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Abstract

We consider the distribution of the number of incurred but not reported (IBNR)

claims under a discrete time period model when the number of claims incurred in

each accident period follows a compound Poisson model and there is a random de-

lay until reporting of a claim to the insurance company. This discrete delay has a

probability mass function depending on a vector of unknown parameters. We find

the joint probability generating function (pgf) of the number of claims reported in

the periods following an accident period, and the pgf of the number of IBNR claims;

we derive the marginal distribution of the number of claims reported in each period

after the accident period. We discuss the identifiability problems which occur when a

non-parametric distribution is assumed for the reporting lag, or when its cumulative

distribution function or its survival function has a certain form.
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NOMBRE DE SINISTRES IBNR

ET DISTRIBUTON DE POISSON

COMPOSÉE MULTIVARIÉE

Louis G. Doray, Canada

Résumé

Nous considérons la distribution du nombre de sinsitres survenus mais non-signalés

(SMNS) avec un modèle en temps discret lorsque le nombre de sinstres survenus

durant une période d’accident suit un modèle de Poisson composé et qu’il y a un

délai aléatoire jusqu’à la signalisation du sinistre à la compagnie d’assurance. Ce

délai discret a une fonction de probabilité qui dépend d’un vecteur de paramètres

inconnus. Nous trouvons la fonction génératrice des probabilités (fgp) conjointe du

nombre de sinistres signalés dans les périodes suivant une période d’accident, et la fgp

du nombre de sinistres SMNS; nous dérivons la distribution marginale du nombre de

sinistres signalés dans chaque période après la période d’accident. Nous discutons des

problèmes d’identifiabilité qui surviennent sous l’hypothèse d’une distribution non-

paramétrique pour le délai de signalisation, ou lorsque sa fonction de répartition ou

de survie prend une certaine forme.
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1 Introduction and Notation

The problem of estimating the number of claims incurred but not reported

(IBNR) at a certain date by an insurer, when some information is available for each in-

dividual claim, such as the date of occurence of the accident and the date of reporting

of the claim, has been extensively studied.

Jewell (1989, 1990) has assumed a homogeneous Poisson process for the number

of claims incurred in an accident period and has developed estimators for the number

of IBNR claims at a certain date. Hesselager and Witting (1988) and Neuhaus (1992)

have assumed that the delay probabilities for the observations can vary between

occurence years. Hesselager (1995) has assumed a non-homogeneous Poisson process

for the incurral of claims and has studied a credibility estimator to predict the number

of claims incurred in future periods.

In this paper, we will extend the above models by asuming that the number of

claims in an accident period follows a compound Poisson distribution.

Let Xl denote the time of accident l; associated with each claim l (arising from

accident l), is a random time until reporting of that claim to the insurance company,

the random variable Wl, assumed independent of Xl, with probability density function

(pdf) f(w; θ) and cumulative distribution function (cdf) F (w; θ), where θ is a vector

of parameters. Accident l is therefore reported at time

Yl = Xl + Wl.

Claim l is either reported in the observation period (0, t] if Yl ≤ t or it is an IBNR

claim at time t if Yl > t. All reported claims in the observation interval (0, t] are

observed by the insurance company.

We consider the following discrete time period model. Accident l occurs in ac-

cident period i ∈ {1, 2, . . . , T}, the exposure period. The reporting lag, assumed

independent of the incurral process, is a discrete random variable with probability
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function pj. We suppose that there exists a maximum possible value m, for the re-

porting lag, so that j = 0, 1, 2, . . . ,m. The observation period is the set {1, 2, . . . , k},
where k is greater than T .

Let the random variables Ni represent the number of claims incurred in accident

period i and Rij, the number of claims incurred in accident period i which are reported

j periods later, in period i+j, j = 0, 1, 2, . . . , m. The random variable Ui =
m∑

j=k−i+1
Rij

will denote the number of IBNR claims at the end of the observation interval for

accident period i, and Ri• =
k−i∑
j=0

Rij , the total number of claims reported by the end

of the observation period for accident period i, so that Ni = Ri•+Ui. A capital letter

will denote a random variable, while a lower-case letter will represent the realized

value of the corresponding random variable, which is either observed or not. We

assume a compound Poisson distribution for Ni, and look at the joint distribution of

the Rij’s and the distribution of Ui.

The paper is organized as follows. In section 2, we study the joint probability

generating function (pgf) of the number of claims reported in the intervals following

an accident period and the pgf of the number of IBNR claims. From the joint pgf,

we derive the marginal distribution of the number of claims reported in each period

after the accident period. We also find the pgf of the total number of IBNR claims

corresponding to independent accident periods. In section 3, we discuss estimation

of the parameters under the assumption of a Poisson process, and the identifiability

problems which occur when a non-parametric distribution is assumed for the reporting

lag, or when its cdf or survival function has a certain form. We also motivate the use

of modified discrete distributions for the reporting lag. In section 4, we consider the

model obtained when the number of claims in each period follows a negative binomial

distribution and derive the distribution of the number of unreported claims; we also

discuss the identifiability problems encountered in estimating the parameters.
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2 The pgf of the claims number

We assume that the random variable Ni follows a compound Poisson distribution

(λi, Pi(z)) with pgf

PNi
(z) = E(zNi) = exp {λi [Pi(z)− 1]} , (1)

where Pi(z) is the pgf of the compounding distribution. Proposition 1 gives the pgf

of the joint distribution of the random variables Rij’s, (j = 0, 1, . . . , m− 1).

Proposition 1: If Ni follows a compound Poisson distribution (λi, Pi(z)), the random

variables (Ri0, . . . , Ri,m−1) have joint pgf

PRi0,...,Ri,m−1
(z0, . . . , zm−1) = exp{λi[Pi(p0z0 + . . . + pm−1zm−1 + pm)− 1]}

Proof:

PRi0,...,Ri,m−1
(z0, . . . , zm−1) = E(zRi0

0 × . . .× z
Ri,m−1

m−1 )

= ENi

[
E

(
(zRi0

0 × . . .× z
Ri,m−1

m−1 ) | Ni

)]

(by conditioning on Ni)

= ENi

[
(p0z0 + . . . + pm−1zm−1 + pm)Ni

]
(given Ni,

Ri0, . . . , Ri,m−1 follow a multinomial distribution)

= exp {λi [Pi (p0z0 + . . . + pm−1zm−1 + pm)− 1]} , by (1).

2

The marginal pgf of Rij is obtained by evaluating PRi0,...,Ri,m−1
(z0, . . . , zm−1), with

all the zl’s, except zj, set equal to 1, giving

PRij
(zj) = exp{λi[Pi(pjzj + 1− pj)− 1]}.

The random variable Rij therefore has a pgf similar to that of Ni, but is evaluated

at pjzj + (1 − pj), the pgf of a Bernoulli random variable with probability pj. The
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moments of Rij are obtained by differentiating PRij
(zj) and setting zj = 1. Its mean

and variance equal

E(Rij) = λipjP
′
i (1),

Var(Rij) = λip
2
jP

′′
i (1) + λipjP

′
i (1),

and the covariance between Rij and Rij′ , j 6= j′, is equal to

Cov(Rij, Rij′) = λipjp
′
jP

′′
i (1).

The pgf of Ui is

PUi
(z) = exp



λi


Pi


z(1−

k−i∑

j=0

pj) +
k−i∑

j=0

pj


− 1






 , (2)

from which we get its mean

E(Ui) = λi


1−

k−i∑

j=0

pj


 P ′

i (1),

and variance

Var(Rij) = λi


1−

k−i∑

j=0

pj




2

P ′′
i (1) + λi


1−

k−i∑

j=0

pj


 P ′

i (1).

Let us now look at some specific distributions for Ni. If Pi(z) = z, Ni follows a

Poisson (λi) distribution, and we obtain the model analyzed by Jewell (1989). If the

compounding distribution is logarithmic with pgf

Pi(z) =
log [1− βi(z − 1)]− log(1 + βi)

− log(1 + βi)
,

Ni follows a negative binomial distribution, and we obtain

PRi0,...,Ri,m−1
(z0, . . . , zm−1) = [1− βi(p0z0 + . . . + pm−1zm−1 + pm − 1)]−λi/ log(1+βi) ,

which is the pgf of the negative multinomial distribution (see Johnson and Kotz

(1969)). We analyze this model in section 4.
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The above analysis is for a single accident period. For the complete exposure pe-

riod {1, 2, . . . , T}, we assume that the random variables N1, . . . , NT are independent

of each other, with a compound Poisson distribution (λi, Pi(z)); the total number of

claims incurred in the exposure period, N• = N1 + . . . + NT , has pgf

PN•(z) = E
(
zN1+...+NT

)

=
T∏

i=1

E
(
zNi

)
, by independence of the Ni’s,

= exp

{
T∑

i=1

λi [Pi(z)− 1]

}

= exp

{
T∑

i=1

λi

[∑T
i=1 λiPi(z)
∑T

i=1 λi

− 1

]}

= exp
{
Λ

[
P̄ (z)− 1

]}
, where Λ =

T∑

i=1

λi.

Therefore, N• has a compound Poisson distribution (Λ, P̄ (z)), where Λ is the

sum of the parameters λi, and P̄ (z) is the weighted average of the compounding

distributions Pi(z), with weight λi. If the functions Pi(z) are all equal, Pi(z) =

P (z), ∀i, then PN• = exp {Λ [P (z)− 1]}, i.e. N• has the same type of compound

Poisson distribution as the Ni’s.

Similarly, if we let U• =
∑T

i=1 Ui be the total number of IBNR claims arising from

accidents in the exposure period, at the end of the observation period, U• also has

a compound Poisson distribution (Λ, P̃ (z)), where P̃ (z) is a weighted average of the

compounding distributions of PUi
(z) defined in (2).

3 A Poisson model

In this section, we look at the case where Ni follows a Poisson (λi) distribution.

Let us first consider the single accident period i. Let θ = (θl) be the vector of param-
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eters of the reporting delay distribution W . The probability of ni accidents occurring

in period i, and rij claims reported j periods later (j = 0, 1, . . . , k − i), with the

observation period {1, 2, . . . , k}, where i + j ≤ k, is

P (ni, ri0, . . . , ri,k−i; λi, θ) = P (ri0, . . . , ri,k−i; θ, ni)× P (ni; λi)

= ni!




k−i∏

j=0

pj(θ)
rij

rij!




(
1− k−i∑

j=0
pj(θ)

)ni−ri•

(ni − ri•)!
e−λiλni

i

ni!
, (3)

where ri• =
k−i∑
j=0

rij is the total number of claims incurred in month i which are reported

during the observation interval (0, k]. The first terms in (3) represent the probability

function of a multinomial distribution. Note that when k − i ≥ m, all the claims

for accident period i have been reported and the likelihood function L(θ, λi) can be

factorized a product of the likelihood functions of θ and λi

L(θ, λi) = L(θ)× L(λi),

facilitating the calculation of the MLE’s.

Calculating the marginal probability obtained by summing the joint probability

(3) over all possible values of ni, we obtain

P [Rij = rij, j = 0, ..., k − i; λi, θ] =
∞∑

ni=0

P [Ni = ni, Rij = rij, j = 0, ..., k − i; λi, θ]

=
k−i∏

j=0

[
(λipj(θ))

rij

rij!

]
exp


−λi

k−i∑

j=0

pj(θ)




=
k−i∏

j=0

[
exp (−λipj(θ)) (λipj(θ) )rij

rij!

]
.

This well-known result in probability (see Ross (1985)) shows that Ri0, . . . , Ri,k−i

are independent Poisson random variables, with parameter λipj(θ). Also, the random

variable Ui, the number of claims incurred in month i which are not reported by month
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i + j, is independent of Ri0, . . . , Ri,k−i and also follows a Poisson distribution with

parameter

λi


1−

k−i∑

j=0

pj(θ)


 .

The number of IBNR claims for the exposure interval {1, . . . , T} also follows a Poisson

distribution with mean
T∑

i=1

λi


1−

k−i∑

j=0

pj(θ)


 .

The likelihood using all the claims incurred in the exposure interval {1, . . . , T},
reported by the end of the observation period k is

L(λ1, . . . , λT , θ) =
T∏

i=1

k−i∏

j=0

(
exp [−λipj(θ)] (λipj(θ))

rij

rij!

)
.

The MLE of λi equals

λ̂i =
ri•

k−i∑
j=0

pj(θ̂)
,

where θ̂, the MLE of θ, is found numerically. If the parameters λi are all equal to λ,

we obtain the MLE

λ̂ =
r••

T∑
i=1

k−i∑
j=0

pj(θ̂)
,

where r•• =
T∑

i=1

k−i∑
j=0

rij is the total number of claims from the exposure period reported

in the observation period.

An identifiability problem arises if a non-parametric distribution is assumed for

the reporting lag: λi and pj are identifiable only up to a multiplicative constant. If

λ̂i and p̂j, where 0 <
∑

p̂j < 1 maximize the likelihood, then cλ̂i and p̂j/c, where

c is any constant such that 0 <
∑

p̂j/c < 1, give the same maximum value for the

likelihood function.

An identifiability problem will also arise whenever the cdf of the reporting lag W

is such that cF (w; θ) = F (w; h(θ, c)) or its survival function is such that cF̄ (w; θ) =
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F̄ (w; h(θ, c)). For example, the Pareto distribution, with pdf f(w; α, λ) = αλαw−α−1,

w ≥ λ, satisfies this property for the survival function F̄ ; the property is satisfied for

the cdf of the power distribution, with pdf f(w; k, a) = ak−awa−1, 0 ≤ w ≤ k.

Under the assumption of a Poisson process for the incurral of claims, when the

reporting lag W follows an exponential distribution with pdf f(w; θ) = θe−θw, w > 0,

the probability of a claim being reported j periods after its occurrence, follows a

modified geometric distribution (see Jewell (1989)), with probability function

pj(θ) =





1− θ−1(1− e−θ), j = 0

θ−1e−θ(j−1)(1− e−θ)2, j ≥ 1

To know more about modified discrete distributions, the reader is referred to Panjer

and Willmot (1992).

A modified discrete distribution for pj(θ) could be used directly, without introduc-

ing first a continuous density for W . Under the assumption of a Poisson process, the

occurrence dates of the accidents will be uniformly distributed during the exposure

period. A claim occurring during an accident period will therefore occur on average

in the middle of the period, and will have less than a full period to be reported, for

the reporting lag j to equal 0, while for j ≥ 1 a full period for reporting is possible,

regardless of when the claim occurs during the accident period. This motivates the

use of a discrete distribution modified at 0 for the reporting lag.

4 A negative binomial model

In this section, we asume that the number of claims occuring during exposure

period i follows a negative binomial distribution with parameters s and 1 − p =

β/(1 + β), denoted NB(s, p), and with probability function

P [Ni = ni] =




s + ni − 1

ni


 ps(1− p)ni , ni = 0, 1, 2, . . . .
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The probability of ni accidents occurring during exposure period i and rij claims

reported j periods later (i + j ≤ k), is:

P [Ni = ni, Rij = rij, j = 0, . . . , k − i; s, p, θ] =

ni!




k−i∏

j=0

pj(θ)
rij

rij!




(1− k−i∑
j=0

pj(θ))
ni−ri•

(ni − ri•)!

(
s + ni − 1

ni

)
ps(1− p)ni .

Summing over all possible values of ni, we obtain, after some algebra, the joint

probability of the Rij’s

P [Rij = rij, j = 0, . . . , k − i; s, p, θ] =

(
s + ri• − 1

ri0, . . . , ri,k−i

)



1

1 + β
k−i∑
j=0

pj(θ)




s

k−i∏

j=0




βpj(θ)

1 + β
k−i∑
j=0

pj(θ)




rij

, (4)

where β = (1 − p)/p, by using the fact that
∞∑

ni=ri•

(
s+ni−1
ni−ri•

)
Ani−ri• = (1 − A)−s−ri• ,

with A =

(
1− k−i∑

j=0
pj(θ)

)
(1− p).

This is the probability function of the negative multinomial distribution with pa-

rameters


s, βp0(θ)

1+β
k−i∑
j=0

pj(θ)

, . . . , βpk−i(θ)

1+β
k−i∑
j=0

pj(θ)


 (see Bishop, Fienberg and Holland (1975),

section 13.8, or Ratnaparkhi(1985)). Therefore, Ri0, . . . , Ri,k−i folow a joint negative

multinomial distribution.

From the properties of this distribution, it follows that each component Rij, for

j = 0, . . . , k − i, has a marginal negative binomial distribution with parameters
s, βpj(θ)

1+β
k−i∑
j=0

pj(θ)


, but Rij is not independent of Rij′ , for j 6= j′. The mean and

variance of Rij are respectively

E(Rij) = sβpj(θ),

V ar(Rij) = sβpj(θ)[1 + βpj(θ)],
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while Cov(Rij, Rij′) = sβ2pj(θ)pj′(θ), for j 6= j′.

The marginal distribution of the number of IBNR claims for accident period i also

follows a negative binomial distribution, with parameters s, and qi =
β

[
1−

k−i∑
j=0

pj(θ)

]

1+β

[
1−

k−i∑
j=0

pj(θ)

] .

The covariance between Ui and Rij equal to sβ2pj(θ)[1−
k−i∑
j=0

pj(θ)], is always positive,

as is Cov(Rij, Rij′). If we now consider the complete exposure period {1, . . . , T}, the

marginal distribution of the total number of IBNR claims, U• = U1 + . . . + UT , is a

sum of independent negative binomial distributions, all with the first parameter equal

to s, but with the second parameter which depends on the exposure month i. The

pgf of U• is

PU•(z) =
T∏

i=1

[
1− qiz

1− qi

]s

.

We have seen in section 2 that this random variable can be represented as a compound

Poisson distribution with pgf of the form exp{Λ[P̃ (z)− 1]}, where

Λ = −s
T∑

i=1

ln(1− qi)

and P̃ (z) =

T∑
i=1

ln(1− qiz)

T∑
i=1

ln(1− qi)
.

The conditional distribution of Ui given (Ri0, . . . , Ri,k−i) is the same as that of Ui

given Ri• and follows a negative binomial distribution with parameters
s + ri•,

β

[
1−

k−i∑
j=0

pj(θ)

]

1+β


 (see Sibuya et al. (1964)). The regression of Ui on Ri• is thus

linear in ri•,

E[Ui | Ri• = ri•] = (s + ri•)×
β

[
1− k−i∑

j=0
pj(θ)

]

1 + β
k−i∑
j=0

pj(θ)
.

From equation (4), we see that an identifiability problem exists again when a non-

parametric distribution is assumed for pj: since the terms β and pj always appear
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through the expression βpj, they can only be estimated up to a multiplicative con-

stant; and as in the Poisson case, when the cdf or the survival function of the random

variable W satisfies one of the conditions stated in section 3, there will also be an

identifiability problem for the parameters.
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