ON RISK RESERVE CONDITIONED BY RUIN

V. K. Malinovskii

1. Notation and assumptions

Andersen’s risk model comes from the i.i.d. {(Y;,T;)}i>1, where

e T; are the interclaim times,

e Y, are the amounts of claims

with the probability distribution function (p.d.f.)
Byr(y,t) = P{Y1 <y,T1 < t}.

These random vectors generate the risk reserve process

N(t)
R,(t) =u+ct — ZYZ’ t >0,

where

e u > ( is the initial risk reserve,
e ¢c= (1+7)EY;/ET; > 0 is the risk premium rate,
e N(t)=max{n:> . T, <t} (weput N(t)=0if T} >1).



Ruin occurs at time s as R,(s) < 0 and the probability that ruin
occurs within the time interval (0, ] is

bt u) = P{ Jinf Ry (s) < o}.
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Introduce

Y(wit,u) = P{R,(t) <w, inf Ru(s) <0}

:P{Ru(t)<w| inf Ru(s)<0}w(t,u).

0<s<t

Evidently, 1 (+o00;t,u) = ¥(t, u).



2. Approximations for (t,u)

For + =1,2,... introduce i.i.d. random variables X; =Y, — c1;;

1=1 1=1

For the p.d.f. B(z,y) = P{X; < z,T1 < y} and for a positive solution

» of the Lundberg equation,
Eexp(»xX1) =1,

introduce an associate p.d.f. by B(dz, dy) = e**B(dz, dy).
Introduce the associated sequence {(X;,T;)}i>1 of i.i.d. random vec-

tors having the p.d.f. B(z,y), and

Introduce

e the ladder index N = inf{n : S,, > 0},
o the ladder height H = Sy,
o the ladder time point 7 = Uy .



Put 79 = EXiT? 4,7 =0,1... and
my = 50,1/171,0,

D2 = (#%1)220 — opl0p0 gLl | (510)250,2) /(51,03

1

%17170

C =

exp(— Z%[P(Sn >0) + P(S, < 0)]).

n=1
Theorem. Suppose that in the Andersen’s risk model with T > 0 the
characteristic function Bry (t1,t2) is absolutely integrable and D; > 0.

Then
lim sup [e*“9 (L, u) — CP(p, 4, p2u)(t)| = 0.
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Theorem 1. Suppose that in the Andersen’s risk model with T > 0

the characteristic function Bry (t1,t2) is absolutely integrable, D; > 0

and ET? < oo. Then, as u — o0,

sup
t>0

(1, 10) — C (@ (gny, 020 (8) — Qu(t(w))

X P (myu, D) (t)) ‘: 5(u_1/2)a

where t(u) = (t — mu)/(D1u'/?),

1

Q1(t) = 6)((3,0)@2 —1)— (

EHT_E’H2ET> (ET _ ETe > )
EH (EH)? »EH 1 —Ee*")’



and

_ = _ S \3,_ _
X(3,0) = (E(I/l’OTl . I/O’le) (1/1’0) 4

— 3E(7M0Ty — 7 X) B[ X (70T, - 771 X0)] (710) %) Dy
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3. Approximations for (w,t,u)

Put v* = EYfo, bl = EX%T{, 1,7 =0,1... and introduce

my = 210,y = ¢ — 1000
D2 = ((#%1)2520 — 2p1 0501511 ¢ (510)250.2) /(510)3.

D% — ((1/0’1)21/2’0 - 21/1,01/0,1’/1,1 4 (1/1’0)21/0’2)/(1/0’1)3,

1 .1 _
C=—m exp(—;ﬁ[P(Sn > 0) + P(S, < 0)]).

For the Normal distribution and density functions ®(, ,2)(2) and ¢, +2)(2)

introduce

9(z) =z + 90(0,1)(Z)‘I’(_0%1)(Z)-

Theorem 2. Suppose that in the Andersen’s risk model with T > 0
the characteristic function By r(ti,t2) is absolutely integrable and

0 < Dy,Dy < o0. Then, as u — 00,

t
lim  sup €%u¢(’w;t>u) - C/ So(mlu,D%u)(Z)
0

U—r 00 t>0,weER

X @ (my[t—2],D2[t—2]) (W) dz| = 0.



Theorem 3. Under the conditions of Theorem 2

E[Ru(t) | inf Ru(s) < 0] = msDyv/ug (t ‘”’”“) (1 +a(1)),

0<s<t Dl\/ﬂ
D[R, (t) | inf Ru(s)<0] = D2D1vag [ ") (1 +a(1))
0<s<t 2 D1y ’
as u — oQ.

Fig. 2. Function g(z) =z + (,0(0,1)(2)‘1’(_011)(*2)-



Remark. In the particular case of the Poisson-Exponential model
¢ = A\1+7)/p

and
e = ur/(1+7),

my = p/(AT(1+7)), m2=7A/p,
D} =2u/(N*7%) D3 =2X/p?,
C=1/1+7).

In particular, the approximation for the expectation

E[R.(t) | inf Ru(s) <0]

at time point ¢ = mqwu in this case is

V2ug(0) / /i, (1)



4. Corrected approximations and a numerical example

For the ladder index N = inf{n : S, > 0}, the ladder height H = Sy,
the ladder time point 7 = Uy and W = E(TEH — HET) introduce

N 1, ET ETe "
L7 ] “Re—»H 5 27 ] _REe—*" ] — Ee—*H’
1 E —xH E 3
g, — = _ Tte by = BW?, k= 2V

% 1 —Ee>1’
ks = ETDH — EXCov(H,T).

6k ’

The following approximation elaborates the first relation of Theorem 2.

Theorem 4. Suppose that in the collective risk model with T > 0 the
characteristic function By r(t1,t2) is absolutely integrable, 0 < D1, Dy <

oo and ET}P < oo. Then, as u — o,

up E[R,(1) | ot Ru(s) < 0]4(t, u)
0,2
104 V7
v (1 72(V0,1)2>w(t,u)
—u Vl’o t—myu t—miu t—miu
—Ge Tyo,lD“/aK Divu )%’1)( Divu ) +9"<°’1>( Divu )}



1,0

Co— vh & (t—m1u> <t—m1u>< ks
—Ce 17—
Vo’l 0,1) Dl\/ﬂ Dl\/ﬂ 2(E7‘[

1,0

_ v t—miu ET ks ET;
— Ce ""r—& 6y — 0 - —9
Ce i, ”( Diu )( > 'EH (EH)? STEY1>

p10 t—miu

_Ce_”uTW@(O,l)( D1vu >( 171\/7>

Numerical example. Assume that the (i.i.d.) amounts of claims
{Yi}i>1 and the (i.i.d.) inter-occurrence times {7;};>1 are mutually inde-
pendent and exponential with parameters 4 > 0 and A\ > 0 respectively
(the Poisson-Exponential model).

By Theorem 4, corrected approximation for

E[R,(t)| it Ru(s) < 0]4(t,w

at the time point £ = mqu is:

Ce”u@(o,n(o)(\/\/i:zg(o) - 3:(1:137:;)7- >

By Theorem 1, the approximation for (¢, u) at the time point t = mju

is:
A73/2

V2pu

Ce™ " ®0,1)(0) (1 - Q1(0)~—9(0)),



where
2+ 72 T+ 2

@1(0) = AT(1 4 7) C2)272°

These approximations yield a corrected approximation for the condi-

tional expectation

E[R,(t) | inf Ru(s) <0]

at the time point £t = mqu:

(\/@g 0= 3:5:: 2>/ (1- @ A73/29<0>)- (2)

Compare the approximation (1) and the corrected approximation (2)
to the results of direct simulation. For this, simulate N risk reserve
trajectories and calculate the mean value of the risk reserve at the time
point ¢ = miu over all those trajectories which fall below zero at least

once within time ¢t = myu.

TABLE 1: A =p =1,%t=99502, u = 500, 7 = 0.005, N = 10000

Simulation runs
1 2 3 4 5 6 7 8

# of trajectories which fall below zero 287| 327| 325| 315| 296| 278| 286| 311

Empirical mean conditioned by ruin 209| 224| 242| 220| 214| 207| 195| 222
Approximation (1) for the mean 357
Corrected approximation (2) for the mean 261

The data in this table demonstrates a reasonably good accuracy.



TABLE 2: A = p = 1, t = 499500, u = 500, 7 = 0.001, N = 1000

Simulation runs

11 2| 3| 4| 5] 6| 7| 8
# of trajectories which fall below zero 189| 213| 190| 222| 184| 227| 396| 397
Empirical mean conditioned by ruin 326| 369| 346| 339| 368| 358| 310| 335
Approximation (1) for the mean 798
Corrected approximation (2) for the mean 442

The poorer accuracy in this table is due to a smaller 7 which brings

this case within the scope of the problem of 7 — 0, as u — oo (see e.g.,

Malinovskii, V. K. Probabilities of ruin when the safety loading tends to

zero, AAP, 2000, vol. 32, 885 — 923).



