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An overview of the insurance m arket

� Presence of inadequate tools for a
com plete and effective analysis of the client

� Poor knowledge of clients

� Som e lines of business are running at a
loss in m ost of the countries (i.e. m otor
business)

� Low level of sophistication

� Cross-subsidies am ong clients
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Critical areas

� The risk increases with:

� high exposure on insurance business;

� ultim ate cost not com pletely recognized ;

� inadequate selection of underwritten risks ;

� not effective claim  m anagem ent ;

� low cross-selling level ;

� not enough em phasis on client.

� The necessary elem ents for reaching the objective “client” are:

� econom ic cost estim ation;

� lapse probability of the insured and his elasticity of dem and.

� Com petitive M arket Analysis
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The profitability varies with the risk profile
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Nowadays, too m uch attention is paid to the cancellation of “bad”
risk

…  it could be better to find the right strategies so that:

� the prem ium  be correctly calibrated on the risk;

� the econom ic cost of the client be projected;

� new “ad hoc” products be created;

� the portfolio be segm ented in order to define the m arket
niches, which destroy value.
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Pricing Strategy
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Risk M odelling: Overview of M ethodologies

� New m ultivariate techniques available which are replacing
older m ethodologies;

� These techniques represent advances in:

� quantifying the TRUE econom ic cost of writing each
policy;

� m easuring the econom ic im pact of adopting any rate plan
other than the actuarial m odel;

� understanding lapse and renewal experience;

� m arket pricing behaviour;

� in short, m anaging the business.
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W hy M ultivariate Statistical Techniques?

� M ost rating variables are correlated;

� Different variables m ay be showing the sam e underlying
effect;

� Repeated use of univariate techniques leads to double-
counting of the sam e effects;

� They can capture interactions;

� They provide m ore than a point estim ate and standard errors.
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…  looking for m ore suitable techniques

GLM : Generalized Linear
M odels
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W hat is GLM ?

� It is a statistical procedure for m easuring the effect of one
or m ore independent variables upon a dependent variable;

� Dependent variable for ratem aking are:

� frequency

� severity

� pure prem ium

� GLM  allows extrem e flexibility in m odel design:

� m ultiplicative, additive or m ixed plans

� different error distributions (i.e. Norm al, Gam m a, etc.)

� variable interactions (i.e. sex & age)
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An exam ple of G eneralised Linear M odel

This statistical approach allows us to determ ine the cross-subsides am ong the
clients and to create a theoretical rating structure, which penalizes bad clients and
favors good clients
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� Procedures for successively subdividing data into
hom ogeneous groups;

� Like GLM s, they use a dependent variable and one or m ore
independent ones;

� Results are not necessarily sym m etric;

� Im plicitly capture the natural interactions between factors;

� Produces hom ogeneous groups (i.e., a tree structure), but no
rating plan or relativities;

� Possible m ethodologies, m ost fam ous:

� CHAID: Chi-Square Autom ated Inform ation Detection

� CART: Classification and Regression Tree

W hat are decision trees?



14

A decision tree is given by a set of decisional rules for predicting a fixed dependent
variable (for exam ple, claim  severity, frequency or lapse rate)

Decision Trees: “Divide et im pera”
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Decision tree: an exam ple

1) Are you in Bonus classes?
2) Do you live in one of the provinces of zone A

Gruppo A: AG, AP, AR, BA, BI, BN, BS,
BZ, CB, CL, CO, CR, CZ, FI, FO, GE,
GO, IM, LI, LO, LT, MC, MI, MO, NA,
PA, PC, PE, PI, PO, PR, PZ, RA, RE, RI,
RN, SA, SI, SP, TE, TS, TV, UD, VB,
VE, VR, VT

Is there anyone
with age

between 18 to
25 ?

Is it a woman?

Does anyone
live in city A2?

Does anyone
live in city A1?

Is there vehicle
with less than
9 HP or more
than 18 HP?

Gruppo A2: AG, AP, AR, BI, BN, BZ,
CO, CR, CZ, FI, GE, GO, IM, LO, LT,
MC, NA, PC, PE, PI, PO, RI, RN, SA,
SI, TE, TS, TV, VE, VT

Gruppo A1: AG, AP, AR, BA, BI, BN,
BS, BZ, CB, CL, CO, CR, CZ, FI, FO,
GE, GO, IM, LI, LO, LT, MI, MO, PA,
PC, PE, PI, PO, PR, PZ, RA, RE, RI,
RN, SI, SP, TE, TS, TV, UD, VB, VE,
VR, VT

Risky client

Average client

Good client
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� Neural networks: are non-linear predictive m odels that learn
how to detect a pattern in order to m atch a particular profile
through a training process;

� It’s not necessary to split the pure prem ium  into its com ponents:

� frequency and

� severity;

� Advantages and disadvantages:

W hat are Neural Networks?

+ Usable even when relationships am ong variables are unknown

+ W ill m odel non-linearity and interaction well

 -  The solutions can not be interpreted (“Black box”?)

 -  Can take trem endous com puting power and still not   
converge to a solution
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Neural Networks are m otivated by a sim plified m odel of biological
neurones in the brain

BIOLOGICAL M OTIVATIO N: PYRAM IDAL CELL

AND THEIR M OST SIM PLIFIED M ATHEM ATICAL ANALOGY ( E.G. TW O IN COM M ONLY-USED TYPES OF )

SIGM OID FUNCTION NEURON ( -> M LP ) RADIAL BASIS FUNCTION NEURON ( -> RBF )
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CONNECTED TO A NETW ORK

input layer hidden layer output layer

y

BUILD AN ARTIFICIAL NEURAL NETW ORK

input values output value(s)

x1

xN

.

.

Σ

Σ

Neural Networks (contd.)
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Our analysis...

� A sim ulated portfolio was created using the distributions of the
Italian m arket (public data - 1999) relative to the m ain rating
param eters:

Bonus/M alus

Fuel

Territorial zones

Num ber of
installm ents

Horse power

Sex/Age

Claim s lim it
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W hat about the dependent variables?

�   Claim  frequency

�   Severity

�   Pure prem ium

Param etric analysis

Non-param etric analysis
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Choosing the rating param eters

� The selection of inappropriate variables can spoil the final result;

� Including a variable, which does not contribute in any way to the
final result, could have the effect of dim inishing the m odel
perform ance;

� This danger is very high in NN, m oderate in G LM , totally indifferent
in CART/CHAID.

Age of policyholder

Vehicle Group

Vehicle Age

Use of snow-board
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“Over-fitting” or “over-param eterization” danger

� The “over-fitting” (or “over-param eterisation”) concept is always
there, whatever the statistical m ethod used;

� Using a too m any variables in the estim ation process, m ay lead to:

� m em orising also the idiosyncrasy of the training set  (in the
language of neural nets),

� incom plete separation of the stochastic part from  the
determ inistic one (in the param etric language);

� In G LM  there are specific statistics that report the “over-
param eterisation” phenom enon;

� In decision trees analysis, it is necessary to reach m axim um  depth
(challenging the “over-fitting” danger), in order to proceed to the
pruning step until the best tree is defined.
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M anaging m issing values

� There are different m ethods for the m issing values m anagem ent:

� dropping the record with a m issing value - G LM ,

� substituting the m issing value with characteristic or typical values
(average, quantiles, closest neighbor,… ) - CART, NN,

� estim ating the m issing value, after having assigned a fixed level
(‘Errors’, 9999) - m anipulating the data,

� building separate m odels for each set of m issing values -
m anipulating the data,

� using the non-coded values in the learning phase of the network -
NN;

� CART and NN are very robust m ethods in m anaging the m issing
values. The correct way to proceed is not clear…
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M anaging anom alous values or outliers

� In order to identify every anom alous value, it is a good idea to start
with a “data m ining” phase using the following:

� residuals plots,

� over-dispersion analysis,

� Cook and Leverage statistics;

� O nce the outliers have been identified, it is possible:

� to assign a low m arginal probability,

� to drop the observation from  the data set,

� to confine them  in a separate class and to m ake an estim ate in a
successive phase;

� Non-param etric techniques are m ore robust then the param etric ones
in m anaging the anom alous values and outliers.
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Is a Neural Net  a “Black box”?

� If such a term  refers to a presentational or a synthesis of the
results problem s, the answer is YES;

� if it refers to the arithm etic of the algorithm , the answer is NO or,
at least, not m ore then other statistical techniques, including
GLM  and Decision trees;

� In fact, working with a Neural Net:

� it is difficult to know which are the im portant variables to be
included in the m odel and how they interact am ong
them selves; and,

� there is no structure of coefficients (relativities), as it is for the
param etric regression and there is not a final m odel;

           Black box = low synthesis, low presentational power
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Com puting tim e

� A few years ago, neural networks were used alm ost
exclusively for “pattern recognition” problem s, m ainly due to
the long com puting tim e required;

� A sim ilar problem  was true also for decision trees m ethods.
CHAID, in particular, based on a contingency table where a
CHI-squared is perform ed on each cell, could be very heavy
from  a com puting point of view;

� W ith the advent of new and m ore powerful com puters, even
these techniques can be used in the solution of “everyday”
problem s.
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Reading and interpreting the results

� G LM

� The results are directly com parable with the rating coefficients
applied by the insurance com panies. The reading is easy for
specialists;

� CART/CHAID

� It is a m ethod that com m unicates through im ages. The results
are always in the form  of an upside-down tree. The reading is
very easy also for lay people;

� NN

� It gives an estim ate close to the real observation of the data
base in the training and testing set. O nce the training set has
been m em orized, the network can be used in another sam ple
where the observation is m issing. The reading is not very easy
even by specialists.
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Im plem entation

� G LM

� Fast and easy. The coefficient structure reproduces the rating
structure of the com pany  and it is directly com parable and
easy to im plem ent;

� CART/CHAID

� The result is very easy and readable. It is com posed by a
lim ited num ber of nodes and to each of them  an average
prem ium  is associated. The question is, is it acceptable to
have a rating structure consisting of 49-50 profiles?

� NN

� It is very useful as discrim inate analysis, but it needs a great
deal of m odification in order to be im plem ented.
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A com parison am ong the three techniques: a final report card

Possible but onerous/negative answer

Not applicable/indifferent

Good results/positive answer
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Selection of rating param eters

“O ver-fitting” danger

M issing values m anagem ent

O utlier values m anagem ent

Black box

Com puting tim e

Reading and understanding
results

Im plem entation

O verall assessm ent

 GLM             NN             CART

A com parison am ong the three techniques: a final report card
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� It’s im portant to understand the ideas behind the various
techniques, in order to know how and when to use them ;

� It’s im portant to accurately assess the perform ance of a m ethod,
to know how well it can be expected to work (…  sim pler m ethods
often perform  as well as com plex ones!);

� in data m ining, understanding the system  used is not always a
crucial problem . A neural network that produces optim al estim ates
can be  preferable to easier but less efficient m odels;

� This is an exciting research area, that has applications in science,
industry, finance, etc.

Pearls of wisdom ...


