
Cat Models in Practice: "A Reinsurer's Perspective"

Robert Porter, Senior Vice President ICA Cancun, Mexico March 2002

Catastrophe Models

- Number of different commercially available catastrophe models including EQECAT, RMS, AIR, etc.
- All aimed at providing solutions to modeling, pricing and understanding catastrophe risk
- As a reinsurer what are we looking to achieve...

Cat Model Objectives

- Analyze catastrophe risk exposure by account
- Price catastrophe risk appropriately
- Attempt to price on a consistent basis
- Evaluate marginal impact on existing portfolio
- Control and manage catastrophe aggregates

General Catastrophe Modeling Approach

- Probability of different cat events occurring (historical record, scientific research, etc.)
- 2. Expected property loss from different cat events (damageability curves)
- 3. Adjustments for (re)insurance terms (deductibles, event limits, co/ins, etc.)

- Quality of underlying data assumptions in models
- Quality and accuracy of data input into model
- Consideration of (re)insurance conditions

Quality of Underlying Data

Wind

- Government sources (e.g. NOAA in US); other historical records
- Old events based on observations, crude measuring devises
- 150 years data total for Caribbean / US Atlantic Coast and only 50 w/ reliable data
- Long-Term vs. Short-Term (25-40 year oscillations in sea temperature of N. Atlantic; El Niño, etc.)
- Adjust for population, wealth, inflation

Quality of Underlying Data (cont.)

Earthquake

- Government sources (e.g. U.S. Geological Survey); other historical records
- Different measuring systems over time (MMI, Richter, Surface / Body Wave, etc.)
- Short-term Patterns: Increasing EQ stress along known fault lines (Turkey)
- "X" factor: Modeling for unknown fault lines
- Adjust for population, wealth, inflation

Catastrophe Models: Quality of Data Input

- Location Zip Code vs. Cresta
 - Soil composition
 - Topography
 - Proximity to beachfront
- Construction Input
 - Poured Concrete, Concrete Block, Steel, Brick Masonry; Reinforced vs. Unreinforced
 - Construction code; adherence to code; age of buildings and code at that time
 - Housing stock vs. Insured Stock

Catastrophe Models: Quality of Data Input (cont.)

- Exposure: Building vs. Contents vs. Business Interruption
- Occupancy
 - Commercial Offices, Retail, Hotel, Restaurant, Warehouse, etc.
 - Industrial Petroleum, Water Plant, Factory, etc.

- Residential and Government (schools, offices)
- Number of Stories

Quality of Data

Analyzing Catastrophe Risk: (Re)Insurance Conditions

- Deductibles must account for variation in proportion of properties affected
- First-Loss Policies (only top location aggregates provided, how to model?)
- Co-Insurance
- Reinstatement provisions; event limits; dropdown layers; second event covers, etc.

Catastrophe Models: Ease of Use

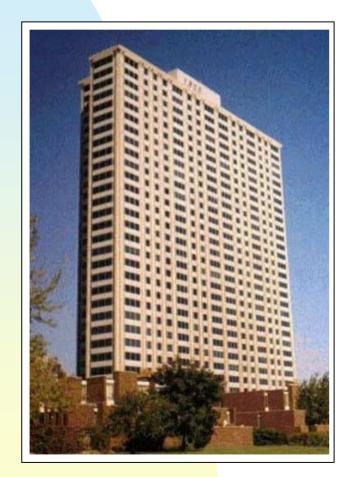
- Works in progress unexpected errors do occur. Reinsurers working as Beta testers.
- Clear labeling of assumptions needed
 - "Black Box": Full disclosure vs. proprietary rights
- Concise output reports with annual avg cost, key exceedance points and program pricing
- Time need to balance level of analysis / data input vs. time required and quality / significance of improved answer

Catastophe Models: Factors Not Captured

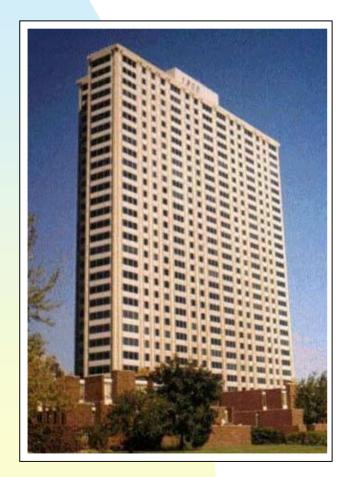
- Catastrophic Perils
 - Flood (Venezuela 1999, Texas 2001)
 - Terrorism (NYC 2001)
 - Hail / Ice Storms (Canada, Australia)
- Post-Loss Demand Surge (just now being introduced in some models)
- Short-term Hazard Trends
- Non-Building Property exposures
 - Auto / Inland Marine / Engineering

Portfolio Management

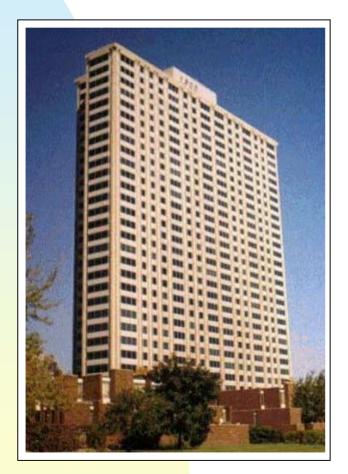
- Companies often use different models (RMS, EQECAT, AIR, etc.) in different regions, yet how does (re)insurer analyze overall portfolio?
- Determining 100-250 year worst-case loss
 - Should each account stand alone or should marginal impact on specified return period loss be considered?
 - How does (re)insurer adjust capital charge for low/high exposure areas?

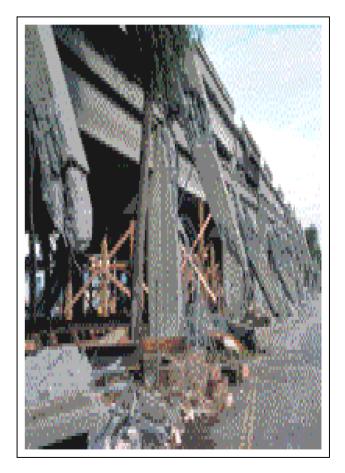

Different models have different assumptions

- Different models have different assumptions
- Different output for same risks. For example...


Apartment Bldg after EQ (Model "X")

VS.


Apartment Bldg after EQ (Model "X")



VS.

Apartment Bldg after EQ (Model "X")

Apartment Bldg after EQ (Model "Y")

- Different models have different assumptions
- Different output for same risks
- Need to Reality check outputs and review assumptions

- What is the annual average pure premium vs. original market rates over last ten years?
- Is 100-250 year PML in range of Cat XL limits?
- Look at simulated events to ensure that location, size of loss and return period make sense
- Identify historical events and compare against actual company loss data.
- How do alternative models stack up for a given peril in a given region?

Catastrophe Models: Conclusions

- Models provide for enhanced management, pricing of catastrophe risk
- Need to understand the methodology applied in cat models
- Need to "stress test" output
- Need to recognize limitations

