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Summary 
 
A number of research works in finance rely on the selection of factors affecting the 
behaviour of one or more underlying variables. Factor Analysis (FA) and Principal 
Components Analysis (PCA) are statistical tools allowing for selecting a reduced number 
of factors explaining the variations of a set of variables. Of particular interest has been 
the study of the factors explaining the behaviour of the yield curve. It is well known that 
at least three factors are relevant for explaining variations in bonds and money market 
returns; these factors are level, slope and curvature. Financial practitioners use the set of 
components for portfolio hedging strategies. This document aims to test the stability of 
the factors over time. It is assumed that the factors change in a continuous time basis. 
Another hypothesis is that they are the same for a period but the variance explained for 
each one of them changes constantly. Technically, it means that the off-diagonal elements 
of a number of covariance matrices remain are the same but the diagonal elements are 
specific to each one of them. Three approaches were use to test the hypothesis of 
common principal components for the Mexican experience. The results are mixed and 
though in some cases they appear to support the hypothesis of stability of some of the 
factors, I found a number of problems, particularly computational and numerical, for 
appropriately testing it. 
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Resumen 

 
Un número importante de trabajos de investigación en finanzas se basan en la selección 
de factores que afectan el comportamiento de una o más valores subyacentes. Análisis de 
Factores y Análisis de Componentes Principales son herramientas estatísticas que 
permiten la selección de un número reducido de factores o componentes que explican las 
variaciones de un conjunto dado de variables. De interés particular han sido el estudio de 
los factores que determinan el comportamiento de la curva de rendimiento. Knez, 
Litterman y Sheinkman en su trabajo “Common Factors Affecting Bond Returns” (1991) 
nos muestran que al menos tres factores son relevantes para explicar variaciones en 
precios de Bonos y retornos sobre instrumentos del mercado de dinero, nivel, pendiente y 
curvatura. Financieros utilizan este conjunto de factores para implantar estrategia de 
cobertura. Este trabajo tiene como objetivo probar la estabilidad de los componentes en el 
tiempo. Generalmente se asume que los factores cambian en el tiempo. Alternativamente, 
se asume que se mantienen constantes excepto que las varianzas explicadas por cada uno 
de ellos cambian constantemente. Tcnicamente esto significa que todos los elementos de 
la matriz de covarianzas permanecen constantes exceptuando por la diagonal. Tres fueron 
los métodos utilizados para probar la hipótesis de componentes principales comunes para 
la curva en México en el periodo 1996-99. Los resultados no son contundentes, sin 
embargo en algunos casos soportan dicha hipótesis. 
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1. Introduction 
A number of research works in finance rely on the selection of factors affecting the 
behaviour of one or more underlying variables which are considered relevant for a 
researcher or a finance practitioner. For instance, a portfolio manager is interested in 
hedging against shifts of the yield curve; in a case like this one, the factor is a vector 
which determines the level of the curve and a duration technique could be sufficient to 
cover against the mentioned risk. But what would be the result if the curve moves in a 
different way? In other words, what would happen if only the long-end would move up or 
down? What if only the short-end does it? Is it traditional duration enough to cover these 
cases? Moreover, is it possible for the interest rates to move in different fashions?  

 
Factor Analysis (FA) and Principal Components Analysis (PCA) are statistical tools 
allowing for selecting a reduced number of factors, in order to explain the variations of a 
set of underlying variables. Although, these tools are similar in spirit, they are very 
different one another. The differences will be explained in section four; however, from 
now on the words factor or component will be used indistinctly during the entire 
document. 
 
The first works I know directly related to finance using this type of technique were used 
to test multifactor-pricing models such as Arbitrage Pricing Theory (APT). Roll and Ross 
(1980); Cho, Elton and Gruber (1988); Connor and Korajczyk (1988) are some of the 
examples of the use of FA for testing the APT.  
 
Regarding money and bond markets, the paper by Litterman and Scheinkman “Common 
Factors Affecting Bond Returns” (1991) seems to be one of the most influential works. 
Thereafter in 1996, Knez, Litterman and Scheinkman (KLS) used the same technique, 
i.e., FA, in order to develop models of factors influencing bond returns.  
 
These authors analysed weekly returns of 38 money-market instruments with maturities 
from 1 to 12 months, representing five different risk-segments in the United States for the 
period January 1985 to August 1988. They are able to identify and interpret at least three 
factors. The first one, which they name the “level” factor, corresponds to shifts of the 
whole yield curve; this component explains 62% of the total variation on returns. The 
second one, “stepness”, equivalent to the slope of the curve, explains 11% of changes in 
returns. Finally, the “Treasury or curvature” factor named this way because as they point 
out “its effect is to increase the curvature of the yield curve in the range of maturities 
below 20 years”. The explanatory power of the third factor is close to 13%. As it can be 
directly inferred from these numbers, the three factors account for 86% of the variation in 
money market returns. 
 
Barbel and Copper (BC) in their “Immunisation Using Principal Component Analysis” 
(1996), present the alternative tool PCA for obtaining the components affecting bond 
returns. These authors used a different data set, selecting spot rates with maturities 
ranging from 1 month to twenty years from August 1985 to February of 1991. Despite the 
differences, these authors are able to interpret factors in a similar way that those of KLS. 
In addition, BC use the eigenvectors and the eigenvalues of the covariance matrix of the 
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yield curve to demonstrate that it is possible to hedge against movements in different 
directions. 
 
Both analyses take us to the question, why do we need to get these factors? Hedging is 
one answer. The works by Reitano (1996), “Non-Parallel Yield Curve Shifts and 
Stochastic Immunisation”, Duarte and Mendes (1998), “Robust Hedging Using Futures 
Contracts with an Application to Emerging Markets” are good illustrations of how to use 
PCA for hedging portfolios. Likewise, the paper by Golub and Tillman, “Measuring 
Yield Curve Risk Using Principal Components Analysis, Value at Risk, and Key Rate 
Durations” allows us to contrast PCA against other hedging techniques widely used. 
 
A second application of the components is to determine parameters of the volatility 
functions in a model of the term structure. This makes it possible to model the term 
structure of interest rates under a Heath, Jarrow and Morton (HJM) or a Bruce, Gatarek, 
Musiela (BGM) frameworks.  
 
One of the implicit assumptions when hedging using PCA is that the components are 
stable through time, but is it a sensible assumption? A method known as Common 
Principal Component Analysis allows comparing variance – covariance matrices in cross 
sections or time series and thus to test a kind of “statistical or econometric structural 
change”. 
  
The main objective of this work is to study the behaviour of the components of the yield 
curve in Mexico in four different periods. One aim is to analyse the stability of the 
components of the yield curve and if possible to identify the possible causes of change.  
 
 
2. An Overview of the Mexican Economy 
 
During the last five years, the Mexican economy has experienced a number of 
difficulties, some of them emerging from its own economic and financial structures and 
others because of its links with the international community. Among others, it is possible 
to mention the “Tequila crisis” in 1995, the “Asian - Tigers” and “Russian-Bear” crises in 
1997-98 and more recently the “Samba” crisis in Brazil starting the last year and 
extending itself to the first quarter of 1999. 
 
2.1 The “Tequila” crisis of 1995-96 
 
In 1994, a number of violent political events triggered a profound economic 
destabilisation in Mexico. At the beginning of that year, a guerrilla rebel group arose in 
the southern state of Chiapas. In March, the governmental candidate to the presidency of 
Mexico was assassinated in the northern state of Baja California. In August, the most 
actively participated presidential elections in the history of the country were carried out in 
calm and peace, nevertheless there was a latent fear that opposition groups, with the 
pretext of an electoral fraud, would fiercely impugn the outcome. In September, an 
eminent politician was killed; he was likely to become the head of the official party and 
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he planned to completely reform its structures. Because of this crime, in recent days, the 
brother of the former president was sentenced to 28 years of prison accused of being the 
intellectual responsible. From the economic point of view, although the inflation was 7% 
in 1994, the lowest in more than 25 years, there were important pressures over main 
economic indicators. A huge deficit in the trade balance / current account was pointed out 
by economists as a possible source of a financial turmoil. In addition, the Tesobonos 
problem, debt instruments issued by the Mexican government in pesos but denominated 
in dollars1, became an unbearable burden for the Government once the exchange rate was 
put under pressure due to the events previously mentioned. 
 
On the 21 of December of 1994, with the purpose of alleviating the constant speculative 
attacks over the exchange rate, the newly appointed Minister of Finance ordered a shift of 
15% of the exchange rate target zone. This measure was not accompanied by an 
adjustment of interest rates to compensate investors for the depreciation of the currency 
causing a massive outflow of money, which rapidly dried out the foreign reserves2. This 
was the so-called December mistake. The currency depreciated more than a hundred 
percent in the following months, inflationary perspectives filled the economic 
environment, interest rates moved wildly reaching their peak in October; as a result the 
economy fell 7% in real terms that year. The worst economic crisis of the last decades 
had started.  Despite of the financial aid of international financial institutions, foreign 
countries, and a number of measures of stabilisation implemented by the government, the 
country went into a financial recession, which in turn was aggravated by the weakness of 
the Financial System. Tight monetary and fiscal policies were among others the 
traditional recipes recommended by the IMF and the World Bank as the major 
stabilisation policies. Although the economy grew in 1996, the first signs of recovery are 
not evident until the last quarter of that year. In 1997, the economy started to expand 
again. 
 
2.2 The succeeding crisis  
 
The economic environment in Mexico has been characterised by intermittent periods of 
stability combined with financial pressures coming from the exterior, to mention a few, 
the Asian crisis, the turmoil in Russia, the reduction of the petroleum prices and finally 
the problems in Brazil. 
 
2.2.1 The “Tiger” and “Bear” crisis of 1997-98 
 
It is well known that the financial crisis emerged on Thailand, Indonesia, South Korea, 
Malaysia, Taiwan, and on a minor scale in China, Hong Kong and Singapore, caused an 
important depreciation of their respective currencies and a sharp fall on their respective 
level of output.  Mexico was not an exception, the crisis increased the volatility of the 
exchange and interest rates, and provoked a downward trend in the Mexican Stock 
Exchange. Nevertheless, it does not seem to have created an important economic 
instability mainly because of stronger economic fundamentals or because of the vigour of 
the American economy. 
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2.2.2 The “Samba” crisis in Brazil 1998-99 
 
The remains of the crisis in Asia and Russia suddenly contaminated other regions, and 
Brazil was the most vulnerable economy of the big Latin American countries. At that 
time, this country was running a huge fiscal deficit of 8% of the GDP, in contrast the 
deficit of Argentina and Mexico was 1.3% and 1.4% respectively3. After almost four 
months of speculative attacks over the Brazilian real, the Brazilian government took the 
decision of releasing the currency to a floating regime on the 13 of January and by the 
end of February, the currency had already depreciated 40%. 
 
Volatility was the main consequence for the Mexican finances. The effects of the 
Brazilian crisis overcame those caused by the Asian crisis. For instance, interest rates 
rose to more than 40% in annual terms, substantially increasing the past-due loan 
portfolio of the banking system. In the market, it is estimated that the Mexican banking 
system requires US$13 billion in order to reach the 8% capital to risk weighted assets 
ratio according to the rules of the BIS of Basle. Consequently, the government has started 
the intervention of banks in precarious financial situation such as Serfin, the third largest 
bank in the country and more recently Bancrecer. 
 
In the second quarter of 1999, the Mexican economy seems to be experiencing a new 
time of financial stability. However, it is possible to foreseeing new challenges in the 
near future, for example the elections in Argentina, Chile and Mexico during the present 
and the next year. 
 
From this summary of events, it is possible to identify four periods for the Mexican 
economy, which will be retaken on next sections of this work. i) The Tequila crisis in 
1995-96, ii) A period of stability in 1997 and first half of 1998, iii) the Samba crisis on 
the last quarter of 1998 and first quarter of 1999, and finally iv) a new period of 
economic peacefulness nowadays. 
 
3. The Term Structure of Interest Rates in Mexico 
 
This section describes the data, its sources and the methodology for fitting the yield 
curve. 
 
3.1 Data Description 
 
The data series comes from different sources including the Banco de Mexico (Mexico’s 
Central Bank, known as Banxico), Operadora de Bolsa one of the largest brokerage firms 
of the country and Datastream. Data corresponds to non-default risk interest rates for 
maturities of one day, 28 days, 90 days, 182 days and 360 days traded daily in the 
secondary market. The day count convention is 365 days. The period of analysis starts on 
June of 1996 and finishes on June of 1999. The total number of observations between 
these dates is 785. Table 1 shows a sample of the series. 
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Table 1. A sample of Interest rates (%) 

Maturity in years
Date 0.00274 0.07671 0.24658 0.49863 0.98630

27-Jun-96 29.20 28.29 30.25 32.25 33.75
31-Oct-96 31.25 30.50 29.00 29.10 27.50
30-Jun-97 22.90 21.00 20.90 21.20 21.40
30-Sep-98 31.25 35.00 38.10 37.00 34.25
31-Mar-99 24.00 22.30 22.00 21.40 23.05
30-Jun-99 18.75 20.00 20.25 21.25 22.40  

  Source: Banxico 
   OBSA 
   Datastream 

 
According to table 1, rates on the 27 of June, 31 of October of 1997 and 30 of September 
of 1998 are higher than the others. This is not casual, the dates are chosen to be 
“representatives” of each one of the periods of section 2.2.  
 
Figure 1, shows the process followed by the interest rates mentioned above. The interest 
rates are highly correlated and it can be seen the significant volatility particularly of the 
short rate. Contrarily the 360 days rate seems to have less fluctuation. Again, the four 
stages of the Mexican economy are evident, i.e., crisis of 1995-96, the stability of 1997-
first half of 1998, Brazilian crisis in the third quarter of 1998 and first quarter of 1999 and 
the steady state in the second quarter of the present year. These sub-periods will be label 
as A, B, C and D respectively from now on. 

 
Figure 1. The process followed by interest rates in Mexico 
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3.2 Fitting the Yield Curve 
 
For extracting the components explaining interest rate changes, it is necessary to get more 
points of the curve, for this reason, I will start the analysis applying Spline interpolation, 
informally testing its goodness of fit and comparing it against other methodologies. 
Firstly, I will start explaining Spline Interpolation. 
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3.2.1 Spline Interpolation 
 
In practice, third degree polynomials are often used to fit a set of points, because they 
allow a “smooth” shape, which is not possible to get via either linear or squared 
interpolation. A general formula for a cubic Spline is given by the following expression 
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where ξj is a set of interpolating knots. Bl(τ) are cubic n-3 B-Splines which are non-zero 
in the interval [ξl, ξl+4]. The properties of the Spline interpolation can be mathematically 
expressed in the following way. Writing Fk is the kth polynomials over the ξk knot 

i) They are everywhere twice differentiable,  
ii) If ξk is a knot, then 
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Equation 2 implies that excepting at the extreme knots, not only the slope but also the 
curvature must match.  
 
3.2.2 The Bond Price Curve 
 
The prices of the pure discount bonds are associated to spot rates through the following 
relation.  

)R)T((Tt
Tt

P δ+= 1
1     (3) 

 
Equation 3 is simply the equivalent discount factor of a spot rate, where tPT  is the price of 
a pure discount bond starting at time t and paying 1 Mexican peso at maturity T.  tRT  is 
the corresponding market quoted spot rate at time t and expiration at time T; δ(T) is the 
tenor of the interest rate on a 365 days base, so for instance, a δ(1) = 0.0027397 and 
δ(360)= 0.98630. Imposing the condition that tP0 equal to 1, we have an additional point 
we would not have had otherwise. 
 
Table 2, shows a sub-sample of the pure discount bond prices calculated this way. 

 
Table 2. A sample of the calculated pure discount bond prices using equation 3 

 Maturity in years
Date 0.00000 0.00274 0.07671 0.24658 0.49863 0.98630

27-Jun-96 1.0000 0.9992 0.9788 0.9306 0.8615 0.7503
31-Oct-96 1.0000 0.9991 0.9771 0.9333 0.8733 0.7866
30-Jun-97 1.0000 0.9994 0.9841 0.9510 0.9044 0.8257
30-Sep-98 1.0000 0.9991 0.9739 0.9141 0.8442 0.7475
31-Mar-99 1.0000 0.9993 0.9832 0.9485 0.9036 0.8148
30-Jun-99 1.0000 0.9995 0.9849 0.9524 0.9042 0.8190  

 
 
Note: This sample of bond prices corresponds to the interest rates shown in table 1. Applying equation 3 to the rates of table 1 with the according 
maturities, we obtain table 2. 
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As it is illustrated in table 2, we have 6 pure discount bond prices for every day of the 
research period; thus, it is possible, by using the spline technique mentioned in the 
previous section, to fit 3 polynomials of third degree. In total, 785 splines or 2,355 third-
degree polynomials were fitted. Table 2a shows the coefficients of the splines 
corresponding to the data in table 2.  

 
Table 2a. Coefficients of the splines for the pure discount bond prices of table 2 

From 0 to 28 days From 28 to 91 days From 91 to 360 days

Coefficient T3 T2 T Constant T3 T2 T Constant T3 T2 T Constant

Date
27-Jun-96 -2.094 0.370 -0.293 1.000 0.295 -0.179 -0.251 0.999 0.024 0.021 -0.300 1.003
31-Oct-96 -0.073 0.220 -0.314 1.000 -0.376 0.290 -0.320 1.000 0.070 -0.040 -0.238 0.993
30-Jun-97 -2.207 0.490 -0.231 1.000 0.095 -0.039 -0.191 0.999 0.001 0.030 -0.208 1.000
30-Sep-98 1.992 -0.524 -0.312 1.000 0.592 -0.202 -0.337 1.001 -0.131 0.333 -0.469 1.011

31-Mar-99 -1.982 0.450 -0.242 1.000 0.184 -0.049 -0.204 0.999 -0.093 0.156 -0.254 1.003
30-Jun-99 1.542 -0.269 -0.185 1.000 -0.212 0.134 -0.216 1.001 0.045 -0.056 -0.169 0.997

T indicates time to maturity of the bond, so for example if we want to calculate the price of a pure discount bond maturing in 25
days and starting in 27 of June of 1996, the we would have to

1) calculate time to maturity T in years with a base of 365 days: 25/365=0.0685
2) use the equation with the parameters corresponding to the interval from 0 to 28 days: 

f(T)=-2.0938T
3
+0.3703T

2
-0.293T+1=0.980996  

 
According to table 2a, we have explicit solutions for the prices of pure discount bonds for  
the whole period, in other words, we have explicit formulae of the bond price curves for 
785 days.  
 
I extracted 15 points from each curve corresponding to pure discount bonds maturing in 
1, 7, and 15 days and from 1 to 12 months. Figure 3 illustrates a sample of the bond price 
curves corresponding to the same dates to those of table 2. In addition, the 15 points 
extracted are marked in order to show their distribution along their respective bond price 
curve. 
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Figure 3. The Bond Price Curve 
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As we can expect, the figure shows traditional downward sloping curves. Curves on the 
upper part of the graph correspond to the periods of stability B and D in which rates are 
lower than those of the turbulent sub-periods A and C. 
 
3.2.3 The Yield Curve 
 
As I mentioned in the previous section, now we have 15 points of the bond price curve 
and as the pure discount prices are a one to one mapping with the spot rates, hence it is 
possible to get more points on the yield curve by using the relationship. 

)}T()T,t(R{ExpPTt δ−=     (4) 
 
Where all the variables are as in equation 1 but R(t,T) is the continuous time version of 
the tRT  mentioned above. Solving for R(t,T), we have: 

)T(
PLog

)T,t(R Tt

δ
−=      (5) 

 
As in the case of the Bond price curve, figure 4 shows the yield curve for the same dates. 
The curves in June of 1997 and March of 1999 are “inverted”, while the slope on the 
short end of the curve in September of 1998 was very steep. 
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Figure 4. Yield curves 
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We have 785 yield curves, so it is possible to get the factors explaining the variation of 
the spot rates. But before doing so, it is important to check the “goodness of fit” of the 
model. In other words if it is possible to recover the original data. 
 
4. Principal Components Analysis – Theoretical Framework 
 
Flury (1988) affirms that PCA “can be looked at from three different points of view”. i) a 
methodology of transforming correlated variables into uncorrelated, ii) a methodology for 
finding linear combinations of variables with large or small variances and iii) a data 
reduction technique. Although all of them seem to be a good explanation of what PCA 
does, it is important to mention that FA shares all these characteristics, so we need a more 
specific definition.  
 
The intuition behind PCA is very simple and can be explained with the aid of figure 6. 

Figure 6. PCA graphically 
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Panel A shows a sample of a random vector X composed of two random variables X1 and 
X2. The perpendicular lines to the axis define their respective variations. A point is 
uniquely defined by an order pair of the form (x1,x2). Panel B, on the other hand, shows a 
rotation of the axes X1 and X2 to a new set of variables U1 and U2 forming an orthogonal 
basis. Notice that under the new basis, the variation in U1 is larger than under X1, and 
conversely the variation of X2 is larger than that of U2. Furthermore, U1 explains almost 
all the variation of the sample points and if the variance on U2 is “white noise”, then it is 
redundant and we can get rid of it. The latter explains why PCA is a data reduction 
technique. 
 
In the case of R2, it might not be necessary to reduce the number of variables but if 
instead, a phenomenon is explained by let’s say 25 variables or more; then it might be 
convenient to use PCA or another technique. However, one of the main drawbacks of the 
methodology is that if for instance the variables X1 and X2 are respectively inflation and 
consumption, there is not straightforward interpretation of U1.  
 
I will follow Jolliffe (1986) in the definition of PCA because of its simplicity. Let X=(X1, 
X2,…, Xp) a p-random vector with a known variance-covariance matrix Ψ and E(X) = 0, 
where E is the expected value of the random vector X and 0 is a zero vector. The 
objective is to maximise the variance of a linear combination α1 ´X (α1 ∈Rp); however the 
problem is not well defined yet, because it is possible to make this variance arbitrarily 
high for an arbitrary α1. Imposing the normalisation constraint that α1 ´α1 =1, then we 
have 
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=
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']'[VarMax X
  (14) 

 
Jolliffe (1986) solves the problem through a Lagrangean4 

)'(' 11111 1 ααλαΨα −−=L   (15) 
 
Taking the first derivative of equation 15 with respect to α1  and setting it equal to zero, 
yields 
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111
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∂
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α
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   (16) 

 
from equation 16, α1  reveals to be an eigenvector of the variance-covariance matrix Ψ, 
while λ1 is its corresponding eigenvalue. Furthermore, from equation 16 it is easy to 
calculate the variance of α1 ´X 

111111 0 αλαΨαλαΨ =⇒=−   (17) 
 
multiplying both sides on the left by α1 ´ 

11111 αλααΨα '' =     (18) 
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which is what we wanted to maximise. By using the normal condition (α1 ´α1 =1), we have 
that the maximised variance of α1´X is equal to the characteristic root λ1. 
 
The same procedure can be repeated i-times with the additional condition that α i must be 
orthogonal with the i-1 previous characteristic vectors of Ψ. For the case of i=2, this is 
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  (19) 

 
Equation 19 requires at most solving a 2x2 system of equations. Still α2 is a characteristic 
vector of Ψ and λ2 is its second largest eigenvalue. Flury presents a generalisation for the 
case in which there are not multiple roots (λ1> λ2>…….>λp).  
 
Therefore, we define the i-th component of X, Ui as  

Xu 'ii α=     (20) 
 
In general, if the columns of a matrix A are the characteristic vectors αi of Ψ, then its 
components are 
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It is usual to arrange the columns of A=(α1,  α2, …, α p), such that α1  is the characteristic 
vector corresponding to the largest eigenvalue λ1 , α2  is the eigenvector corresponding to 
the second largest λ2  and so on so forth. Additionally, in some of the references the 
authors refer to the characteristic vectors as the components of the covariance matrix. I 
will use both indiscriminately. 
 
PCA has some important properties that I will just enlist in the next section. Some of 
them will be useful in subsequent sections.  
 
4.1 Properties of Principal Component Analysis 
 
First is necessary to make some definitions. If Ψ is symmetric matrix, we define its 
spectral decomposition as 
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where A as defined above, and Λ is diagonal matrix with λi entries in its diagonal. We 
define total variance of a random vector X as the trace of Ψ, its covariance matrix, such 
that: 

)(trtotal Ψσ =2  
)A'A(tr Λ=  

)(tr Λ=  

∑∑
==

==
p

i
i

p

i
i )U(Var

11
λ    (23) 

 
which is possible because the columns of A are normalised and uncorrelated and Λ is 
diagonal. By the same token, generalised variance can be defined as 

)det()det(gen ΛΨσ ==2    (24) 
 
Total variance and/or generalised variance can be used as rules for selecting a number of 
components to retain. From the definition of PCA and equations 22, 23 and 24, the 
following properties of PCA apply to a population as well as a samples. Let Ψ the 
covariance matrix of the p-random vector X then 
 
Property 1 
In order to maximise the explained variance of a random vector, we have to select the 
first q components of Ψ. 
 
Property 2 
If we wish to predict each random variable Xj in X, by a linear function of Z, where Z is 
as before, then if σ2

j is the residual variance in predicting Xj from Z, i.e.; the variance not 
explained by any subset of q components, then Σσ2

j over j=1,..,p is minimised if B = Aq.  
 
This property means that from the q principal components Z, we can recover the greatest 
amount of variation of the original random variables Xj. In other words, the residual 
variance is minimised by the principal components with respect all the possible linear 
combinations of X.  
 
 
 
Property 3 
The following property is named as of sphericity, and a sketch of a proof is presented. Let 
us consider the family of ellipsoids given by 

k' =− XX 1Ψ     (25) 
 
where Ψ−1 , is the inverse of the variance-covariance matrix of X and k is an arbitrary 
constant. As per the definition of principal components we have Z=A´X, and because the 
columns of A are orthonormal, then multiplying both sides of the expression by A, we 
have AZ=X. Substituting the latter in equation 25 yields 

k)'( =− ZAZA 1Ψ     (26) 
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By using the spectral decomposition of the variance-covariance matrix and knowing that 
the characteristic vectors of Ψ-1 are the same than those of Ψ, and that the characteristic 
roots of Ψ-1 are the reciprocal of those of Ψ, equation 26 becomes 

k')'( =− ZAAAZA 1Λ    (27) 
 
it is possible to simplify 27 with the orthonormality of A,  

k' =− ZZ 1Λ     (28) 
 
which is the canonical form of ellipses in p-dimensional space with main axis defined by 
the principal components Z. This property will be use to estimate the number of 
components to retain for the analysis. 
  
Evidently, if all the characteristic roots are equal, then equation 28 represents and sphere 
in a p-dimensional space. Sphericity imposes several problems for statistical inference, 
one of them is named as redundancy or multi-collinearity of the data,  
 
 
4.2 Statistical Inference in Principal Components 
 
Statistical inference in Principal Components has the drawback that it assumes that the 
random vector X is multivariate normal with mean µ-vector and covariance given by the 
matrix Ψ.  
 
We start with the assumption that X~Np(µ,Ψ) is a multivariate normal random vector 
with mean µ and covariance matrix Ψ . Usually, under normality, the unbiased estimator 
of the mean and variance are: 
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Starting from the unbiased estimator the Ψ, we know that the distribution of S is Wishart 
with n degrees of freedom. 

)n,n(W~ p
ΨS  

 
From this distribution, the Likelihood function of the covariance matrix Ψ is given by: 

)S
n

(etr*)(det*C)(L /n 12

2
−− −= ΨΨΨ   (30) 

 
where C is a constant which does not depend on Ψ, and etr is the exponential function of 
the trace of a matrix. Maximising 30 is equivalent to minimising the following function g 

)(LlogClog)(g ΨΨ 22 −=    (31) 
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substituting L(Ψ) in 31 and simplifying 

)(tr)(log(detn)(g S1−+= ΨΨΨ    (32) 
 
and by using the spectral decomposition of Ψ we write 

)A'A(tr)A'A(log(detn)(g S1−+= ΛΛΨ   (33) 
 
notice that A is orthonormal and that the log of the determinant of Λ is equal to the sum 
of the log of each λi, henceforth we can simplify 33 even more 
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Equation 34 is the equivalent expression for the Likelihood function for estimating the 
parameters of a covariance matrix. A similar version will be derived latter for obtaining 
the maximum likelihood estimators for the case of Common Principal Components. 
 
Introducing Lagrange multipliers for the constraints αj´α j=1 in 34 and differentiating it 
with respect to λm and αm, yields the following system of equations 
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and these three conditions hold if and only if5 
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a
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     (36) 

 
where lm and am are respectively the eigenvalues and eigenvectors of S, the variance-
covariance matrix estimator of Ψ. Therefore, equation 36 says that the MLE of the 
characteristic roots and vectors of Ψ are the characteristic roots and vectors of S. 
 
Flury’s book (1988) explain in detail how to get the distribution (mean and variances) of 
these estimators. Again if X~Np(µ,Ψ), S~Wp(n, Ψ/n) and λ1>λ2>…..>λp, then 
asymptotically 

i) the characteristic roots l, of S, are independent of all its characteristic 
vectors a. 

ii) l’s and a’s are jointly normally distributed. 
iii) estimators are unbiased. E(li)=λi and E(ai)=α i. 
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The importance of these properties is that we are able to test sphericity of the last q 
characteristic roots. Furthermore, we can formally test for the contribution of each and all 
of the components to the total variance of the sample.  
 
The test for sphericity of the last q components, consists in testing for equality of the last 
q characteristic roots, H0: λp-q+1=λp-q+1=…..=λp. Using MLE it is possible to derive that 
the value which maximises the likelihood function under the null H0 is  
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On the other hand, by substituting 36 in 30, we have that the value that maximises the 
likelihood function in the case of p different roots is 
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Therefore we can use the result that –2(Log (LΨ)-Log (S)) is a χ2 with (q(q+1)/2)-1 
degrees of freedom. The likelihood ratio test is then 
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The following result is useful for calculating the contribution of a subset of characteristic 
roots to the total variance of a covariance matrix. Let w such that 
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Obviously, w is the proportion of the total variance explained by the last q components. 
By using the distribution of the λ’s (36a), it is possible to infer 
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is distributed N(0,1). So if we substitute λ, by its corresponding estimators, we can 
estimate the percentage of variance lost as a consequence of eliminating the last q 
components. 
 
 
4.3 Comparison between PCA and FA 
 
At the beginning of section 4.1, the intuition behind PCA was described as a rotation of 
the original basis in order to get a set of components such that the first one explains the 
larger proportion of the variance of a p-random vector X.  
 
On the other hand, factor Analysis starts with the model 

n,,iFFFr ikikiiii ΚΚ 1112211 =+++++= −−

−

ελλλµ  (42) 
 
where µ is the expected value of the variable rt, Fk stands for the kth factor, λ’s are the 
factor loadings and ε  is the specific risk. Equation 42 gives us the first difference between 
PCA and FA. Whereas in FA we pre-specify the number of factors we require for 
explaining the variation of r, in PCA we calculate as many factors as number of variables 
and then we decide the number to retain.  
 
The model is not complete until we impose the conditions of a linear model  
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notice we have changed to matrix notation. The first two are only normalisation of 
variables whereas the last three are the conditions of normality and orthogonality between 
errors and factors. If we set R equal to the difference between r and µ and Λ as a matrix 
of loadings λi j, then equation 42 in matrix notation is 

εΛ += FR      (43) 
 
Calculating variance of both sides of 43 yields 

???S += '      (44) 
 
where Σ is the total variance of R and Ψ is the variance of the error term in equation 43. 
Equation 44 gives us the second main difference between PCA and FA. While the 
objective of PCA is to get linear combinations of A´X that maximises the diagonal of Σ , 
FA’s objective is the off-diagonal elements. In equation 44, Ψ is diagonal so the term 
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Λ´Λ accounts for all the variation of the off-diagonal elements of Σ, but notice that Λ´Λ is 
the variance of ΛF, which are the variables of interest for FA.  
 
There is another difference. In general, the components from a covariance matrix are very 
different to those of a correlation matrix and scale measure of the variables seems to be 
the cause6. On the contrary, the factors obtained from FA are invariant of the scale of the 
data.  
 
Sometimes the first k principal components are used as a first approximation for the 
factor loadings. Researchers used this technique named Principal Components Regression 
(PCR) in order to eliminate multicollinearity. As it was mentioned before, the principal 
components are constructed in such a way that they are orthogonal; consequently, if we 
want to explain the variation of Y by using a p-random vector X, highly collinear, then 
we can substitute the original variables for the orthonormal components U=A´X.  
 
However, this procedure has problems; PCA does not say anything about the strength of a 
relationship among variables but for the diagonal elements Ψ of equation 44. Thus it 
might be that a subset of PC’s, completely fail in accounting for the variability of the 
dependant variable Y. A good explanation of some problems using PCR can be found in 
Hadi and Ling (1998). 
 
On the other hand, FA sometimes uses a set of PC’s for rotating the factor loadings in a 
desired direction. For example, Knez, Litterman, and Scheinkman (1996) followed a 
similar approach in their paper “Common Factors Affecting Money Market Returns” 
(1996). Firstly, the authors obtained a set of factor loadings for explaining money market 
returns using an iterative methodology based upon maximum likelihood estimation. 
Secondly, they estimate the unknown factors throughout the construction of portfolios 
and finally they rotate the loadings in order to make the factors consistent with the 
components of the 30-year zero-curve.  
 
 
5. Results of the PCA over the yield curve in Mexico 
 
From the yield curves, 15 points were chosen corresponding to interest rates maturing at 
1, 7 and 15 days and from 1 to 12 months. 
 
An equal number of components were extracted from the 15 point of the yield curves 
mentioned above.  In addition to the components for the whole period, I also obtained the 
components of the four periods A, B, C, D mentioned in sections 2.2 and 3.1.  
 
Before we go onto the PCA, I would like to show the result of testing normality and some 
basic trends in the series. 
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5.1 Principal Component Analysis for the Whole Period 
 
The correlation matrix of table 4 corroborates what we have seen in figure 1, regarding 
the relationship among the interest rates, i.e., there is a strong relationship among all the 
variables. Actually, every rate is highly correlated with the subsequent one. With some 
exceptions, correlation between rates decreases with maturity, and for instance, the 
correlation between the one-day interest rate and the seven-day rate is 0.995 while the 
correlation between one day and 360 days is 0.886. This trend is similar to the one 
encountered by Barber and Copper for the United States experience. 

 
Table 4 Interest rates correlation matrix for the whole period 

1 day 7 day 15 day 28 day 2 month 91 day 4 month 5 month 182 day 7 month 8 month 9 month 10 month
Rate

1 day 1.000   
7 day 0.995   1.000   
15 day 0.979   0.994   1.000   
28 day 0.954   0.978   0.995   1.000   
2 month 0.934   0.961   0.980   0.991   1.000   
91 day 0.923   0.947   0.964   0.977   0.996   1.000   
4 month 0.912   0.936   0.953   0.965   0.989   0.998   1.000   
5 month 0.902   0.925   0.942   0.956   0.982   0.993   0.998   1.000   
182 day 0.890   0.914   0.932   0.945   0.971   0.984   0.993   0.998   1.000    
7 month 0.878   0.902   0.920   0.934   0.960   0.973   0.984   0.993   0.998    1.000   
8 month 0.867   0.891   0.910   0.924   0.949   0.962   0.975   0.987   0.995    0.999   1.000   
9 month 0.860   0.884   0.902   0.916   0.940   0.954   0.968   0.981   0.990    0.996   0.999   1.000   
10 month 0.859   0.882   0.900   0.913   0.936   0.950   0.964   0.976   0.986    0.993   0.997   0.999   1.000     
11 month 0.862   0.884   0.901   0.913   0.936   0.950   0.962   0.973   0.981    0.987   0.991   0.995   0.998     
360 day 0.866   0.887   0.902   0.913   0.937   0.950   0.960   0.968   0.974    0.978   0.981   0.985   0.991      

 
Although it is not shown here, if we consider the periods A, B, C and D separately, the 
correlation among the interest rates is not as strong as it is for the whole period. For 
instance the correlation between the one-day interest rate and the 360-day rate for period 
B is 0.616 which is lower to the mentioned above.   
 
Table 5 shows the characteristics roots of the covariance matrix for the whole period  The 
first factor accounts in average, for 95.5% of the total variance of the yield curve, the 
second principal component accounts for 3.35% percent of the variation whereas the third 
one explains 0.73%. Therefore, the three first principal components explain 99.6% of the 
variance of the rates. Considering the differences between the economies of Mexico and 
United States, the data period and series, etc. these results are very different to those 
found by Knez, Litterman and Scheinkman (1996) mentioned in section 1 in which the 
first three factors explained 86% of money market returns.  
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Table 5. Characteristic roots of the covariance matrix 
Sample % % Rescaled % %

Component Variance explained accrued Variance explained accrued
1                    3.364E-02 95.51         95.51             14.317174   95.45         95.45         
2                    1.182E-03 3.36           98.87             0.513354     3.42           98.87         
3                    2.565E-04 0.73           99.60             0.106162     0.71           99.58         
4                    8.905E-05 0.25           99.85             0.035813     0.24           99.82         
5                    5.229E-05 0.15           100.00           0.027489     0.18           100.00       
6                    7.178E-09 0.00           100.00           0.000003     0.00           100.00       
7                    1.242E-09 0.00           100.00           0.000001     0.00           100.00       
8                    9.446E-10 0.00           100.00           0.000001     0.00           100.00       
9                    9.237E-10 0.00           100.00           0.000000     0.00           100.00       

10                  8.928E-10 0.00           100.00           0.000000     0.00           100.00       
11                  8.431E-10 0.00           100.00           0.000000     0.00           100.00       
12                  8.141E-10 0.00           100.00           0.000000     0.00           100.00       
13                  7.966E-10 0.00           100.00           0.000000     0.00           100.00       
14                  7.618E-10 0.00           100.00           0.000000     0.00           100.00       
15                  7.281E-10 0.00           100.00           0.000000     0.00           100.00        

 
 
Yet, it is more similar to Barbel and Copper’s paper. In their paper the three first 
principal components explain 97.15% of the total variation of bond returns; however, the 
contribution to the variance is very different. In BC paper, the first component accounts 
for 81%, the second for 12% and the third for more than 4%.  
 
Notice the sample variance values in table 5. They are at most of order two (o(2)). 
Actually, covariance among variables are at most of the same order, and the covariance 
matrix is very close to be singular, which is corroborated by the fact that, its determinant 
is equal to 1x10-106. 
 
Regarding the components, the first five eigenvectors of the variance-covariance matrix 
for the whole period are shown in table 6. 

Table 6. Five first Eigenvectors - Whole Period
1 2 3 4 5

Time to maturity
0.00274 0.278 (0.465) 0.459 (0.414) 0.107
0.01918 0.282 (0.407) 0.242 (0.057) (0.039)
0.04110 0.285 (0.337) 0.007 0.289 (0.169)
0.07671 0.289 (0.246) (0.242) 0.534 (0.214)
0.16667 0.293 (0.098) (0.399) 0.164 0.132
0.24932 0.289 0.001 (0.375) (0.183) 0.295
0.33333 0.278 0.080 (0.287) (0.298) 0.192
0.41667 0.265 0.142 (0.179) (0.287) (0.000)
0.49863 0.253 0.191 (0.072) (0.223) (0.179)
0.58333 0.241 0.229 0.031 (0.132) (0.304)
0.66667 0.230 0.254 0.119 (0.035) (0.338)
0.75000 0.222 0.266 0.190 0.062 (0.268)
0.83333 0.216 0.265 0.240 0.151 (0.076)
0.91667 0.213 0.249 0.266 0.227 0.247
0.98630 0.213 0.226 0.269 0.279 0.627  

 
By using the components as coefficients, we can illustrate the interpretation of the 
characteristic vectors in the following way. As per the orthogonality of the matrix of 
components, equation 21 can be reversed in order to express the interest rates as a linear 
combination of the scores U. 
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XAUXAA'AUXAU =⇒=⇒= '   (21a) 
 
According to 21a, the equation explaining changes (see first row in table 6) of the short 
rate is 
 

tt,t,t,t,t,t,. .U.U.U.U.r ε++−+−= 54321002740 10704140459046502780  (21b) 
 
Thus, a unit increase in the component U1 causes the interest rate to move up 0.278 units 
or 27.8 basis points; a unit increase in the component U2 causes the rate to move down 
0.465 units or 46.5 basis points and so on. This is not the whole truth, the coefficients of 
the components Uj must be rescaled by the variance explained for the respective 
characteristic root λj. Thus by re-scaling the coefficients, we would have that the correct 
equation would be 
 

tt,t,t,t,t,t,. U.U.U.U.U.r ε++−+−= 54321002740 0140071135029509430  (21c) 
 
According to table 6, it is clear that the first component causes a parallel shift of the 
whole yield curve. An increase in the second component makes the rates on the short-end 
of the curve to decrease whereas the rates on the long-end increase, consequently, the 
whole curve becomes steeper. The third component moves the rates such that the yield 
curve becomes convex. The fourth one twists the curve, and so on. These are the “level”, 
“slope”, “curvature” and so on, classification mentioned the introduction. 
 
Figure 9 plots the three first rescaled7 factors. It illustrates graphically what I said in the 
previous paragraph. For every standard deviation change in the curve, roughly 95% is a 
parallel shift (eigenvector 1) and the remaining change is explained by changes in the 
slope and curvature.  A similar graphic can be found in Barbel and Copper. 
 
 

Figure 9. Three first eigenvectors-rescaled. 
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The inner graphic shows that the first eigenvector is not as flat as it seems and though 
component 1 shifts the curve, it does it in different proportions. This shape is similar to 
the findings of Knez, Litterman and Scheinkman (1996). 
  
Why are these eigenvectors so important? Because knowing them allow us to immunise a 
portfolio against changes in the yield curve in different directions. I will not go in-depth 
to explain how the eigenvectors or directional vectors can be used to immunise a 
portfolio in several directions, the papers by Reitano and Barbel and Copper explain step 
by step and including examples how to do it. Instead, I rather ask, what would be the 
effect in a portfolio if the directional vectors change constantly through time? If it is the 
case, it would be interesting to estimate the potential earnings/loses derived from a 
change in the characteristic vectors or even from changes in characteristic roots.  
 
Picasso could have signed figure 10 and probably he would named it as “A Turbulent 
History” or similar. Instead, figure 10 plots the original observations but using a new 
basis defined by the components U1 and U2, the 2 first principal components.  

Figure 10. A Turbulent History 
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We can repeat the story of section 2, but getting more insight of the overall situation. The 
figure on the top of the left, shows how the Mexican economy was recovering from the 
“Tequila crisis of 1995” (period A). At point 1, we are in June of 1996. Remember this 
was a time of volatility, this can be inferred from the variation in both directions. Below, 
we will see that in this period the variance explained by the second component is larger 
than 30%. 
At point 2 on the top-right, we are in 1997 (period B) and the fluctuations are less 
significant than in the previous paragraph. Now, it seems that component one explains a 
larger proportion of the total variation of the yield curve. When uncertainty decreases, 
component 2 become less important. 
 
At point 3 in the bottom-left, the fluctuations start becoming larger and larger but notice 
that initially it happens only in the direction of the second component. Suddenly 
fluctuations in the direction of the first factor explode. Although component 2 reacted 
first, component 1 moves wilder. Again, component 1 regains its influence on the total 
variation of the interest rates. This is the period of the Samba crisis (period C). Finally, at 
point 4 (period D), we are in the second quarter of 1999 and the calm comes back.  
 
Speculating with these ideas, the second component could be the “market expectations” 
factor. It starts fluctuating when “rumours” of a crisis fulfils the environment as 
previously to Brazilian crisis. Also, it goes back to stability more gradually as it was the 
case in the recovering period of the Tequila crisis.  
 
On the other hand, component 1 “accommodates” itself according to expectations. It 
reacts later and it might be named as the “stabilisation or governmental instrument” for 
lessening crises.  
 
Whereas component 1 could be useful for investigating money supply equations, 
component 2 might be helpful for testing rational expectations. It would be interesting to 
look at the plot between factors 1 and 3 and between factors 2 and 3, but for the sake of 
space, this is not done here. 
 
Notice that by making this analysis we implicitly assumed that the components remain 
the same for the whole period but the total variance explained for each factor 
significantly changes through time. Is it possible that the directional vectors remain 
“constant”? Let us find out.  
 
 
5.2 Principal Component Analysis for sub-periods 
 
This section will go through the Principal Component Analysis for periods. but in 
addition, it will present the results of tests for selecting the number of components to 
retain.  
 
According to table 7, the volatility in periods A and C is higher than in B and C. The 
contribution of the components to this volatility importantly changes. Looking at period 
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A, the first component accounts for 61% and the second for a 35% of the total variance, 
while in period C, the proportions are 91% and 6.5% respectively. It seems period D is 
very similar to C and it might be that some sequels of the Brazilian crisis remain.  

 
Table 7. Variance of each period - Eigenvalues 

Variance % Variance % Variance % Variance %

5.82E-03 60.89        3.32E-03 82.73        2.20E-02 91.40        3.22E-03 87.84        
3.36E-03 35.16        4.78E-04 11.90        1.57E-03 6.52          3.52E-04 9.60          
2.85E-04 2.98          1.29E-04 3.20          3.29E-04 1.37          5.67E-05 1.54          
5.85E-05 0.61          5.42E-05 1.35          1.45E-04 0.60          3.05E-05 0.83          

3.40E-05 0.36          3.30E-05 0.82          2.68E-05 0.11          7.00E-06 0.19          
3.39E-09 0.00          1.54E-09 0.00          4.64E-09 0.00          1.34E-09 0.00          
1.28E-09 0.00          9.40E-10 0.00          1.45E-09 0.00          1.09E-09 0.00          
1.11E-09 0.00          9.31E-10 0.00          1.09E-09 0.00          9.81E-10 0.00          

1.01E-09 0.00          8.63E-10 0.00          1.03E-09 0.00          9.60E-10 0.00          
9.80E-10 0.00          8.55E-10 0.00          9.07E-10 0.00          7.80E-10 0.00          
9.04E-10 0.00          8.06E-10 0.00          8.50E-10 0.00          6.51E-10 0.00          
7.41E-10 0.00          7.76E-10 0.00          7.09E-10 0.00          5.59E-10 0.00          

6.04E-10 0.00          7.29E-10 0.00          6.57E-10 0.00          5.11E-10 0.00          
5.72E-10 0.00          7.00E-10 0.00          5.76E-10 0.00          4.12E-10 0.00          
4.96E-10 0.00          6.45E-10 0.00          4.97E-10 0.00          3.55E-10 0.00          

Period A Period B Period C Period D

 
 
Notice the values in table 7 are consistent with what we have seen in figure 10. In period 
A volatility on the direction of the second component is larger, while in period C, the 
influence of the component 1 increases substantially. Other way of looking at the same 
information is through the Scree.  

 
Figure 11. The Scree – Different periods 
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Despite the marginal contribution of the third component still plays a role in each period. 
Its contribution is very similar in periods A and B, i.e., of the order of 3%. Although in 
period C its contribution was reduced to 1.37%, at period D it starts to become more 
influential. 
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How many components should we select? From table 7 and figure 11, it seems we do not 
need more than three components to explain an important share of the total variance of 
the yield curve. What does it mean that the others are close to zero? What are 
consequences of sphericity in the last 12 eigenvalues? 
 
Jolliffe (1986) talks about four different ways of selecting components: a) cumulative 
percentage of total variation, b) size of variances of principal components, c) the Scree 
graph, d) the number of components with unequal eigenvalues. 
 
Whereas rules a, b and c are ad-hoc rules base on the definition of PC, rule d seems to be 
more statistical. For instance, we could have decided “a-priori” that we would use a 
number of components accounting for more than 95%, i.e., rules a and c. Under these 
rules we would have retained components 1 and 2. on the other hand, if the decision rule 
were to use all the components with a contribution larger or equal to one percent, i.e., rule 
b, then three components would be selected.  
 
We could have tried to test if the eigenvalues of a covariance matrix are equal to zero. 
Let’s try. From the distribution of eigenvalues and eigenvectors of section 4.1.2, we know 
that the eigenvalues of the covariance matrix are multivariate normal with the following 
parameters 
    E(lm)=λm, 


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  (36a) 

 
Under the null (H0. λm=0) , we want to test that the m-th eigenvalue is equal to zero 
against that it is different. We set the statistic 
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Unfortunately, the statistic 45 will never “accept” H0 (unless n<4) because an implicit 
assumption for calculating the distribution is that the eigenvalues of the covariance 
matrix are all different to zero; thus we can not perform this kind of tests. 
 
Rule d is often named as the Bartlett test for sphericity. Sphericity imposes several 
problems to PCA, firstly, although the space defined for the components is orthogonal it 
is not unique, secondly, multicollinearity or data redundancy and thirdly, sphericity 
makes statistical inference very complicated because as I mentioned before statistics are 
derived from the assumption that the eigenvalues are all different. 
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Bartlett’s test aim is to identify a subset of components with low or none contribution to 
the explained variance in order to eliminate them. I applied the test for sphericity to the 
last components using the statistic given by equation 39 
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Table 8. Bartlett’s sphericity test results. 

Whole A B C D
period

q 8 9 9 8 9

χ−squared 23.50                56.10              27.13              45.01              54.38              

df 35 44 44 35 44

p-value 0.93070            0.10437          0.97856          0.11977          0.13582          

 
 
According to table 8, at 10% significance level, we can not reject sphericity in the last 9 
components for periods A, B, and D and sphericity in the last 8 for periods C and the 
pooled data too. Under sphericity test we would have to retain six or seven components in 
order to explain 100% of the variation of the original series. However, the problem with 
the Bartlett test is that it tends to retain more PCs than are necessary. Thus, we need to 
look for another way out. We define the rule that we will retain the first three components 
if the statistical contribution of the last 12 components is less than 5%. According to 
equation 41,  
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where as we saw, w is the combined contribution of the last q eigenvalues. The null 
hypothesis is that the last q components account for at least 5% of the variation of the 
series. Table 9 shows the result for a w equal 5%. 
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Table 9. Lost Contribution of the total variance (w) because of eliminating the last 12 components 
 

Whole A B C D
period

q 12 12 12 12 12

w 5% 5% 5% 5% 5%

Ζ−statistic 6.09 2.87 2.54 2.53 1.82

p-value 0.00000            0.00205           0.00560           0.00567           0.03438            
 
 
At the 5% significance level, we are sure we do not lose more than 5% of the total 
variance by just selecting the first three components. All these tests have a lot of puzzles, 
which Jolliffe (1986) explains in his book in chapter 6; nevertheless, I just wanted to 
illustrate some possible “formal” tests for retaining an appropriate number of 
components. 
 
Now let’s turn up to the components. Figure 12 contrasts the first three components for 
the four periods and the pooled data.  
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Figure 12. Comparison of the components 
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Components 1 and 3 seem to behave differently in each period whereas component 2 is 
more stable. Regarding component 1, the behaviour of the short-end wildly changes from 
one period to another. Mention apart deserves period A, which is totally different to the 
others. The interpretation of the level component still applies since changes in this 
component provoke quasi-parallel shifts in the whole curve. Notice that regardless of the 
period, component one seems to keep inside a target zone which in average goes from 
0.20 to 0.30; is there any relationship with mean reversion?  
 
Regarding component 2, notice the similarity in all periods. The interpretation of this 
component is the same that above since given a positive shock to this factor, the short-
end of the yield curve decreases whereas the long-end grows, i.e., the yield curve 
becomes steeper.   
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Finally, component 3 seems more difficult to interpret. It changes the curvature of the 
yield curve, there is no doubt; nevertheless it does it in very different fashions. For 
instance in periods A and B, a positive change in the component causes the short-end and 
the long-end of the yield curve to go down whereas the middle rates go up. On the other 
hand, in periods C and D, excepting for the very short rate, whereas rates in the short-end 
decrease, rates in the middle and long-end increase. Again, component 3 in period A 
behaves in a completely different fashion that in the other subperiods, whereas period B 
is different to C and D only in sign. 
 
It seems that only component 2 could be common to all periods. In addition, we have 
seen that the interpretation of the components is the same that the one proposed by 
Litterman and Scheinkman (1988); nevertheless, that does not mean that they do not 
change through time but, how do we test for changes in characteristic vectors and roots? 
Common Principal Component Analysis (CPCA) answers the question, however as we 
will see, it is a methodology computationally intensive; hence, I explore other 2 possible 
alternatives. First, let us go through the intuition and theory of CPCA. 
 
6. Common Principal Component Analysis (CPCA) 
 
Let Ψ1 and Ψ2 two variance-covariance matrices. By the spectral decomposition of a 
covariance matrix presented in section 4.1.1, we can represent both matrices as the 
product of their characteristic vectors and roots 
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Let us contrast 22a by proposing the following model. 
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Model 48 contrasts with 22a in that it allows the characteristic roots to be different, 
whereas the characteristic vectors have to be equal.  
 
In addition to 48, there are other 3 types of relationship between covariance matrices. I 
will just mention all of them. The first relation among covariance matrices is equality of 
all Ψi.. It does not require more explanation that all the elements of both matrices are 
equal. 
 
The second level is that of proportionality and can be represented as follows 

k,,,iii Κ211 == ΨρΨ    (49) 
 
which obviously means that the all the elements of a matrix are proportional to the 
elements of the others. 
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The third level is CPCA, which has been already mentioned and finally we have Partial 
Common Principal Component Analysis (PCPCA. By using the spectral decomposition 
of a covariance matrix PCPCA is 
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q

j
jjjii Κ21

11
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+==
ααλααλΨ  (50) 

 
In equation 50 the first q principal components are common and the others p-q are 
specific to the k matrices. 
 
6.1 Maximum Likelihood Estimation of CPCA 
The model is 

Hcpc: k,,i' ii Κ21== AA ΛΨ    (48a) 
 
if we multiply both sides of 48b by A to the left and A´ to the right, in order to take 
advantage of the orthonormality of the pxp matrix of components, we have  

   k,,i' ii Κ21== ΛΨ AA    (48b) 
 
where Λi are diagonal matrices which elements are the specific eigenvalues. The intuition 
behind 48b is that if we want to test CPC, we need to find a square matrix A, which 
simultaneously diagonalises k symmetric matrices. 
 
For testing 48 as, as in section 4.1.2, we start with Si, the unbiased estimator of Ψi,  
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where ni is the size of the i-th sample. Assuming independence of the covariance matrices 
we form the likelihood function as  
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Equation 51 is the multivariate version of equation 30. Again, the maximisation of the 
likelihood function can be transformed to a minimisation problem ending with the 
following expression 
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which is equivalent to equation 34. By solving 52 we get the following system of 
equations 
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53 is the k-dimensional equivalent system to 35; however the solution of this system is 
not straightforward and Flury (1988) develops in his book an algorithm for solving it. The 
algorithm is denominated FG in honour to Flury and Gautschi who proposed it. 
 
Flury points out that a unique solution always exists thanks to some technical 

optimisation conditions. Denoting A
∧

 and iΛ
∧

 as the solution to 53 then we get the 
maximum likelihood estimator of the covariance matrices 

   k,,i' ii Κ21==
∧∧∧∧

AA ΛΨ  
 
Substituting in 51, the value that maximises the likelihood function is  
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This is the restricted model, on the other hand, by substituting the unbiased estimator of 
Ψ (S) in 54 gives the unrestricted model. Thus, the log-likelihood ratio for testing Hcpc. is 
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which is distributed as χ2 with (k-1)p(p-1)/2 degrees of freedom.  
 
I will close this section by saying that there are explicit solutions for proportionality and 
PCPCA by using the MLE methodology. It is important to mention that I could not find 
an exact algorithm to calculate the estimators in the case of PCPCA; moreover, 
comparing a subset of components and allowing the others to be specific, just have the 
effect of complicating the calculations.  
 
 
6.2 Cross-Approach for Illustrating CPCA 
 
Denote AA

3, AB
3, AC

3, and AD
3 as the first three eigenvectors of the covariance matrices 

in each period. In addition, let XA, XB, XC, and XD the sample observations where the 
subscripts represent the periods A, B, C and D. We say that the components of two 
periods are equal if and only if 

3333
AAAB '' XAXA =    (56) 

 
equation 56 simply means that if we applied the components of one period to the data in 
other, then the components are common if and only if the cross-plots are lines with a 
slope equal to one. Notice that this is not a formal but a graphical way of checking if a 
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subset of components is common for two periods. In our case, we have 6 different 
combinations of periods and if in addition we want to compare 3 components, thus we 
have in total 18 graphs.  I will briefly comment over the relationships. 
 
a) Periods A and B 
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The slope of the first component is close to 1, suggesting that this component is equal for 
periods A and B.  
 
On the other hand, though there is a strong linear relationship in components 2 and a 
slight one in component 3, the value of the slope does not allow us to accept the 
hypothesis that they are common for both periods.  
 
b) Periods A and C 
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Firstly, the linear relationships is not as strong as above; however it seems in the slope of 
components 1 and 2 is close to 1 and thus it does not reject the hypothesis that both are 
common for periods A and C. 
 
There is a weaker and negative linear relationship in the third component, which might 
suggest that this vector alters its direction from one period to other. This is consistent 
with the relationship of the third component between periods A and C shown in figure 12.  
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c) Periods A and D 
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The slope of component one is close to 1 and thus this could suggest that the first 
component is the same in periods A and D. Graphically, it is clear that we would reject 
that the components 2 and 3 are common given their respective slopes. Again the 
relationship of component 3 is negative, meaning that this vector changes direction from 
period A to D. Notice that the cross plot of the first component shows what seems to be a 
pair of parallel straight lines and the “hole” close to the origin in the cross-plot of 
component 2, I will mentioned my interpretation below. 
 
d) Periods B and C 
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It seems none of them are common. The slope of the straight line of component 1 is close 
to 3 or more, whereas in the case of component 2 it is close to 2. Component 3 still shows 
a negative relationship.  
 
e) Periods B and D 
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Again, figures 1 and 2 have slopes that could mean that the components are common. 
Component 3 has a negative slope suggesting that the vectors have opposite directions. 
 
f) Periods C and D 
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It seems that all the components could be common in this case, although the slope in the 
plot of component 3 is not exactly equal to 1.  
 
From the graphs, we can infer that components change through time; however; it must be 
mentioned that components 1 and 2 show more stability than component 3. In almost all 
the cases, there is a strong linear relationship between components in different periods. 
OLS could be helpful in determining the strength of these linear relationships and 
estimating the slopes.  
 
The “holes” and “parallel” lines, which appear in some of the figures, intrigued me. In 
order to interpret, I decided to joint the points of the plot looking for a pattern. 

 
 
 

Figure 14. “Some Holes in the Common Principal Component Analysis” 
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As it can be seen, the lines describe the path followed by the transformation of interest 
rates on time. As it can be seen, lines do not behave erratically or randomly but they 
present an ordered pattern. Holes and parallel lines could be signs of structural breaks, 
meaning that we could break the periods A, B, C and D in subsequent sub-periods. 
 
6.3 Krzanowski’s Approach for Common Principal Components 
 
Krzanowski’s idea is to find the minimum angle between the axis of the subspaces 
spanned by the eigenvectors of two (or more) covariance matrices. For instance, if we 
have two vectors a=(a1,a2) and b=(b1,b2) in R2 and the norm for each one of them is set 
equal to one, then we know that the inner product between the vectors a and b is equal to 
the cosine of the angle between them. Mathematically, 

θcos
ba
ba

=
•

    (57) 
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The decision rule is clear, if the angle θ between a and b is close to zero then the vectors 
are common. The result of calculating the angle between components for each pair of 
periods is shown in 10. 
 
 

Table 10. Angles between characteristic vectors-Comparison between periods 
AB AC AD BC BD CD

First component 0.9910 0.9644 0.9426 0.9851 0.9704 0.9815

Second component 0.9725 0.9653 0.8081 0.9959 0.9209 0.9311

Third Component 0.8500 0.8313 0.7552 0.8376 0.7625 0.7856

First component 0.13 0.27 0.34 0.17 0.24 0.19

Second component 0.24 0.26 0.63 0.09 0.40 0.37

Third Component 0.55 0.59 0.71 0.58 0.70 0.67

First component 8 15 20 10 14 11
Second component 13 15 36 5 23 21

Third Component 32 34 41 33 40 38

Inner product

θ in radians

θ in degrees

 
 
If we define a tolerance of 15 degrees in the angle between components, the conclusions 
are very similar to those in the previous section. The first component is common for 
periods AB, AC, BC, BD, CD. In addition, periods AB, AC and BC share component 2. 
Regarding component 3, the angles suggest not only that they are not common but also 
that some of they are very close to be orthogonal. 
 
This methodology has a number of drawbacks. How do we determine that θ is close 
enough to zero? Instead of 15 degrees, we could have arbitrarily set 10 or 5 and the 
outcome would have been totally different. Jolliffe mentions that though Krzanowski 
simulated some values these are not statistically acceptable. Notice that in table 11 we are 
measuring the angle between the projection of two p-dimensional vectors in R2; therefore 
we can expect that the minimum angle between two p-dimension vectors is smaller than 
that in table 10. 
 
For testing in q-dimensions, Krzanowski proposes a similar. Now the idea is to find the 
minimum angle δ, between the subspaces spanned by q-principal components. He found 
that this angle is given by 

)(cos 2
1

1
1 λδ −=    (58) 

 
where λ1 is the largest eigenvalue of the following product 
   kjD,C,B,Ak,j'' j

q
k
q

k
q

j
q ≠=AAAA  (59) 

 
where Aq

j are matrices composed of the q eigenvectors of interest in j-th period. In this 
case, if the angle is “small” then we can say that the q-components are common for both 
covariance matrices.  
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I performed the analysis for simultaneously test that the three first principal components 
are common for every pair of sub-periods. In any case, I could not reject common 
principal components in each case. However, I found that these test must be performed 
for a subset of components less than the number of variables (q<p). 
 
From the cross-approach, we already know that the third component changes through 
time, therefore I performed the analysis for the remaining two significant components, 
i.e. 1 and 2. The results can be seen in table 11. 
 

Table 11. Common principal components -minimum angle between characteristic vectors in degrees 

AB AC AD BC BD CD

Minimum 5 8 6 4 5 3
angle in degrees

 
 
If we consider 5 degrees as the decision rule, surprisingly the result is now that periods 
AB, BC, BD and finally CD share the first two components simultaneously, contrasting 
with the results of table 10 in which only AB and AC share the two first factors. This 
analysis corroborates that components 1 and 2 do not change too much.  
 
6.4 Maximum Likelihood Estimation of common principal components 
 
CPCA and PCPCA are undoubtedly the most formal way of testing common principal 
components, however they are the most difficult as well.  
 
As we mentioned in section 4.3  

k,,i':H iicpc Κ21== AA ΛΨ   (48a) 
  
is the expression for testing CPCA hypothesis, against the alternative of arbitrary 
matrices. As we have seen in section 6.1, the system of equations for the maximum 
likelihood estimation of the covariance matrix is given by   

p,,mk,i' mimim ΚΚ 11 ===
∧∧∧

ααλ S  

p,j,mmjn' j

k

i
i

ijim

ijim
im Κ10

1
=≠=









 − ∧

=

∧

∑ α
λλ

λλ
α S  (53) 





≠
=

=
∧∧

jm
jm

jm'
0
1αα  

 
 
I mentioned before that there is an algorithm developed by Flury and Gautshi for solving 
system 53. This algorithm consists in two procedures or sub-functions the outer and the 
inner procedures; the outer procedure (F algorithm) set ups the maximisation problem of 
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the likelihood test of equation 51, whereas the inner algorithm (G) is a process of 
rotation, which solves the conditions of the system 53. 
 
I implemented the FG algorithm in Matlab and although the model performs well with 
some of the examples of Flury’s book (not all), it does not converge to any solution for 
the series of interest. Anyway, the code in Matlab is attached. 
 
I tried another way for solving the problem. It is based in the idea mentioned above that 
we have to find a square matrix which simultaneously diagonalises two covariance 
matrices. 
 
 The algorithm consists of the following steps: Let Ψi and Ψj covariance matrices (pxp) 
corresponding to the ith and j-th periods. Also, let Ai and Aj, the corresponding matrices 
of eigenvectors (components). 
 
a) First, calculate the diagonal matrices using the components of the covariance 

matrices Ψk  
p,,lD,C,B,Ak' klkkk Κ1=== ΛΨ AA  

 
 where A, B, C, D are the periods, p is the number of variables in the each sample 

and Λ is a diagonal matrix of eigenvalues. 
 
 
b) Second, set up an initial solution. If  )qp.q(

)j,k(
−A  correspond to the matrix composed 

of the first q eigenvectors for the period k and the last p-q of period j, then 
multiply two covariance matrices by the same initial solution. 

     
1

1

j
)qp.q(

)j,k(j
)qp.q(

)j,k(

k
)qp.q(

)k,k(k
)qp.q(

)k,k(

ΛΨ

ΛΨ

=

=
−−

−−

AA
AA

 

 
c) Third, define diagonal constraints. For the initial solutions 1

iΛ (i=j,k), square all 
the off diagonal elements λi

m,n, and set 

∑ ∑∑ ∑
=

≠
==

≠
=
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nm
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1 1
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1 1

2 λλ  

 
d) Set up the orthogonality constraints of the component matrices. Set Orthogonali 

equal to and identity pxp matrix such that 

)qp.q(
)j,k(

)qp.q(
)j,k(j

)qp.q(
)k,k(

)qp.q(
)k,k(k

'Orthogonal

'Orthogonal
−−

−−

=

=

AA
AA

 

 
e) Using solver to minimise Objective subject to Orthogonalk and Orthogonalj by 

changing simultaneously the elements of the matrices )qp.q(
)i,k(
−A . As it can be seen 

in point d, the first q-columns are common, such that when solver iterates, it 
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automatically assigns the same values to these columns in both matrices )qp.q(
)i,k(
−A  

(i=k,j). The last (p-q) eigenvectors of each matrix are specific but they are subject 
to orthogonality conditions. 

 
I run the model for 2 and 3 common components. The results for 3 common principal 
components are not encouraging. In fact, contrary to what I said in the previous sections, 
I can not reject in any case that the components are common. This is strange if we 
consider the variability particularly in component 3. Actually, the maximum likelihood 
estimates of the common components are not convincing.  
 
The results for two common components are more reasonable. The likelihood ratio for 
testing PCPC is exactly the same that in equation 55 but with (k-1)p(2p-q-1)/2 degrees of 
freedom, where p is the number of variables, q is set equal to 2 components and k is equal 
to the number of covariance matrices to compare (2). 

∑
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 (55) 

 
The results of the likelihood ratios are the following 

Table 12. Likelihood Ratio - 2 Common Principal Components 

A B A C A D B C B D C D

Observations 134 413 134 150 134 88 413 150 413 88 150 88

χ2

df

p-value 0.9813 0.31860.0697 0.1240 0.2927 0.8822

13.93 29.9

27 27 27 27 27 27

38.53 35.61 30.48 18.65

 
 
The results of table 12 jointly with a graphical analysis of components will be discussed 
below. Notice I will plot the same components of figure 12, but in addition, the value of 
the maximum likelihood estimator of each component for every pair of subperiods. 
 
a) PCPCA-Periods A and B 
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The maximum likelihood estimators of both components seem to be a weighted average 
of the original ones. This is consistent with the findings of Krzanowski (1984) who 
establishes that if common principal component holds, not only the covariance matrices 
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but also all possible linear combinations of them have the same common components. 
However, according to table 12 it is possible to reject the hypothesis null of 2 common 
principal components at 10 % significance level.  
 
b)  PCPCA. Periods A and C 

0.15

0.20

0.25

0.30

0.35

0.00 0.20 0.40 0.60 0.80 1.00

Maturity

C
o

m
p

o
n

e
n

t 
1

MLE

A

C
-0.50

-0.30

-0.10

0.10

0.30

0.00 0.20 0.40 0.60 0.80 1.00

Maturity

C
o

m
p

o
n

e
n

t 
2

MLE

A

C

 
 
There is an erratic behaviour of the MLE of component 1 on the long-end of the curve. 
Regarding component 2, it behaves quiet nicely. Table 12 shows that we can not reject 
that the periods A and C share components 1 and 2 at 10% significance level, but the 
result is in the borderline of rejection. 
 
c) PCPCA. Periods A and D 
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MLE has a strange behaviour in the short-end of the curve. Again, component 2 has a 
nice shape. According to table 12, we can not reject the hypothesis null of common 
principal components at almost 30% significance level. 
 
 
d) PCPCA. Periods B and C and for periods B and D 
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The likelihood ratio test seems to show the robustness of the hypothesis of common 
principal components for periods B and C and for periods B and D, their respective p-
values are 0.8820 and 0.9812 that do not allow us to reject the hypothesis null at any 
significance level. The former was completely unexpected for me, because I had the idea 
that components would dramatically change from a period of stability (B) to a period of 
crisis (C), but it seems that only the variance explained by the components inmdede 
changed.  
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e) PCPCA. Periods A and C 
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The fact that we can not reject the hypothesis null of common principal components is 
subject to criticism considering the shape of the MLE of component 1. It can be seen in 
the graph for the second factor, that the MLE is very similar to the original component in 
period C. This is very suspicious because I used as an initial approximation the values of 
the components of C and it seems the algorithm did not find an alternative one. 
 
This analysis seems to give some support to the hypothesis that the first two components 
are relatively stable.  
 
Unfortunately, the results of this section are biased and I found the following drawbacks 
in the methodology applied. Firstly, the MLE is more closely related to the initial 
solution, meaning that the algorithm did not change the initial solution in most of the 
cases. I consider that neither the diagonalisation process nor the orthogolisation 
constraints of the algorithm are correct.  
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Secondly, as it was mention in section 4.2.2, the determinants of the covariance matrices 
are close to zero, which imposes numerical problem to the calculations. In fact, this is the 
case when sphericity is present. Jolliffe suggests that sphericity is a problem of 
redundancy which can be overcome by deleting some of the original variables (in our 
case some of the 15 interest rates extracted from the spline curves) and although he does 
specify some techniques for identifying them such as partial correlation among variables 
and some “iterative” methodologies, it is not clear that there is a formal way to do it. 
Remember that components are linear combinations of the original variables and deleting 
one of them could mean losing valuable information. I tried for example to eliminate 
variables highly correlated in order to eliminate multicollinearity but the results do not 
really improve and sometimes worsened. For example, we have seen that the correlation 
of the one-day rate and the seven-day rate is 0.995, by deleting the latter, the shape and 
proportion of the variance explained by the newly calculated factors change substantially, 
and even in that case the determinant is still close to zero. 
 
Finally, I have to mention again that some of the assumptions for statistical inference in 
PCA do not hold either. 
 
6.5 Final Remarks on Common Principal Component Analysis 
 
Despite all the problems mentioned, the three different methodologies, the herein so 
called “crossing approach”, Krzanowski and MLE/LR approach, partially support the 
hypothesis of common principal components for the first 2 factors (level and slope), of 
the yield curve. However, it is clear that the third component changes through time.  
 
Now it would be interesting to test stability of the variance explained for the components. 
This can be done by testing common sphericity but I did not have time (and space) to do 
it. Nevertheless, it is necessary to conduct the tests again but in a more astringent 
environment.  
 
I think that this hypothesis has important implications, particularly in hedging strategies. 
Components change, there is not doubt about, but portfolio losses can be due to changes 
in the influence of the directional vectors and not because these vectors change their 
shape or direction through time. 
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7. Conclusions  
 
The aim of this work is to estimate the principal components describing the yield curve 
for the Mexican market and testing their stability through time. The main hypothesis was 
that whereas the components, at least the most important ones, are very stable or remain 
unchanged the variance explained for them substantially fluctuates. 
 
Firstly, we have reviewed some of the principal economical events in Mexico in order to 
identify scenarios or periods. Secondly, as the money markets in Mexico are undeveloped 
and short-term oriented, it was necessary to perform a Spline interpolation in order to 
obtain more information of the yield curve. The goodness of fit of the Spline interpolation 
was measure throughout the mean square error. The results were particularly good. The 
goodness of fit of Splines was illustrated through a comparison against a Kernel method 
of interpolation, which in turn is the methodology used by the Mexican Central Bank. 
 
In the following chapter, we started with a review of Principal Component Analysis an its 
main statistical properties. A description of the components was carried out, concluding 
that the classification of components proposed by Knez, Litterman and Scheinkman, 
“level”, “slope” and “curvature” applies for the components explaining the variation of 
the Mexican yield curve. Common Principal Components and other levels of comparison 
between variance – covariance matrices were introduced in this section.  
 
Three methodologies were applied for testing common principal component analysis. The 
first one, crossing approach, allows to graphically check if components of different 
periods are the same. Krzanowski’s methodology measures the minimum angle among 
sub-spaces spanned by a set of principal components. If the angle is small “enough” 
common principal components is not rejected. Finally, MLE is a formal statistical 
technique based on the assumptions of multivariate normality and non-sphericity for 
testing common principal components. MLE is computational intensive and requires 
efficient algorithms for solving complicated systems of equations. Flury and Gautschi 
algorithm seems to perform very well for CPCA; however, it is not useful for PCPCA. 
 
The tests applied partially support the hypothesis that the first two principal components 
are generally stable. The latter could have important implications on portfolio hedging 
strategies. It is necessary to complement the analysis with a more astringent set of 
statistical test accompanied by efficient algorithms of estimation. Statistically test the 
stability of the eigenvalues or common sphericity would be another important future task. 
I suspect that if the off-diagonal elements of a covariance matrix are stable, i.e., the 
components, then the diagonal elements should be very volatile, i.e., the eigenvalues.  
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Notes: 
 
 
1This instrument was very attractive for foreign investors because of its high yield and low exchange rate 
risk. Low because although the Government did not have the obligation of paying back in dollars, there was 
a tacit promise of doing so by using the available foreign reserves. 
 
2Approx. USD20 billion left the country on the 21 of December and the following days. 
 
3Source Financial Times 26 of February, 4 and 5 of March 1999. 
 
4Whereas Flury does it by using the spectral decomposition of a symmetric matrix and some inequalities. I 
will describe the spectral decomposition of a symmetric matrix on section 4.1 
 
5It is  important to mention that we have assumed that all the characteristic roots of Ψ are different.  
 
6In addition, Jolliffe presents a good discussion of the advantages and disadvantages of obtaining the 
components either from the correlation matrix or the covariance matrix. If the variables have different scale 
measures then he recommends to use correlation matrix but the main problem is that most of the statistical 
results have been derived from covariance matrices. 
 
7As in equation 21c. 
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