” ¢isesin
1997-98 and more recently the “Samba’ cids in Brazl dating the last year and
extending itsdlf to the firgt quarter of 1999,

2.1 The“Tequila” crisisof 199596

In 1994, a number of vident politicd events triggered a profound economic
degabilisation in Mexico. At the beginning of that year, a guerilla rebd group arose in
the southern date of Chigpas. In March, the governmental candidate to the presidency of
Mexico was assassnated in the northen dae of Bga Cdifornia In Augud, the most
actively participated presdentia eections in the higory of the country were caried out in
cadm and peace, neverthdess there was a laent fear that oppodtion groups, with the
pretext of an dectord fraud, would fiercdy impugn the outcome In September, an
eminent politician was killed; he was likely to become the head of the officid party and
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he planned to completdly reform its structures. Because of this crime, in recent days, the
brother of the former presdent was sentenced to 28 years of prison accused of being the
intellectud respongble. From the economic point of view, dthough the inflation was 7%
in 1994, the lowest in more than 25 years there were important pressures over man
economic indicatiors. A huge deficit in the trade balance / current account was pointed out
by economids as a posshle source of a financid turmoil. In addition, the Tesobonos
problem, debt insruments issued by the Mexican government in pesos but denominated
in dollars', became an unbearable burden for the Government once the exchange rate was
put under pressure due to the events previoudy mentioned.

On the 21 of December of 1994, with the purpose of dleviding the congant speculdive
atacks over the exchange rae, the newly appointed Minigter of Finance ordered a shift of
15% of the exchange rate target zone. This measure was not accompanied by an
adjusgment of interest rates to compensate investors for the depreciation of the currency
causng a massve outflow of money, which rapidly dried out the foreign reserves’. This
was the socdled December migake. The currency depreciated more than a hundred
pecent in the following months inflationary perspectives filled the economic
environment, interes rates moved wildly reaching thelr pesk in October; as a reault the
economy fdl 7% in red terms that year. The word economic criss of the last decades
hed dated. Desite of the financid ad of internationd financid inditutions, foreign
countries, and a number of measures of dabilisation implemented by the government, the
country went into a financia recesson, which in turn was aggravated by the weskness of
the Fnancid Sygem. Tight mongay and fiscd policies were among others the
traditiond recipes recommended by the IMF and the World Bak a the mgor
dabilistion policies. Although the economy grew in 1996, the fird Sgns of recovery ae
not evident until the last quarter of that year. In 1997, the economy darted to expand
agan.

2.2 Thesucceeding crisis

The economic environment in Mexico has been characterised by intermittent periods of
gability combined with financid pressures coming from the exterior, to mention a few,
the Adan cigs the turmoil in Russa the reduction of the petroleum prices and findly
the problems in Brazl.

221 The“Tiger” and “Bear” crigsof 1997-98

It is wdl known that the financd criss emerged on Thaland, Indonesa, South Kores,
Madaysa Tawan, and on a minor scde in China, Hong Kong and Singgpore, caused an
important depreciation of ther regpective currencies and a sharp fdl on ther respective
levd of output. Mexico was not an exception, the criss increesed the volaility of the
exchange and interest rates, and provoked a downward trend in the Mexican Stock
Exchange. Neverthdess, it does not seem to have crested an important economic
ingability mainly because of dronger economic fundamentds or because of the vigour of
the American economy.
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2.2.2 The“Samba’ crissin Brazl 1998-99

The remans of the criss in Ada and Russa suddenly contaminated other regions, and
Brazil was the mogt vulnereble economy of the big Lain American countries. At that
time, this country was running a huge fiscd deficit of 8% of the GDP, in contragt the
deficit of Argentina and Mexico was 1.3% and 14% repectively®. After dmost four
months of speculative dtacks over the Brazilian red, the Brazilian government took the
decison of releasng the currency to a floating regime on the 13 of January and by the
end of February, the currency had dreaedy depreciated 40%.

Volatility was the man consequence for the Mexican finances The effects of the
Brazilian crids overcame those caused by the Adan criss. For indance, interest rates
roee to more than 40% in awnud tems subdantidly increesng the past-due loan
portfolio of the banking sysem. In the maket, it is esimaed that the Mexican banking
sysem requires US$13 hillion in order to reach the 8% capitd to risk weighted assets
ratio according to the rules of the BIS of Bade. Consequently, the government has arted
the intervention of banks in precarious financid dtuation such as Safin, the third largest
bank in the country and more recently Bancrecer.

In the second quarter of 1999, the Mexican economy seems to be experiencing a new
time of financa ability. However, it is possble to foreseeing new chdlenges in the
near future, for example the dections in Argenting, Chile and Mexico during the present
and the next yesr.

From this summary of events it is possble to identify four periods for the Mexican
economy, which will be reteken on next sections of this work. i) The Tequila crigs in
1995-96, ii) A peiod of gability in 1997 and fird hdf of 1998, iii) the Samba crigs on
the last quater of 1998 and fird quater of 1999, and findly iv) a new period of
economic peacefulness nowadays.

3. The Term Structure of I nterest Ratesin Mexico

This section describes the data, its sources and the methodology for fitting the yidd
curve.

3.1  DataDescription

The data series comes from different sources including the Banco de Mexico (Mexico's
Centrd Bank, known as Banxico), Operadora de Bolsa one of the largest brokerage firms
of the country and Daastream. Data corresponds to non-default risk interest rates for
maturities of one day, 28 days, 90 days 182 days and 360 days traded daly in the
secondary market. The day count convention is 365 days. The period of andyss darts on
June of 1996 and finishes on June of 1999. The totd number of observaions between
these dates is 785. Table 1 shows asample of the series.
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Table 1. A sample of Interest rates (%)

Maturity in years
Date 0. 00274 0.07671 0. 24658 0. 49863 0. 98630
27-Jun- 96 29. 20 28. 29 30. 25 32.25 33.75
31-Cct-96 31. 25 30. 50 29.00 29.10 27.50
30-Jun-97 22.90 21.00 20.90 21. 20 21. 40
30- Sep- 98 31. 25 35. 00 38.10 37.00 34. 25
31- Mar-99 24.00 22.30 22.00 21. 40 23.05
30-Jun-99 18. 75 20.00 20. 25 21.25 22. 40
Source: Banxico
OBA
Datastream

According to table 1, rates on the 27 of June, 31 of October of 1997 and 30 of September

of 1998 ae highe than the others. This is not casud, the dates are chosen to be
“representatives’ of each one of the periods of section 2.2.

Figure 1, shows the process followed by the interest rates mentioned above. The interest
rates are highly corrdated and it can be seen the dgnificant voldility particulaly of the
short rate. Contrarily the 360 days rae seems to have less fluctuaion. Agan, the four
dages of the Mexican economy are evidert, i.e, crigs of 199596, the dability of 1997-
firg haf of 1998, Brazlian crigs in the third quarter of 1998 and firs quarter of 1999 and
the steady date in the second quarter of the present year. These sub-periods will be label
asA, B, C and D respectively from now on.

Figure 1. The process followed by interest ratesin Mexico
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3.2  FittingtheYield Curve

For extracting the components explaining interest rate changes, it is necessary to get more
points of the curve, for this reason, | will dat the andyss aoplying Spline interpolaion,
informaly teding its goodness of fit and compaing it agang other methodologies.
Hrdly, 1 will gart explaining Spline Interpolation.
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3.21 Splinelnterpolation

In practice, third degree polynomias are often used to fit a sat of points because they
dlow a “smooth” shepe, which is not possble to get via dther liner or squared
interpolation. A generd formulafor a cubic Splineis given by the following expresson

FY R,

A O————(t-x;);

Bi(t):.:,.j:i g‘;fﬁ(xk X2 @
10 elsewhere

where X is a set of interpolating knots. By(t) are cubic n-3 B-Splines which are non-zero
in the interva [X, Xi+4]. The properties of the Spline interpolation can be mathematicaly
expresad in the following way. Writing F is the kth polynomias over thexy knot
0) They are everywhere twice differentiable,
ii) If xx isaknot, then
Fe (%) =Fa(Xy)
FL(X) =Fea(%) @
R (%) =Fa(x)
Equation 2 implies that excepting a the extreme knots not only the dope but dso the
curvature must match.

3.2.2 TheBond Price Curve

The prices of the pure discount bonds are associated to spot rates through the following
relation.

tPr = (1+d(11' VR (©)

Equation 3 is smply the equivalent discount factor of a ot rate, where (Pr is the price of
a pure discount bond dating a time t and paying 1 Mexican peso & maurity T. (Rt is
the corresponding market quoted spot rate a time t and expirdtion a time T; d(T) is the
tenor of the interest rate on a 365 days base, 0 for indance, a d(1) = 0.0027397 ad
d(360)= 0.98630. Imposng the condition that (P, equd to 1, we have an additiond point
we would not have hed otherwise.

Table 2, shows a sub-sample of the pure discount bond prices cdculated thisway.

Table 2. A sample of the calculated pure discount bond prices using equation 3

Maturity in years

Date 0.00000 0.00274 0.07671 0. 24658 0.49863 0.98630
27-Jun- 96 1. 0000 0. 9992 0.9788 0. 9306 0. 8615 0. 7503
31-Cct-96 1. 0000 0.9991 0.9771 0.9333 0.8733 0. 7866
30- Jun- 97 1. 0000 0. 9994 0.9841 0. 9510 0.9044 0. 8257
30- Sep- 98 1. 0000 0.9991 0.9739 0.9141 0.8442 0. 7475
31- Mar-99 1. 0000 0.9993 0.9832 0.9485 0.9036 0.8148
30- Jun- 99 1. 0000 0. 9995 0.9849 0.9524 0.9042 0.8190

Note: This sample of bond prices corresponds to the interest rates shown in table 1. Applying equation 3 to the rates of table 1 with the according
maturities, we obtain table 2.
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As it is illudrated in table 2, we have 6 pure discount bond prices for every day of the
resserch period; thus it is possble by usng the spline technique mentioned in the
previous section, to fit 3 polynomias of third degree In totd, 785 splines or 2,355 third-
degree polynomids were fitted. Table 2a shows the coefficients of the splines
corresponding to the datain table 2.

Table 2a. Coefficients of the splines for the pure discount bond pri ces of table 2

From 0 to 28 days From 28to 91 days From 91 to 360 days
Coefficient  T° T2 T Constant T T T Constant T T2 T Constant
Date

27-Jun-96 -2094 0370 -0.293 1.000 0295 -0179 -0.251 0.999 0.024 0021 -0.300 1.003
31-Oct-96 -0.073 0220 -0.314 1.000 -0376 0290 -0.320 1.000 0.070 -0.040 -0.238 0.993
30-Jun-97 -2207 0490 -0.231  1.000 0.095 -0.039 -0.191 0.999 0.001 0030 -0.208 1.000
30-Sep-98 1992 -0524 -0.312 1.000 0592 -0202 -0.337 1.001 -0.131 0333 -0.469 1.011
31-Mar-99 -1982 0450 -0.242 1.000 0.184 -0.049 -0.204 0.999 -0.093 0156 -0.254 1.003
30-Jun-99 1542 -0269 -0.185 1.000 -0.212 0134 -0.216 1.001 0.045 -0.056 -0.169 0.997

T indicates time to maturitv of the bond. so for examnple if we want to calculate the price of a pure discount bond maturina in 25
days and starting in 27 of June of 1996, the we would have to

1) calculate time to maturity T in years with a base of 365 days: 25/365=0.0685

2) use the equation with the parameters corresponding to the interval from O to 28 days:

f(T)=-2.0938T +0.3703T"-0.293T+1=0.98099€

According to table 2a, we have explicit solutions for the prices of pure discount bonds for
the whole period, in other words, we have explicit formulae of the bond price curves for
785 days.

| extracted 15 points from each curve corresponding to pure discount bonds mauring in
1, 7, and 15 days and from 1 to 12 months. Figure 3 illustrates a sample of the bond price
curves corresponding to the same daes to those of table 2. In addition, the 15 points
extracted are marked in order to show ther didribution dong ther respective bond price
curve.



Trans 27" ICA Victor M. Jiménez E (México)

Figure 3. The Bond Price Curve
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As we can expect, the figure shows traditiond downward doping curves. Curves on the
upper pat of the graph correspond to the periods of dability B and D in which rates are
lower than those of the turbulent sub-periods A and C.

3.2.3 TheYidd Curve

As | mentioned in the previous section, now we have 15 points of the bond price curve
and as the pure discount prices are a one to one mapping with the spot rates, hence it is
possible to get more points on the yidd curve by using the rdaionship.

tPr =Exp{- R(t,T )d(T )} 4)

Where dl the vaidbles are as in equation 1 but R(,T) is the continuous time verson of
the (Rt mentioned above. Solving for R(t,T), we have:

R(tT)=- L‘;?TtF))T ®

As in the case of the Bond price curve, figure 4 shows the yidd curve for the same dates.
The curves in June of 1997 and March of 1999 ae “inverted’, while the dope on the
short end of the curve in September of 1998 was very steep.
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Figure 4. Yidd curves
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We have 785 yidd curves, 0 it is posshle to gat the factors explaining the variaion of
the spot raes But before doing o, it is important to check the “goodness of fit” of the
madd. In other wordsif it is possble to recover the origind data

4. Principal Components Analyss — Theoretical Framework

Hury (1988) &ffirms that PCA “can be looked a from three different points of view”. i) a
methodology of transforming corrdated variables into uncorrdaed, i) a methodology for
finding linear combinations of vaiables with large or smdl vaiances and iii) a daa
reduction technique. Although dl of them seem to be a good explandion of what PCA
does, it is important to mention that FA shares dl these characteritics, so we need a more
specific definition.

The intuition behind PCA is very smple and can be explained with the aid of figure 6.
Figure 6. PCA graphically
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Pand A shows a sample of a random vector X composed of two random variables X; and
X2, The pependicular lines to the axis define their regpective varidaions. A point is
uniquely defined by an order parr of the form (X ,x2). Pand B, on the other hand, shows a
rotation of the axes X% and X to a new sat of variables U and U, forming an orthogond
bass Notice that under the new bass the varidion in U; is lager than under X;, and
convarsdy the varidion of X, is larger than that of W. Furthermore, U; explains dmogt
dl the vaidion of the sample points and if the variance on U is “white noisg, then it is
redundant and we can get rid of it. The later explans why PCA is a data reduction
technique.

In the case of R, it might not be necessary to reduce the number of variables but if
ingead, a phenomenon is explaned by let's say 25 varidbles or more then it might be
convenient to use PCA or another technique. However, one of the main drawbacks of the
methodology is that if for indance the variables X; and X are repectivey inflation and
consumption, thereis not sraightforward interpretation of U;.

I will folow Jolliffe (1986) in the definition of PCA because of its smplicity. Let X=(Xq,
X2,..., Xp) a p-random vector with a known variance-covariance matrix Y and E(X) = 0,
where E is the expected vaue of the random vector X and O is a zero vector. The
objective is to maximise the variance of a linear combination a1"X (a11 RP); however the
problem is not wel defined yet, because it is possble to meke this variance abitrarily

high for an abitrary a1. Imposng the normdisdtion condrant that a:’ai1=1, then we
have

Max Var[a,'X]=a,'Ya,

(14
st. a,a, =1
Jolliffe (1986) solves the problem through a Lagrangeart”
L =a,'Ya,-1,(1-a,a,) 15

Taking the firgt derivative of equation 15 with respect to a; and sdtting it equd to zero,
yidds
190
——=Ya,-1,a,=0 16
2 ﬂal 1 11 ( )

from eguation 16, a1 reveds to be an egenvector of the variance-covariance matrix Y,
while |1 is its corresponding eigenvdue. Furthermore, from eguation 16 it is easy to
caculate the variance of a 1" X

Ya,-l,a,=0pbP Ya,=1,a, @

multiplying both Sdesontheleftby a;”
a,Ya,=al a, (18
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which iswha we wanted to maximise. By using the normd condition (a 1 "a 1 =1), we have
that the maximised variance of a1"X isequd to the characterigtic root | 1.

The same procedure can be repeated Himes with the additiond condition that a; mus be
orthogond with thei-1 previous characterigtic vectors of Y. For the case of i=2, thisis
Max Var[a,'X]=a,'Ya,

st. a,'a, =1. 29
a,’a, =0.
Equation 19 requires & mogt solving a 2x2 sysem of equations. Sill a, is a characterigtic

vector of Y and | 2 is its second largest eigenvalue. Hury presents a generdisation for the
case in which there are rot multipleroots (1 1>1 2>....... A p).

Therefore, we define the i-th component of X, U; as
u =a;'Xx (20

In generd, if the columns of a matrix A ae the characteridic vectors a; of Y, then its

components are

iy

N
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It is usud to arange the columns of A=(a1, ay, ..., ap), suchthat a is the characteristic

vector corresponding to the largest eigenvaue | 1, a2 is the egenvector corresponding to
the second largest |, ad 0 on 0 forth. Additiondly, in some of the references the
authors refer to the characteridtic vectors as the components of the covariance matrix. |
will use both indiscriminately.

PCA has some important properties that | will just enlig in the next section. Some of
them will be useful in subsequent sections.

4.1  Propertiesof Principal Component Analysis

Fird is necessary to make some definitions. If Y is symmetric matrix, we define its
spectra decomposition as

Y =4l a'a =ALA vz

i=1
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where A as defined above, and L is diagond marix with | ; entries in its diagond. We
define total variance of a random vector X as the trace of Y, its covariance matrix, such
thet:
Stzotal :tr(Y)
=tr(A'LA)
=tr(L)

=41, =4var(U)) @

i=1

which is possble because the columns of A ae normdised and uncorrdaed and L is
diagond. By the same token, generdised variance can be defined as

séen =det(Y ) =det(L) (2
Totd variance and/or generdised variance can be used as rules for sdecting a number of
components to retain. From the definition of PCA and equdions 22, 23 and 24, the
fdlowing properties of PCA goply to a population as wel as a samples. Let Y the
covariance matrix of the p-random vector X then

Property 1
In order to maximise the explaned variance of a random vector, we have to sdect the
firs q componentsof Y .

Property 2

If we wish to predict each random varigble X in X, by a linear function of Z, where Z is
as before, then if s is the residud variance in predicting X% from Z, i.e; the variance not
explained by any subset of g components, then Ss?; over j=1,..pisminimised if B = A,

This property means that from the q principd components Z, we can recover the grestest
amount of variation of the origind rendom varables X. In other words, the resdud
vaiance is minimised by the princpad components with respect dl the possble linear
combinations of X.

Property 3
The following property is named as of sphericity, and a sketch of a proof is presented. Let
us congder the family of dlipsoids given by

XY X =k )

where Y1, is the inverse of the variancecovariance matrix of X and k is an anbitrary
condant. As pe the definition of principd components we have Z=A"X, and because the
columns of A ae orthonormd, then multiplying both ddes of the expresson by A, we
have AZ=X. Subdituting the latter in equation 25 yidds

(AZ) Y ' AZ =K (29)
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By using the spectral decompaosition of the variance-covariance matrix and knowing that
the characteristic vectors of Y ! are the same than those of Y, and that the characteristic
roots of Yt are the reciprocal of those of Y, equation 26 becomes

(AZ) AL'A' AZ=k @7)

it is possible to amplify 27 with the orthonormdity of A,
Z'L'Z=k (2

which is the canonical form of dlipses in p-dimensond space with man axis defined by
the principd components Z. This propety will be ue to edimae the number of
componentsto retain for the andyss

Evidently, if dl the characteridic roots are equd, then equation 28 represents and sphere
in a pdmensond space. Sphericity imposes severd problems for ddidicd  inference,
one of them is named as redundancy or multi-collinearity of the data,

4.2  Satidical Inferencein Principal Components

Satidicd inference in Principd Components has the drawback that it assumes that the
random vector X is multivariate norma with mean mvector and covariance given by the

marix Y.

We dat with the assumption that X~Ny(mY) is a multivariate normd random vector
with mean m and covariance marix Y . Usudly, under normdity, the unbiased edtimator
of the mean and variance are:

X

J

Qo5

U R
m:X:

S|

N

j

\ . - _

Y =S=——A&(X,- X)' (X, - X) )
n'lj:l

Sating from the unbiased edtimator the Y, we know that the digribution of S is Wishart
with n degrees of freedom.

s~vvp(n,%)

From this didtribution, the Likelihood function of the covariance matrix Y is given by:
L(Y):C*(detY)'“’Z*etr(-%Y 1g) (30)

where C is a congant which does not depend on Y, and dlr is the exponentia function of
the trace of amatrix. Maximisang 30 is equivaent to minimising the fallowing function g
g(Y)=2logC - 2log L(Y) 3D
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subgtituting L(Y) in 31 and smplifying
g(Y)=n(log(det Y )+tr(Y 'S) €2)

and by using the spectra decomposition of Y we write
g(Y)=n(log(det A LA)+tr(L 'A' SA) €<

notice that A is orthonorma and thet the log of the determinant of L isequd to the sum

of thelog of each | ;, henceforth we can smplify 33 even more

& a;'Sa, 0

gogl AT (39
b %

g(Y)=na

=1

Equation 34 is the equivdent expresson for the Likeihood function for estimating the
paanges of a covaiance marix. A gmilar verson will be derived latter for obtaining
the maximum likdlihood estimators for the case of Common Principa Components.

Introducing Lagrange multipliers for the congtraints aj"aj=1in 34 and differentiating it
with respect to | 1, and an,, yidds the following system of equations

"m=1..,p
v v v
|, =a, Sa,
U v (3
a,'sa; =0 j'm
VIV
a,'a, =1
and thee three conditions hold if and only if°
Y
[m =1,
o (39

where |, ad an ae regectivdly the eigenvaues and eigenvectors of S, the variance-
covariance matrix estimator of Y. Therefore, equation 36 says that the MLE of the
characterigtic roots and vectors of Y are the characterigtic roots and vectors of S,

Hury's book (1988) explan in detall how to get the didribution (mean and variances) of
these edimators Agan if X~Np(mY), SWp(n, Y/n) and |13>...3, then
asymptoticaly
)  the characteridic roots |, of S ae independent of dl its characteristic
vectors a
i) I'sand @ sarejointly normaly digributed.
i)  esimatorsare unbiased. E(;)=l ; and E(&)=a.i.
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1212
k =
i) Cov(l,,l )=t /(n-1) m (362)
fo ktm

il, ., laa;
- k=m
o180, -1, )

v Cov(ay.a, )=i . (36b)
i Ll mag g L m
I\ 2
(-0 -1 )

The importance of these properties is that we are dble to test sphericity of the last g
characteridtic roots. Furthermore, we can formaly test for the contribution of each and dl
of the componentsto the total variance of the sample.

The test for sphericity of the last q components, consds in tesing for equdity of the lagt
q charaterigtic roots, Ho: | p.q+1d p-gr2=.....4 p. Usng MLE it is possble to deive that
the vaue which maximises the likdihood function under the null Hg is
- exl (oIl |
LY)=C* g~ 41,20y *exp(-2p) (@
a qizp-q+1gi=l U 2

On the other hand, by subdituting 36 in 30, we have that the vaue that maximises the
likelihood function in the case of p different rootsis
%

Ls)=c Iy *exp(- ) @®

Therefore we can use the result that —2(Log (LY )-Log (9) isa c? with (qor+1)/2)-1
degrees of freedom. The likelihood ratio test isthen

(39

The following result is useful for cdculding the contribution of a subset of characteridic
roots to the total variance of a covariance matrix. Let w such that

- Dpoquutl paa tL +1

L+, 4L+ ]

(40

Obvioudy, w is the proportion of the totd variance explained by the last q components.
By using the digribution of the | ’s (364), it is possbleto infer
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~

h&-wydr -wii Y
Ag( a1’ 2l
A 9 2 L u0”
§/\12a|2j+(1-W)2a|2jlj

j=1 j=q+1 U

Z(W)=

(41)

is didributed N(0,1). So if we subditute |, by its corresponding edimators, we can
edimate the percentage of variance lost as a consequence of diminaing the last g
components.

4.3  Comparison between PCA and FA

At the beginning of section 4.1, the intuition behind PCA was described as a rotation of
the origind basis in order to get a set of components such that the firsd one explains the
larger proportion of the variance of a p-random vector X.

On the other hand, factor Analyss starts with the modd
I :rh"'l nF P K+ R +6 1=1K ,n 42

where mis the expected vaue of the variable ri, Fk stands for the kth factor, | ’s are the
factor loadings and e is the specific risk. Equation 42 gives us the firg difference between
PCA and FA. Wheress in FA we prespecify the number of factors we require for
explaining the variation of r, in PCA we cdculate as many factors as number of variables
and then we decide the number to retain.

The modd isnot complete until we impose the conditions of alinear modd
iYE(e)=0 iE(F) =0 iiiE(Ee) ="
iv)E(Fe') =0 V)E(F'F) =1

notice we have changed to matrix notation. The fird two ae only normdisation of
vaiables wheress the lagt three are the conditions of normdity and orthogondity between
errors and factors. If we set R egud to the difference between r and mand L as a matrix
of loadings| ;, then eguation 42 in matrix notetion is

R=LF+e 4

Cdculding variance of both Sdes of 43 yidds
S=?72'?2+7 4

where S is the totd variance of R and Y is the variance of the error term in equation 43.
Equation 44 gives us the second man difference between PCA and FA. While the
objective of PCA is to ge linear combinations of A’X that maximises the diagond of S,
FA’s objective is the off-diagond dements In equeion 44, Y is diagond S0 the term
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L"L accounts for dl the variation of the off-diagond dements of S, but notice that L L is
the variance of L F, which are the variables of interest for FA.

There is another difference. In generd, the components from a covariance matrix are very
different to those of a corrdation matrix and scade measure of the variables seems to be
the cause®. On the contrary, the factors obtained from FA are invariant of the scde of the
data.

Sometimes the fird k prindpd components are used as a fird approximation for the
factor loadings. Researchers used this technique named Principd Components Regresson
(PCR) in order to diminate multicollinearity. As it was mentioned before, the principd
components are condructed in such a way that they are orthogond; consequently, if we
want to explan the variaion of Y by usng a prandom vector X, highly collinear, then
we can subditute the origind variables for the orthonorma components U=A"X.

However, this procedure has problems, PCA does not say anything about the srength of a
rlaionship among vaiables but for the diagond dements Y of eguation 44. Thus it
might be that a subst of PC's complady fal in accounting for the variability of the
dependant variable Y. A good explanation of some problems usng PCR can be found in
Hadi and Ling (1998).

On the other hand, FA sometimes uses a set of PC's for rotating the factor loadings in a
desred direction. For example, Knez, Litterman, and Schenkman (1996) followed a
amilar goproach in their paper “Common Fectors Affecting Money Maket Returns’
(1996). Firdly, the authors obtained a set of factor loadings for explaning money market
reteurns udng an iteadive mehodology based upon maximum likdihood egtimation.
Secondly, they edimate the unknown factors throughout the condruction of portfolios
and findly they rotate the loadings in order to make the factors condgtent with the
components of the 30-year zero-curve.

5. Results of the PCA over theyield curvein Mexico

From the yidd curves, 15 points were chosen corresponding to interest rates maturing at
1, 7 and 15 days and from 1 to 12 months

An equd number of components were extracted from the 15 point of the yidd curves
mentioned above. In addition to the components for the whole period, | aso obtained the

components of the four periods A, B, C, D mentioned in sections 2.2 and 3.1.

Before we go onto the PCA, | would like to show the result of testing normdity and some
basc trends in the series.
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5.1  Principal Component Analyssfor the Whole Period

The corrdation matrix of table 4 corroborates what we have seen in figure 1, regarding
the rdaionship among the interest rates, i.e, there is a strong reaionship anong dl the
vaidbles. Actudly, eveary rate is highly corrdaed with the subsequent one. With some
exceptions, corrdaion between rates decreases with maturity, and for indance, the
corrddion between the one-day interest rate and the sevenday rate is 0.995 while the
corrdaion between one day and 360 days is 0.886. This trend is smilar to the one
encountered by Barber and Copper for the United States experience.

Table 4 Interest rates correlation matrix for the whole period

lday | 7day | 15day | 28day | 2month | 91day | 4 month | 5month | 182 day | 7 month | 8 month | 9 month | 10 month |

Rate
1day 1.000
7 day 0.995  1.000
15 day 0.979 0.994 1.000
28 day 0.954 0.978 0.995  1.000
2 month 0.934 0.961 0.980  0.991 1.000
91 day 0.923  0.947 0.964  0.977 0.996  1.000
4 month 0.912 0.936 0.953 0.965 0.989  0.998 1.000
5 month 0.902  0.925 0.942 0956 0.982 0.993  0.998 1.000
182 day 0.890 0914 0932 0.945 0971 0984 0.993 0.998 1.000
7 month 0.878  0.902 0.920 0.934 0960 0973 0.984  0.993 0.998 1.000
8 month 0.867  0.891 0.910 0924 0949 0.962 0975 0.987 0.995 0.999 1.000
9 month 0.860 0.884 0.902 0.916 0.940 0.954 0.968 0.981 0.990  0.996 0.999 1.000
10 month 0.859  0.882 0.900 0913 0936 0.950 0.964 0.976 0.986 0.993 0.997  0.999 1.000
11 month 0.862 0.884 0.901 0913 0936 0950 0.962 0.973 0.981 0.987 0.991  0.995 0.998
360 day 0.866 __0.887 0.902 0913 0.937 0.950 0.960 _ 0.968 0.974 0.978 0.981  0.985 0.991

Although it is not shown here, if we congder the periods A, B, C and D separady, the
corrdaion among the interest rates is not as drong as it is for the whole period. For
ingance the corrdaion between the one-day interest rate and the 360-day rate for period
B is0.616 which is lower to the mentioned above.

Table 5 shows the characteridtics roots of the covariance matrix for the whole period The
first factor accounts in average, for 955% of the totd variance of the yidd curve, the
second principad component accounts for 3.35% percent of the variaion whereas the third
one explans 0.73%. Therefore, the three firg principd components explain 99.6% of the
variance of the rates. Conddering the differences between the economies of Mexico and
United States, the data period and series, eic. these results are very different to those
found by Knez, Litteeman and Scheinkman (1996) mentioned in section 1 in which the
firgt three factors explained 86% of money market returns.
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Table 5. Characteristic roots of the covariance matrix

Sample % % Rescaled % %
Component Variance | explained accrued Variance | explained | accrued
1| 3.364E-02 95.51 95.51 14.317174 95.45 95.45
2| 1.182E-03 3.36 98.87 0.513354 342 98.87
3| 2.565E-04 0.73 99.60 0.106162 0.71 99.58
4| 8.905E-05 0.25 99.85 0.035813 0.24 99.82
5| 5.229E-05 0.15 100.00 0.027489 0.18 100.00
6| 7.178E-09 0.00 100.00 0.000003 0.00 100.00
7| 1.242E-09 0.00 100.00 0.000001 0.00 100.00
8| 9.446E-10 0.00 100.00 0.000001 0.00 100.00
9| 9.237E-10 0.00 100.00 0.000000 0.00 100.00
10| 8.928E-10 0.00 100.00 0.000000 0.00 100.00
11| 8.431E-10 0.00 100.00 0.000000 0.00 100.00
12| 8.141E-10 0.00 100.00 0.000000 0.00 100.00
13| 7.966E-10 0.00 100.00 0.000000 0.00 100.00
14| 7.618E-10 0.00 100.00 0.000000 0.00 100.00
15| 7.281E-10 0.00 100.00 0.000000 0.00 100.00

Yet, it is more Smilar to Babd and Copper’s paper. In ther paper the three firg
principd components explain 97.15% of the totd variation of bond returns, however, the
contribution to the variance is very different. In BC peper, the fird component accounts
for 81%, the second for 12% and the third for more than 4%.

Notice the sample variance vaues in table 5. They ae & mog of order two (0(2)).
Actudly, covariance among variables are a mog of the same order, and the covariance
matrix is very close to be sngular, which is corroborated by the fact that, its determinant
isequdl to 1x1071%6,

Regarding the components, the firs five eigenvectors of the variance-covariance matrix
for the whole period are shown in table 6.

Table 6. Five first Eigenvectors - Whole Period

1 2 3 4 5
Time to maturity

0.00274 0.278 (0.465 0.459 (0.414) 0.107
0.01918 0.282 (0.407 0.242 (0.057) (0.039
0.04110 0.285 (0.337 0.007 0.289 (0.169
0.07671 0.289 (0.246 (0.242 0.534 (0.214
0.16667 0.293 (0.098 (0.399 0.164 0.132
0.24932 0.289 0.001 (0.375 (0.183) 0.295
0.33333 0.278 0.080 (0.287 (0.298) 0.192
0.41667 0.265 0.142 (0.179 (0.287) (0.000
0.49863 0.253 0.191 (0.072 (0.223) (0.1279
0.58333 0.241 0.229 0.031 (0.132) (0.304
0.66667 0.230 0.254 0.119 (0.035) (0.338
0.75000 0.222 0.266 0.190 0.062 (0.268
0.83333 0.216 0.265 0.240 0.151 (0.076
0.91667 0.213 0.249 0.266 0.227 0.247
0.98630 0.213 0.226 0.269 0.279 0.627

By usng the components as coefficients we can illudrate the interpretation of the
characterigic vectors in the following way. As per the orthogondity of the matrix of
components, equation 21 can be reversed in order to express the interet rates as a linear
combination of the scores U.
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U=A'X P AU=AA'XP AU=X (219)

According to 21a the equaion explaining changes (see firs row in table 6) of the short
rateis

Fooosra; =0.278U,, - 0.465U, +0.459U, - 0.414U,, +0.107,, +e, (21b)

Thus, aunit increase in the component U, causes the interest rate to move up 0.278 units
or 27.8 bads points, a unit increase in the component U, causes the rate to move down
0.465 units or 46.5 bads points and so on. Thisis not the whole truth, the coefficients of
the components U; must be rescded by the variance explained for the respective
characterigtic root | j. Thus by re-scaling the coefficients, we would have thet the correct
eguation would be

Foooara; =0.943U,, - 0.295U,, +0.135U,, - .071U,, +0.014U,, +e, (210

According to table 6, it is cdear that the firs component causes a padld shift of the
whole yidd curve. An increase in the second component makes the rates on the short-end
of the curve to decrease wheress the rates on the long-end increase, consequently, the
whole curve becomes gdeeper. The third component moves the rates such tha the yied
curve becomes convex. The fourth one twists the curve, and so on. These are the “levd”,
“dope’, “curvature’ and so on, dassfication mentioned the introduction.

Figure 9 plots the three first rescaed factors. It illustrates graphicaly what | said in the
previous paragraph. For every standard devidion change in the curve, roughly 95% is a

padld shift (egenvector 1) and the remaning change is explaned by changes in the
dope and curvature. A smilar graphic can be found in Barbel and Copper.

Figure 9. Threefirst eigenvectors-rescaled.
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The inner grgphic shows that the firs eigenvector is not as flat as it seems and though
component 1 shifts the curve, it does it in different proportions. This shgpe is Smilar to
the findings of Knez, Litterman and Scheinkman (1996).

Why ae these eigenvectors o important? Because knowing them dlow us to immunise a
portfolio agang changes in the yidd curve in different directions. | will not go in-depth
to explan how the egenvectors or directiond vectors can be used to immunise a
portfolio in severd directions, the papers by Retano and Barbd and Copper explan sep
by sep and including examples how to do it. Ingteed, | rather ask, what would be the
effect in a portfolio if the directiond vectors change congantly through time? If it is the
cax, it would be interesing to edimae the potentid eaningsloses deived from a
change in the characterigtic vectors or even from changesin characterigtic roots.

Ficasso could have dgned figure 10 and probably he would named it as “A Turbulent
Higory” or gmilar. Ingead, figure 10 plots the origind observations but usng a new
basis defined by the components U, and U,, the 2 firg principd components,

Figure 10. A Turbulent History
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We can repeat the dory of section 2, but getting more indght of the overdl Stuaion. The
figure on the top of the left, shows how the Mexican economy was recovering from the
“Tequila crigs of 1995" (period A). At point 1, we are in June of 1996. Remember this
was a time of voldility, this can be infered from the variaion in both directions. Below,
we will see that in this period the variance explained by the second component is larger
than 30%.

At point 2 on the top-right, we ae in 1997 (period B) and the fluctuaions ae less
ggnificant then in the previous paragraph. Now, it seems that component one explans a
larger proportion of the tota variaion of the yidd curve. When uncertanty decreases,
component 2 become less important.

At pant 3 in the bottom-left, the fluctuations dat becoming larger and larger but notice
that initidly it hgopens only in the diretion of the sscond component. Suddenly
fluctuations in the direction of the firg factor explode. Although component 2 reacted
fird, component 1 moves wilder. Again, component 1 regans its influence on the totd
vaidion of the interest rates. This is the period of the Samba criss (period C). Findly, a
point 4 (period D), we are in the second quarter of 1999 and the calm comes back.

Speculating with these idess, the second component could be the “market expectations’
factor. It darts fluctuaing when “rumours’ of a crigs fulfils the environment as
previoudy to Brazilian crigs Also, it goes back to dability more gradudly as it was the
case in the recovering period of the Tequilacrigs.

On the other hand, component 1 “accommodates’ itsdf according to expectations It
reects laer and it might be named as the “dabilisation or governmenta indrument” for
lessening crises.

Wheeas component 1 could be useful for investigaing money supply eguations
component 2 might be hepful for testing rationd expectations. It would be interesting to
look a the plot between factors 1 and 3 and between factors 2 and 3, but for the sake of
gpace, thisis not done here.

Notice that by meking this andyss we implicitly assumed that the components reman
the same for the whole period but the totd variance explaned for each factor
ggnificantly changes through time Is it possble that the directiond vectors reman
“congtant”? Let usfind out.

5.2  Principal Component Analysisfor sub-periods

This section will go through the Principd Component Andyss for peiods. but in
addition, it will present the results of teds for sdecting the number of components to
retain.

According to table 7, the volaility in peiods A and C is higher than in B and C. The
contribution of the components to this volatility importantly changes Looking a period
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A, the firs component accounts for 61% and the second for a 35% of the tota variance,
while in period C, the proportions ae 91% and 65% regpectively. It seems period D is
vey smilar to C and it might be that some sequels of the Brazilian crigs remain.

Table 7. Variance of each period - Eigenvalues

Period A Period B Period C Period D
Variance % ) Variance % ) Variance % Variance %
5.82E-03 60.89 3.32E-03 82.73 2.20E-02 91.40 3.22E-03 87.84
3.36E-03 35.16 4.78E-04 11.90 1.57E-03 6.52 3.52E-04 9.60
2.85E-04 2.98 1.29E-04 3.20 3.29E-04 1.37 5.67E-05 1.54
5.85E-05 0.61 5.42E-05 1.35 1.45E-04 0.60 3.05E-05 0.83
3.40E-05 0.36 3.30E-05 0.82 2.68E-05 0.11 7.00E-06 0.19
3.39E-09 0.00 1.54E-09 0.00 4.64E-09 0.00 1.34E-09 0.00
1.28E-09 0.00 9.40E-10 0.00 1.45E-09 0.00 1.09E-09 0.00
1.11E-09 0.00 9.31E-10 0.00 1.09E-09 0.00 9.81E-10 0.00
1.01E-09 0.00 8.63E-10 0.00 1.03E-09 0.00 9.60E-10 0.00
9.80E-10 0.00 8.55E-10 0.00 9.07E-10 0.00 7.80E-10 0.00
9.04E-10 0.00 8.06E-10 0.00 8.50E-10 0.00 6.51E-10 0.00
7.41E-10 0.00 7.76E-10 0.00 7.09E-10 0.00 5.59E-10 0.00
6.04E-10 0.00 7.29E-10 0.00 6.57E-10 0.00 5.11E-10 0.00
5.72E-10 0.00 7.00E-10 0.00 5.76E-10 0.00 4.12E-10 0.00
4.96E-10 0.00 6.45E-10 0.00 4.97E-10 0.00 3.55E-10 0.00

Notice the vaues in table 7 are consagent with what we have seen in figure 10. In period
A volaility on the direction of the second component is larger, while in period C, the
influence of the component 1 increases subgantidly. Other way of looking a the same
informetion is through the Scree.

Figure 11. The Scree— Different periods
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Despite the margind contribution of the third component ill plays a role in each period.
Its contribution is very dmilar in peiods A and B, i.e, of the order of 3%. Although in
period C its contribution was reduced to 1.37%, a period D it dats to become more
influentia.
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How many components should we sdect? From table 7 and figure 11, it seems we do not

need more than three components to explan an important share of the total variance of
the yidd curve. What does it mean that the others are close to zero? Wha ae
consequences of ghericity in the lagt 12 egenvaues?

Jolliffe (1986) tdks about four different ways of sdecting components & cumulaive
percentage of tota variation, b) Sze of variances of principd components, c) the Scree
graph, d) the number of components with unequa eigenvaues.

Wheress rules a, b and ¢ are adhoc rules base on the definition of PC, rule d seems to be
more datidicd. For ingdance, we could have decided “a-priori” tha we would use a
number of components accounting for more than 95%, i.e, rules a and ¢. Under these
rules we would have retained components 1 and 2. on the other hand, if the decison rule
were to use dl the components with a contribution larger or equd to one percert, i.e, rule
b, then three components would be selected.

We could have tried to tet if the eigenvaues of a covariance matrix are equd to zero.
Let's try. From the didribution of eigenvdues and eigenvectors of section 4.1.2, we know
that the egenvaues of the covariance mdrix are multivaigte normd with the following
parameters

Elm)= m,
121 _

Cov(l,l. )=} Jn-1) k=m (369)
o kKim

Under the null (Ho. | n=0) , we want to test that the mth eigenvdue is equd to zero
agang that it is different. We st the datigtic

yo_1-0 \/(n 1)|U \/(n 1) @)
I

U
I 2

(n-1)

Unfortunatdly, the datigic 45 will never “accept” Hp (unless n<4) because an implicit
assumption for cdculaing the didribution is that the eigenvdues of the covaiance
matrix are dl different to zero; thus we can not perform thiskind of tests.

Rule d is often named as the Bartlett tet for sohericity. Sphericity imposes severd
problems to PCA, firdly, dthough the space defined for the components is orthogond it
is not unique, secondly, multicollinesrity or daa redundancy and thirdly, sphericity
makes datidicd inference very complicated because as | mentioned before Satidtics are
derived from the assumption that the eigenvaues are dl different.



Trans 27" ICA Victor M. Jiménez E (México)

Batlett's test am is to identify a subsst of components with low or none contribution to
the explained variance in order to diminate them. | goplied the test for sphericity to the
last components using the Satistic given by equation 39

él 2 u
ea al u
— eYi=p-a+1y
c? =nqlog (9
¢ 2 o
e Oliy
a=p-q+1U
Table 8. Bartlett's sphericity test results.
Whole A B C D
period
q 8 9 9 8 9
c- squared 23.50 56.10 27.13 45.01 54.38
df 35 44 44 35 44
p-value 0.93070 0.10437 0.97856 0.11977 0.13582

According to table 8, a 10% dgnificance level, we can not rgect phericity in the lagt 9
components for periods A, B, and D and sphericity in the last 8 for periods C and the
pooled data too. Under sohericity tes we would have to retain Sx or ssven components in
order to explan 100% of the vaidion of the origind series. However, the problem with
the Bartlett test is that it tends to retain more PCs than are necessary. Thus, we need to
look for another way out. We define the rule that we will retain the firgt three components
if the datidicd contribution of the last 12 components is less than 5%. According to
equation 41,

~

é g d.u
J%él-W)__aJl -Wal g
Z(W)= = = 7 (41)
Y 2 U7
WEaIL+(L-WY al%g
e = ji=a+ U

where as we saw, w is the combined contribution of the lest q eigenvdues. The null
hypothesis is that the last g components account for a least 5% of the vaidion of the
series. Table 9 shows the result for aw equa 5%.
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Table 9. Lost Contribution of the total variance (w) because of eliminating the last 12 components

Whole A B C D
period
q 12 12 12 12 12
w 5% 5% 5% 5% 5%
Z- statistic 6.09 2.87 2.54 2.53 1.82
p-value 0.00000 0.00205 0.00560 0.00567 0.03438

At the 5% dggnificance leve, we ae sure we do not lose more than 5% of the totd
vaiance by just sdecting the firg three components. All these tests have a lot of puzzles
which Jdliffe (1986) explans in his book in chapter 6, nevethdess, | just wanted to
illudrate some possble “formd” tests for retaning an goproprigte number of
components.

Now let's turn up to the components. Figure 12 contragts the firg three components for
the four periods and the pooled data
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Figure 12. Comparison of the components
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Components 1 and 3 seem to behave differently in each period wheress component 2 is
more dable. Regarding component 1, the behaviour of the short-end wildly changes from
one period to ancther. Mention gpat desarves period A, which is totdly different to the
others. The interpretation of the level component gill applies since changes in this
component provoke quas-pardld shifts in the whole curve. Notice that regardiess of the
period, component one seems to keep indde a target zone which in average goes from
0.20 to 0.30; is there any reaionship with mean reverson?

Regarding component 2, notice the dmilaity in dl periods The interpretation of this
component is the same tha aove snce given a postive shock to this factor, the short-
end of the yidd curve decreases wheress the long-end grows i.e, the yidd curve
becomes steeper.
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Findly, component 3 seems more difficult to interpret. It changes the curvaiure of the
yield curve, there is no doubt; nevethdess it does it in very different fashions For
indance in periods A and B, a pogtive change in the component causes the short-end and
the long-end of the yidd curve to go down whereas the middle rates go up. On the other
hand, in periods C and D, excepting for the very short rate, wheress rates in the short-end
decresse, rates in the middle and long-end increese. Again, component 3 in period A
behaves in a completdy different fashion that in the other subperiods, whereas period B
isdifferent to C and D only inSgn.

It ssems that only component 2 could be common to dl peiods In addition, we have
sen that the interpretation of the components is the same that the one proposed by
Litterman and Scheinkman (1988); nevethdess that does not mean tha they do not
change through time but, how do we test for changes in characteristic vectors and roots?
Common Principd Component Andyds (CPCA) answers the quedtion, however as we
will see it is a methodology computationdly intensve hence, | explore other 2 possble
dternatives. Frg, let us go through the intuition and theory of CPCA.

6. Common Rrincipal Component Analysis (CPCA)

Let Y; and Y, two variance-covariance mdrices. By the spectrd decompostion of a

covariance matrix presented in section 4.1.1, we can represent both matrices as the
product of their characterigtic vectors and roots

Yizgl jaia; =ALA 1=12 (229)

=1

Let us contrast 22a by proposing the following modd.
Y =Al,a/a, =ALA i=12 @)

=1

Modd 48 contrasts with 22a in that it dlows the characteridic roots to be different,
wheress the characteristic vectors have to be equd.

In addition to 48, there are other 3 types of reationship between covariance matrices. |
will jug mention al of them. The firs rdaion among covariance matrices is equdity of
dl Y;. It does not require more explanation that dl the dements of both matrices are
equd.

The sacond level isthat of proportiondity and can be represented as follows
Y,=r;Y; i=12K k 49

which obvioudy means that the dl the dements of a marix ae proportiond to the
elements of the others.
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The third level is CPCA, which has been dready mentioned and findly we have Patid
Common Principd Component Andyss (PCPCA. By udng the spectrd decomposition
of a covariance matrix PCPCA is

Qoo

Y. =

l,a/a +4l,a'a, i=12K .k ()

1 j=q+1

In equation 50 the firg q principd components ae common and the others p-q are
specific to the k matrices.

6.1 Maximum Likdihood Estimation of CPCA
Themodd is

Hopo Y, =AL,A  i=12KK (483

if we multiply both ddes of 480 by A to the left and A™ to the right, in order to take
advantage of the orthonormality of the pxp matrix of components, we have

AY,A' =L, i=12KKk (480)

where L; are diagona matrices which dements are the specific eigenvadues. The intuition
behind 48b is tha if we want to tex CPC, we need to find a square matrix A, which
smultaneoudy diagondises k symmetric matrices.

For testing 48 as, asin section 4.1.2, we art with S, the unbiased etimator of Y,
S, ~W,(n,,Y/ )

where ny is the sze of the ith sample. Assuming independence of the covariance matrices
we form the likelihood function as

k i
L(Y,,K,Y,)=C*O(detY, ) "2~ etr(- —r; YIiS) ()
i=1

Equation 51 is the multivarite verson of eguation 30. Agan, the maximisaion of the
likdihood function can be trandormed to a minimistion problem ending with the
following expresson

c g® . a’sa
g(A’Ll’K’Lk):aniag()glij+ II J

i =1

(52)

which is equivdent to equation 34. By solving 52 we get the following sysem of
equations

0 U v
., =a, S a, i=LKk m=1K,p
U oke ly-1;_ 00U . .
a, agn, S;za; =0 j'm m,j=1Kp 53

i=1 [ P
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53 is the k-dimensond eguivdent system to 35; however the solution of this sysem is
not sraghtforward and Hury (1988) develops in his book an dgorithm for solving it. The
dgorithm is denominated FG in honour to Hury and Gautschi who proposed it.

Hury points out that a unlque solutlon dways exigds thanks to some technicd

optimistion conditions. Denating A and L as the solution to 53 then we get the
maximum likdlihood estlmetoroftheoovalancemarlces

U U u yu
Y =A'L; A i=12,K k
Subdituting in 51, thevduethat maxlmlsesthe |Ike|IhOOd functionis
LYLK Y, ) =C*Odety )" exp(- By 9
This is the redricted modd, on the other hand, by subdituting the unbiased etimator of

Y (S in %4 gives the unrestricted mode!. Thus, thelog likelihood ratlofor testing Hepe. IS

L(YlK Y ) detYi,
P " L(S, K ,Sk)

(%)

whichisdistributed as ¢ 2 with (k-1)p(p-1)/2 degrees of freedom.

I will dose this section by saying that there are explicit olutions for proportiondity and
PCPCA by usng the MLE methodology. It is important to mention that | could not find
an exact dgorithm to cdculate the edimaors in the case of PCPCA; moreover,
comparing a subset of components and dlowing the others to be specific, jus have the
effect of complicating the calculations.

6.2  CrossApproach for Illustrating CPCA

Denote Ap3, Ag®, Ac®, and Ap? as the firgt three eigenvectors of the covariance matrices
in each period. In addition, let Xa, Xg, Xc, ad Xp the sample observations where the
ubscripts represent the periods A, B, C and D. We say that the components of two
periods are equd if and only if

Ag' X5 =AY XA (56)

equation 56 Imply means that if we goplied the components of one period to the data in
other, then the components are common if and only if the crossplots are lines with a
dope equd to one. Noatice that this is not a formd but a graphica way of checking if a
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subset of components is common for two periods. In our case, we have 6 different
combinations of periods and if in addition we want to compare 3 components thus we
havein totd 18 graphs. | will briefly comment over the relaionships.

a) Periods A and B
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The dope of the firs component is cdose to 1, suggedting that this component is equd for
periods A and B.

On the other hand, though there is a drong linear raionship in components 2 and a
dight one in component 3, the vaue of the dope does not dlow us to accept the
hypothesis that they are common for both periods.

b) PeriodsA and C
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Frdly, the linear rdationships is not as drong as aove, however it seems in the dope of
components 1 and 2 is dose to 1 and thus it does not rgect the hypothess that both are
common for periods A and C.

There is a wesker and negdive linear rdationship in the third component, which might
suggest that this vector dters its direction from one period to other. This is conagtent
with the reationship of the third component between periods A and C shown in figure 12.
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C) Periods A and D
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The dope of component one is dose to 1 and thus this could suggest that the firg
component is the same in periods A and D. Gragphicdly, it is dear that we would rgect
that the components 2 and 3 ae common given ther respective dopes Agan the
relaionship of component 3 is negative, meaning that this vector changes direction from
period A to D. Natice tha the cross plot of the first component shows what seems to be a
par of padld draght lines and the “holeé’ dose to the origin in the crossplot of
component 2, | will mentioned my interpretation below.

d) PeriodsB and C
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It seems none of them are common. The dope of the straight line of component 1 iscdose
to 3 or nmore, wheress in the case of component 2 it is dose to 2. Component 3 Hill shows
anegative rdaionship.

€) Periods B and D
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Agan, figures 1 and 2 have dopes that could meen that the components are common.
Component 3 has a negative dope suggesting that the vectors have oppodte directions.

f) Periods C and D
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It s|ems that al the components could be common in this case, dthough the dope in the
plot of component 3 is not exactly equd to 1.

From the graphs, we can infer tha components charge through time; however; it must be
mentioned that components 1 and 2 show more dability than component 3. In dmog dl
the cases, there is a srong linear relaionship between components in different periods.
OLS ooud be hdpfu in deemining the drength of these linear rdaionships and
edimating the dopes.

The “holes’ and “pardld” lines, which gopear in some of the figures, intrigued me. In
order to interpret, | decided to joint the points of the plot looking for a pattern.

Figure 14. “ Some Holes in the Common Principal Component Analysis’
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As it can be seen, the lines describe the path followed by the transformation of interest

raes on time. As it can be seen, lines do not behave eraicdly or randomly but they
present an ordered pattern. Holes and padld lines could be sgns of gructurd breeks,
meaning that we could bresk the periods A, B, C and D in subsequent sub-periods.

6.3  Krzanowski’s Approach for Common Principal Components

Krzanowski’'s idea is to find the minimum angle between the axis of the subspaces
spanned by the elgenvectors of two (or more) covariance matrices. For instance, if we
have two vectors a=(ag,a) and b=(bs,b2) in R® and the norm for each one of them is st
equa to one, then we know that the inner product between the vectors aand b is equd to
the cogne of the angle between them. Matheméticaly,

a-b
—— = C0S( (57)
[l



Trans 27" ICA Victor M. Jiménez E (México)

The decison rule is dear, if the angle q between aand b is dose to zero then the vectors
ae common. The rexult of cdculaing the angle between components for each par of
periodsisshownin 10.

Table 10. Angles between characteristic vectors-Comparison between periods

AB AC AD BC BD CD
Inner product

First component 0.9910 0.9644 0.9426 0.9851 0.9704 0.9815

Second component 0.9725 0.9653 0.8081 0.9959 0.9209 0.9311

Third Component 0.8500 0.8313 0.7552 0.8376 0.7625 0.7856
g in radians

First component 0.13 0.27 0.34 0.17 0.24 0.19

Second component 0.24 0.26 0.63 0.09 0.40 0.37

Third Component 0.55 0.59 0.71 0.58 0.70 0.67
gin degrees

First component 8 15 20 10 14 11

Second component 13 15 36 5 23 21

Third Component 32 34 41 33 40 38

If we define a tolerance of 15 degrees in the angle between components, the conclusons
ae vey dmla to those in the previous section. The firg component is common for
periods AB, AC, BC, BD, CD. In addition, periods AB, AC and BC share component 2.
Regarding component 3, the angles suggest not only that they are not common but dso
that some of they are very dose to be orthogond.

This methodology has a number of drawbacks. How do we determine tha q is dose
enough to zero? Ingead of 15 degrees, we could have abitraily st 10 or 5 and the
outcome would have been totdly different. Jolliffe mentions that though Krzanowski
smulated some vaues these are not Satigticaly acceptable. Notice that in table 11 we are

meesuring the angle between the projection of two pdimensond vectors in R?; therefore
we can expect that the minimum angle between two p-dimenson vectors is smdler than

that in table 10.

For teding in g-dimendons Krzanowski proposes a dmilar. Now the idea is to find the
minmum angle d, between the subspaces spanned by gprincipd components He found
that thisangleis given by

d:cos‘l(l}lé) (59)

where| ; isthe largest @genvaue of the following product
Al'ACALTAL jk=ABCD jtk (9

where qu are marices composed of the q eigenvectors of interet in j-th period. In this
case, if the angle is “smdl” then we can say that the gocomponents are common for both
covariance matrices.
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| peformed the andyss for smultaneoudy test that the three firg principd components
ae common for every par of subperiods In any case | could not rgect common
principd components in esch case. However, | found that these tes must be performed
for asubset of components less than the number of variables (0<p).

From the cross-goproach, we dready know that the third component changes through
time, therefore | peformed the andyss for the remaning two sgnificant components,
i.e. 1 and 2. The resullts can be seenin table 11.

Table 11. Common principal components-minimum angle between characteristic vectorsin degrees

AB AC AD BC BD CD

Minimum 5 8 6 4 5 3
angle in degrees

If we congder 5 degrees as the decison rule, surprisngly the result is now that periods
AB, BC, BD ad findly CD dhare the fird two components smultaneoudy, contragting
with the results of table 10 in which only AB and AC share the two firg factors. This
andysis corroborates that components 1 and 2 do not change too much.

6.4  Maximum Likelihood Estimation of common principal components

CPCA and PCPCA are undoubtedly the most forma way of testing common principa
components, however they are the most difficult as well.

Aswe mentioned in section 4.3
Hepo 0Y, =A'LA i=12,K k (483)

is the expresson for testing CPCA hypothess, agang the dternative of arbitrary
matrices. As we have seen in section 6.1, the sydem of equdions for the maximum
likdihood estimation of the covariance matrix is given by

U U U

., =a, S a, i=LKk m=1K,p
U'Ié& lim_lij OU . .
a, atn ——S;7a; =0 j'm m,j=1Kp 3
i=1 (Y P
aU'aU-—‘ll m=]
m <] %0 m?t j

| mentioned before that there is an dgorithm developed by Hury and Gautshi for solving
sysem 53. This dgorithm consds in two procedures or sub-functions the outer and the
inner procedures, the outer procedure (F agorithm) set ups the maximisation problem of
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the likdihood tet of eguation 51, whereas the inner dgorithm (G) is a process of
rotetion, which solves the conditions of the system 53.

| implemented the FG dgorithm in Malab and dthough the modd peaforms wdl with
some of the examples of Hury’s book (not dl), it does not converge to any solution for
the series of interest. Anyway, the code in Matlab is attached.

| tried another way for solving the problem. It is based in the idea mentioned above that
we have to find a sgquare marix which dmultaneoudy diagondises two covaiance
metrices.

The dgorithm consgts of the following seps Let Y; and Y; covariance matrices (pxp)
corresponding to the ith and j-th periods. Also, let Ai and Aj, the corresponding matrices
of eigenvectors (components).

a) Frd, cdculate the diagond matrices usng the components of the covariance
matrices Y k
AY A =Ly k=AB,C,.D |I=1K,p

where A, B, C, D ae the periods, p is the number of variadles in the each sample
and L isadiagond matrix of eigenvaues

b) Second, s&t up an initid solution. If Ag‘;\‘"f’;q) correspond to the matrix composed
of the fird q eigenvectors for the period k and the last p-q of period j, then
multiply two covariance matrices by the sameinitid solution.

ARD VY ALRGY =L
ALY AR =L
C) Third, define diagond condrants. For the initid solutions L} (i5K), square dl
the off diagond dements| ', n, and st
Objective =& A (1',,)2+a A(1%, )

m=In=1 m=1n=1
min min

d Sat up the orthogondity condraints of the component marices. Set Orthogond;
equd to and identity pxp matrix such thet

Orthogonal, = A{l 5" AlR )

— A(@.p-a)r A (a.p-q)
Orthogonal;, = A1 AT,

€) Usng solver to minimise Objective subject to Orthogonal and Orthogonal; by
changing smuitaneoudy the elements of the matrices A{}7™. As it can be seen
in pont d, the fird g-columns ae common, such tha when solver iterates, it
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automaticaly assgns the same vaues to these columns in both marices AR @

(i=k)j). The last (pq) egenvectors of each matrix are pecific but they are subject
to orthogondity conditions

| run the modd for 2 and 3 common components The rexults for 3 common principd
components are not encouraging. In fact, contrary to what | sad in the previous sections,
| can not rgect in any case tha the components are common. This is drange if we
congder the vaiability paticulaly in componet 3. Actudly, the maximum likdihood
esimates of the common components are not convinaing.

The results for two common components are more ressonable. The likdihood ratio for
tesing PCPC is exactly the same that in eguation 55 but with (k-1)p(2p-0-1)/2 degrees of
freedom, where p is the number ¢ variables, q is s&t equd to 2 components and k is equa
to the number of covariance matrices to compare (2).

LY;K,Y K detY;
Cicpc :.2|[']M:éni In L
L(S, K,S,) i=a

i
Theresults of the likelihood ratios are the following
Table 12. Likelihood Ratio - 2 Common Principal Components

A B A C A D B C B D C D

Observations 134 413 134 150 134 88 413 150 413 88 150 88

c2 38.53 35.61 30.48 18.65 13.93 29.9
df 27 27 27 27 27 27
p-value 0.0697 0.1240 0.2927 0.8822 0.9813 0.3186

The results of teble 12 jointly with a grgphicd andyss of components will be discussed
bdow. Notice | will plot the same components of figure 12, but in addition, the vaue of
the maximum likelihood estimator of each component for every pair of subperiods.

a) PCPCA-Periods A and B
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D.Zg-l //"b\-\\ 0 D
“ 0.27 4™, //Q’—V\\\
€ N 0.10 4
g 025 \ s /

S 523 H . T T T
S 41 -0.1@40 0.40 0.60 0.80 1.04
. 5
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. oA -0.30 4 oA
0.17
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0.15 4 . . . . -0.50
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t2

mpone

Maturity

The maximum likdihood egtimators of both components seem to be a weghted average
of the origind ones. This is conddent with the findings of Krzanowski (1984) who
esablishes that if common principd component holds, not only the covariance marices
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but dso dl possble liner combinations of them have the same common components.
However, according to table 12 it is possble to rgect the hypothess null of 2 common

principal components a 10 % sgnificance leve.

b) PCPCA.. Periods A and C
0.35
0.30 |
.
= 0309 N _—— =
® 2 0.0 ~
S 0.254 E e . T
£ S -0.1@p0 0.40 0.60 0.80 1.0
8 0.20 S + MLE
VLE -0.30 e A
0.15+ T T T T A b c
0.00 0.20 0.40 0.60 08 o |od -0.50
Maturity Maturity

There is an erdic behaviour of the MLE of component 1 on the long-end of the curve.
Regarding component 2, it behaves quiet nicdy. Table 12 shows that we can not regect
that the periods A and C share components 1 and 2 a 10% sgnificance leve, but the
result isin the borderline of rgjection.

C) PCPCA.. Periods A and D
040 4
b 0.30 4
- 035 \ ot
= - o~
o 030 < 0.10
o [
o c T T T T
o o
€ 025 g -0.1®4p0 § 0.40 0.60 0.80 1.04
o
O 020 38 ——MLE
-0.30 —a—A
0415 4 T T T y D
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MLE has a drange behaviour in the short-end of the curve. Again, component 2 has a
nice shape. According to table 12, we can not regect the hypothess null of common

Maturity

principal components a amaost 30% sgnificance levd.

d PCPCA. Periods B and C and for periods B and D
0.35
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<030 » s
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The likdihood raio tet seems to show the robustness of the hypothess of common
principa  components for periods B and C and for periods B and D, ther respective p-
vaues ae 08820 and 09812 that do not dlow us to rgect the hypothess null & any
sgnificance leved. The former was completely unexpected for me, because | had the idea
that components would dramaticadly change from a period of gdability (B) to a period of
crigs (C), but it seems tha only the vaiance explaned by the components inmdede

0.40 T
_ 035 0.30 4
= o T
o 030 = 0.0
= @
o < T T T
2025 S
£ £ -01m4po 0.20 0.40 0.60 0.80 1.04
o
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e  PCPCA.PeriodsA and C
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The fact that we can not rgect the hypothess null of common principd components is
ubject to criticiam congdering the shgpe of the MLE of component 1. It can be seen in
the graph for the second factor, that the MLE is very smilar to the origind component in
period C. This is very suspicious because | used as an initid gpproximation the vaues of
the components of C and it seems the dgorithm did not find an dternative one.

This andyss seems to give some support to the hypothess that the first two components
aerddivey gable.

Unfortunatdy, the results of this section are biased and | found the following drawbacks
in the methodology applied. Firdly, the MLE is more dosdy rdaed to the initid
solution, meaning that the dgorithm did not change the initid solution in mos of the
caes. | condder that nether the diagondisation process nor the orthogolisation
congraints of the algorithm are correct.



Trans 27" ICA Victor M. Jiménez E (México)

Secondly, as it was mention in section 4.2.2, the determinants of the covariance matrices
are dose to zero, which imposes numericd problem to the cdculaions. In fact, this is the
cae when sphericity is present. Jolliffe suggests that sphericity is a problem of
redundancy which can be overcome by ddeing some of the origind varigbles (in our
cae some of the 15 interest rates extracted from the spline curves) and dthough he does
soecify some techniques for identifying them such as patid corrdation among variables
and some “iteradtive’ methodologies, it is not clear that there is a formad way to do it.
Remember that components are linear combinations of the origind varigbles and deeting
one of them could mean losng vdudble information. | tried for example to diminate
vaiables highly corrdaed in order to diminate multicollinearity but the results do not
redly improve and sometimes worsened. For example, we have seen that the corrddion
of the one-day rate and the seven-day rate is 0.995, by deeting the later, the shape and
proportion of the variance explaned by the newly cdculated factors change subgantidly,
and even in that case the determinant is gill doseto zero.

Findly, 1 have to mention again that some of the assumptions for datistica inference in
PCA do not hold either.

6.5  Final Remarkson Common Principal Component Analysis

Despite dl the problems mentioned, the three different methodologies, the hereén so
cdled “crossng gpproach”, Krzanowski and MLE/LR gpproach, patidly support the
hypothess of common principd components for the firg 2 factors (levd and dope), of
the yidd curve. However, it is clear that the third component changes through time,

Now it would be interesting to test sability of the variance explaned for the components.
This can be done by testing common sphericity but | did not have time (and space) to do
it. Nevertheless, it is necessary to conduct the tests agan but in a more adtringent
environment.

| think that this hypothess has important implications, particularly in hedging drategies.
Components change, there is not doubt about, but portfolio losses can be due to changes
in the influence of the directiond vectors and not because these vectors change their
shape or direction through time.
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7. Conclusons

The am of this work is to edimate the principad components describing the yidd curve
for the Mexican market and teging their dtability through time. The main hypothess was
that whereas the components, a least the most important ones, are very sable or remain
unchanged the variance explained for them subgtantialy fluctuates.

Frdly, we have reviewed some of the principad economicd everts in Mexico in order to
identify scenarios or periods. Secondly, as the money markets in Mexico are undeveloped
and short-term oriented, it was necessty to peaform a Spline interpolation in order to
obtain more information of the yidd curve. The goodness of fit of the Spline interpolation
was measure throughout the meen sguare error. The results were particularly good. The
goodness of fit of Splines was illustrated through a comparison agang a Kernd method
of interpolation, which in turn is the methodology used by the Mexican Centra Bank.

In the following chepter, we darted with a review of Principd Component Andyss an its
man datigicd propeties. A description of the components was caried out, concluding
that the dlassfication of components proposed by Knez, Litterman and Scheinkman,
“levd”, “dopg’ and “curvature’ gpplies for the components explaining the variation of
the Mexican yidd curve. Common Principd Components and other levels of comparison
between variance — covariance matrices were introduced in this section.

Three methodologies were gpplied for testing common principd component andyss. The
firda one, crossng goproach, dlows to graphicdly check if components of different
periods are the same Krzanowski’'s methodology measures the minimum angle among
sub-spaces gpanned by a st of princpd components. If the angle is smdl “enough’
common princpd components is not rgected. Fndly, MLE is a formd datidicd
technigue based on the assumptions of multivariste normdity and nonrsphericity  for
teting common principd components. MLE is computationd intensve and requires
efficdent dgorithms for solving complicated sysems of equaions Hury and Gautschi
agorithm seemsto perform very well for CPCA; however, it is not useful for PCPCA.

The teds gpplied patidly support the hypothess that the fird two principd components
ae generdly dable The laiter could have important implications on portfolio hedging
drategies. It is necessary to complement the andyss with a more adringent set of
detidicd tet accompanied by efficient dgorithms of edimation. Satidicdly test the
dability of the eigenvdues or common sphericity would be another important future task.
| suspect that if the off-diagond dements of a covariance matrix are dable, i.e, the
components, then the diagond dements should be very voldtile, i.e., the eigenvalues.
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Notes:

“This instrument was very attractive for foreign investors because of its high yield and low exchange rate
risk. Low because although the Government did not have the obligation of paying back in dollars, there was
atacit promise of doing so by using the available foreign reserves.

2Approx. USD20 billion left the country on the 21 of December and the following days.

3Source Financial Times 26 of February, 4 and 5 of March 1999.

“Whereas Flury does it by using the spectral decomposition of a symmetric matrix and some inequalities. |
will describe the spectral decomposition of a symmetric matrix on section 4.1

®Itis important to mention that we have assumed that all the characteristic rootsof Y are different.

®In addition, Jolliffe presents a good discussion of the advantages and disadvantages of obtaining the
components either from the correlation matrix or the covariance matrix. If the variables have different scale

measures then he recommends to use correlation matrix but the main problem is that most of the statistical
results have been derived from covariance matrices.

"Asin equation 21c.
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