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Summary

The classcd Cramer-Lundberg process assumes that the rate of premium income
received by the insurance company is a congtant. The present paper examines generdization of
the classicd process in which the rate of premium income varies with time or is stochadtic. To
congtruct the generdized process we use the Monte-Carlo smulaion. The ruin probability of the
insurance company in case of variable premium reate is esimated. The results are illustrated by

actual data.
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Russia

Résumé

On suppose que dans le processus classique de Cramér-Loundberg la vitesse des recettes
des primes dans la compagnie d'assurance et une congtante. Dans I'ouvrage en question on
envisage la généraisation du processus classque dans lequd la vitesse des recettes des primes
d' assurance change avec le temps ou se présente stochastique. Pour construire le processus
genérdise on utilise la amulation a la base de la méhode Monté-Carlo. On egtime |a probabilité
de la ruine de la campagnie d’'assurance en cas de la vitesse variable des recettes des primes
d assurance. Les réaultats souf illustrés ala base des donnéesrédlles.
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1. INTRODUCTION

The problem of edimating (caculaing) the probability of ruin has been discussed in many
papers on actuaria risk theory. Most of these papers assume that surplus at time t is defined as a
sum of iniid surplus u, income obtained from premium payments P(t) minus total amount of
paid daims S(t):

U(t)=u+P(t)- S(t). (11)
S(t) is a gochastic process, for example, Poisson process and amount of clams has some

digribution function F in these papers. The classca Cramer-Lundberg process assumes that the

rate of premium income received by an insurance company is constant and can be written as

P(t)=ct,
and the risk process in this case can be written by the formula
Ny
U(t)=u+ct- Y, (1.2)
i=1
where U (t) — issurplus & time t, u —initid surplus, ¢ — is a condtant premium rate, Y, — are

clam amounts paid out between (i-1)-th and i-th dams, N, — is the number of clams occurred
up to time t. The premium income rate according to the expected value principleis

c=(1+q)Im,
where g — is a drictly postive parameter cdled safety loading, m — is the mean of dam

amounts, | — isan intengity of Poisson process.

Let us condder the problem of finding ruin probability of an insurance company. We define the

time of ruin as
T =inf{t|U(t)<0}
and define T =¥ if U (t)2 O fordl t. We definethe ruin probability over afinitetime T, ,,
Y (UTm) =P[T <T,. U (0) =u] (1.3)
and the probability of ultimate ruin as
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y (u)=P[T<¥|U(0)=u]. (1.4)

We can derive explicit formulae (1.3) and (1.4) for rather asmal number of daims digtribution.

If we know the so-cdled adjustment coefficient k >0, which is non-zero solution of the
equation:
1+ (1+qg)km=L,(-k),
and we have a Laplace trandform for the digribution of the cdam amounts, then we can use a
Cramer’ s asymptotic ruin formula [8]:
gme
L¢(-k)+ n(l+q)’

We are interested in the case when premium income is not proportional with time and moreover

y (u)~-

the process of premium income is stochastic.
We are going to introduce more generd modelsfor this classca Cramer-Lundberg risk process.

In the papers [10-12] the authors discuss perturbed risk processes

X (t)=U (t) +W (t),
where U (t) - is the dlassica Cramer-Lundberg process, W (t) — is some stochestic perturbation
process, for example, W(t)=eW,(t), where e>0 is a congtant, W, (t) — is the standard
Brownian motion independent of U (t). In the papers [1, 4, 5, 7, 15] the authors assume that the

rate & which premiums come in is non-condant and is a function of the current surplus. In this

case the accumulated premiums a time t can be written by the following formula
t
P(t)=¢p(U(t))dt . (1.5)
0

It is possible to consder generdizations of modd (1.5). In particular, when premium income rate
isafunction of time:

c=c(t).
Then totd premiumsup totime t can be written as

P(t) = glt )t . L6

The process P(t) can also be defined as a stochastic process
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In paper (18) the author models premiums with a Poisson process independent of clams process
and estimates confidence interva for adjustment coefficient.

In this pgper we condder the methods of estimating the probability of ruin for variable and
stochastic premium rate.

2. MODEL WITH PREMIUM RATE DEPENDENT ON CURRENT SURPLUS

Let us condder the case when premium income rate depends on the current value of surplus. If

we assume this, the risk process can be written as

U(t)=u+tc‘):(U(t))dt-gYi. (2.2)
o i=1

We can rewrite (2.1) in form of sochadtic differentia equation:

du (t) =c(u(t))dt- ds,
where dS=ydp, dp =1 with probability |dt+o(dt) and dp =0 with probability
1- | dt+o(dt), and y — is a random variable (clam amount) with distribution function F (x),
and U (0) =u.
It is shown if c=c(U(t)) tha the probability of ruin can be described by the integral-
differentid equation

c(u)y ®(u) =1y (u)- :‘y_(u- y)dF(y), u>0,
¥

wherey (x) =1-y (x).

Example 1. Model with interest rate. Let us assume tha surplus earns interest at
congtant force d , SO

c(U(t)) =c, +du (t).

Seefor ingance [4, 5, 13].

There are exact andytica results for ruin probability in this case, when the dam
distribution function is exponentia F (x) =1- e** (See [4, 13]):

& &, U0

y (u)= & am Al B 2.2)

. %
& ¢, O+d ¢, ¢ o

S3" dmy mSdmy

5
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where G(a,b) = (‘Sxﬁ-le- *dx, m — ismean damamount, | — isthe rate of Poisson process [13].
Example 2. Modd with premiums by layers. Congder the case when premiums can

vary according to the level of current surplus. The larger the surplus, the lesser the risk of ruin.
Mathematically, this can be formulated as:

ic, 0=U, £U £U,
I U,<UE£U
c(u(1) =i ,\le ' : (2.3)

[
fe. U <U<U, =¥

The method of edimation of ruin probability in this case, based on links between the wating
time of the Sngle-server queue (M/G/1) and the risk process, isdiscussed in [7].

Congder the specid case when premium income rate is a function of surplus and is defined by

the followingrule: premium income rete is assumed to be c=c, if surplus is beow some barrier

b, otherwiseitis c =c;:

When clam digtribution is exponentia we have an explicit solution

iay,(u)+b, u<b

_t o beo-Im o}

y(u)_-:-yl(u- b)cae © +bt, usb
f & 5

where
Im ?L—mg“ C-Im

yi uj=—-=t e ’ a= y _l'a

1)=3 G T (e oy o)

Andytica resultsfor this case were evauated by D.Dickson [1].

Suppose the clam didribution is other than exponentid. Then we cannot find exact andytica

results for ruin probability and hence computer smulation of the risk processis a useful method.

See [2] on the links between the surplus process of risk theory and the single-server queue. See
[7] for resultsfor Examples 1 and 2.
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3. MODEL WITH PREMIUM INCOME RATE DEPENDENT ON TIME

Combining (1.1) and (1.6) we can write the formula for surplus in this case, when premium
incomeraeisafunction of time:

‘ &
U(t)=u+cpt)dt-ay,.
0 j=1
Consider some specia cases of the premium function.
1. Theclassical case. Inthiscase c(t) = ¢ =const .Then

P(t)=cpat =ct.

0
2. The harmonic law. Let c(t)=a+Acos(wt+b), so that the accumulation of premiums a

time t isdefined as
t
P(t) = ja+ Acos(wt +b))dt =
0
A . s
:at+wgsm(wt+b)- sinb §.

3.Let c(t)=a+bt. Then

t
N — b,
P(t)=fa+H )dt =at+ ot

0

4. The generalization of rule 3 is c(t)=a+bt“,k* - 1. Then the accumulated premiums can be

written as

t
-\ Kk _ b n+l
P(t)—g{am ) dt =at+——t",

5.For c(t)=a+b/t, t >t, >0 the accumulated premiums can be written as

t L.
P(t)= &+ 20t =at+b(Int- Int,).

e to
4. MODEL WITH PREMIUM INCOME RATE VARYING BETWEEN CLAIMS

Suppose premium income rate can vary but is a condant in each time interva between (i-1)-th
and i-th dams Then (1.2) can be written as

AN N
t o'

€o u
U(t)=u+ad gs, +cya(t- Ty )g- Ay, . 4.1)
u

éizl =1
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where T,,T,,... — aretimes of clams (we assume that T, =0), ¢ — is the premium income rate
between (i-1)-th and i-th dams (if ¢ =c then we get a classcd Cramer-Lundberg process),
s, =T -T_,.

Wecanamplify (4.1) if weexaminesurplusat times t =T,,T,,... only:

o o
U(TJ.):u+ia:1c,si - %Yj .

The vaues ¢, can be both deterministic and stochastic.

There is another possble way to form the premium income process. Consder the case when

mean m of the clam sze didribution is unknown. Here the premium rate a time t based upon

cdamsdatidicsuptotimet is

o(t) = (1+a) 2),

t
asthe best estimator of the | m istheratio S(t- )/t. Thevauesof the ¢ can be written as
=0

¢ =(1+q) Sg-l), i=23,..,

where S(T,) =& :,(Zle . Thetotal of accumulated premiums  time t is
Ni

P(t)=8 cs i+cN!+1(t- TM),

i=1

orinthetime moments T,, T,,...
N,
P(Tj ) =4 cs,.
i=1
Note, that in this moddl y (0)=1, as there is not any surplus growing before the firg claim and
any smdl dam leadsto ruin.

5. PREMIUM INCOME AS STOCHASTIC PROCESS

In the classcd risk modd premiums are assumed being received continuoudy & a
condant rate. In redity premium income of an insurance company can be presented as a sum of

separate premiums received from clients for insurance policies.
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Fig. 1. Sample paths of therisk processeswherethe premiums and claims occurred
in accor dance the Poisson processwith rates1' =10 and | =1 respectively.

In this case the classcd modd of risk does not work and we introduce the following new

process.

Suppose a premium p is not constant but a variable and depends on many parameters. Hence

the process U (t) will be

U)=u+d p-4aY,. (5.1)

i=1 =1
where M, denotes the number of premiums up to time t, p, is amount of i-th premium. For
smplicity the number of accumulated premiums M, intimeintevd (0,t] — is a Poisson process
with rate |  and time intervas between two consequent premiums are distributed exponentialy
with parameter 1/1 .

Let us introduce the following definitions. Let the clam cdf. be F(x), premiums cdf. is
G(x). Then time intervals between the dams — s, — have ac.df. H(x) and time interval
between premiums — x; — have a cdf. K(x). In case of Poisson processes digtribution
functions H(x),K(x) are exponentid with parameters 1/1 and 1/1 , respectively. The

distribution functions F (x), H (x),G(x)and K (x) can be both continuous and discrete.

9
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In the oecid case when the premiums p, are constant and equal p the process (5.1) can be
written as
g 3
U(t)=u+ap-aY,=u+Mp-aY,.
i=1 j=1 i=1
If the number of premiums is large then indead of p we can teke the mean of premiums

digtribution function. Hence

p=Enpl. (5.2)
Let us show that with this assumption we can reduce (5.1) to the classca modd. We have
ct =E[pM,]= pE[M ]=pl "t. (5.3)

Then c= pl . The(5.1) with (5.3) and (5.2) can be written as
ct=E[pM,]=E[pJE[M,] = pl "t

Example 3. Assume that premium income process is a Poisson process. The vaue of premiums
iscongtant and equa p . The following table gives results for this smple modd.

I I, p a U, T N t y Y ot

10 1 0,25 0,5 25 500 20000 | 43,84 | 0,0755 | 0,06566

10 1 0,25 0,45 25 500 20000 | 77,33 | 0,2674 | 8

10 1 0,25 0,5 10 500 20000 | 20,668 | 0,3121 | 0,25497

10 1 0,25 0,45 10 500 20000 | 37,24 |5 0,2943
0,555 | 0,53913

8
Here | —istheintengty of the clam process;

| ,— istheintengty of the premium income process,
p— isthe premium Sze;

a —Iisthe parameter of the exponentia distribution;
u, —istheinitid reserve;

T —istheuptimelimit;

N —isthe number of smulations,

t —isthe caculated mean of thetimeto ruin;

y —isthe estimation of the probability of ruin;

Y oea — 1Sthe probability of ruininthe dassica casewith ¢ =2,5.

10
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6. ESTIMATING OF RUIN PROBABILITY BY SIMULATION

Monte-Carlo can be one of the possble methods of estimating ruin probability. The main idea of
this method is multiple smulation of the risk processes and cdculation of the reative frequency
of processes leading to ruin. But we cannot get the information about the risk processes when the
time goes to the infinity by draightforward smulaion. Therefore, this method dlows us to
esimate the ruin probability in finite time T, not only for the classcd Cramer-Lundberg

processes but also for ordinary and delayed renewal processes and others.

Congder the following problem. We would like to evauate ruin probability of an insurance
company given the information about dl premiums and clams occurring in some time period. If
we know a congant premium income rate, initid surplus and dams digribution then we can try
to use the results for classca Cramer-Lundberg process. If we can find an adjustment coefficient
and Laplace transform for our clams digribution then we can dso use the famous asymptotic
Cramer-Lundberg formula.

But in red insurance practice the process P(t) cannot be expressed by ct exactly and therefore

we can use Monte-Carlo Smulation.

We suggest the following method of estimating ruin probability. With the actud data on
premiums and dams we shdl condruct a suitable risk modd and then try to edtimate ruin
probaility by smulations.

We denote Z =1 (ti <Tmax) as indicator of ruin of i-th process for the time T, . For N

redizations of stochastic process we can write a number of ruined processes
Y
Nr = a Zi 1 (61)

i=1

and we can dso cdculate gpproximate vaues of ruin probability and complimentary ‘survivd’
(non-ruin) probakility as

Y= (zl+zz+...+zN)=%, (6.2)

1
N
dN :1'y N

11
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respectively.

We can write sample variance as

We will discuss a concrete example.

There are actud data of the premium income and clam amounts for some period. Consequently,
we can analyze processes P(t) and S(t) for this period. There are dates of premium income

(dates of contract agreements), vdidity period of policies and cost of these insurance policies (a
vaue of premium). There are clam dates and clam amounts for clams.

Premium income

The period is from May 10, 1994 to November 27, 1997. The number of the records is 32791. In
cdculaing we used the trid-verson of the Pdisade Corp. BedtFit 404. The fitting to the
lognormal didtribution with dengity function

1 (o}
f = - = 6.3
(x) X\/Fexpg s 2 - (6.3)

givesthefollowing results

m= 3.04128363077844

s =0.882439444918749
Shift 0.220034539604291

12
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Lognorm2(3.0413; 0.88244)
Shift=+0.22003
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Fig. 2. Thefit of Lognorm2 distribution to data of the premium income.

Time intervals between premiums

Intervals between the premiums were from O to 4 days. Table 1 contains frequencies of these
intervals.

Table 1. Frequencies of timeintervals between premiums.

Time Frequency %

interval
0 38603 97.0
1 1121 2.8
2 49 1
3 14 0
4 4 .0
Total 39791 100.0

Claim amounts

The period is from May 10, 1994 to November 27, 1997. The number of the records is 3207. The
fitting to the lognormd ditribution (6.3) gives these parameters

13
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m=5.04436473762969

s =1.10229132652852

Shift 2.83850139509413
Lognorm2(5.0444; 1.1023)
Shift=+2.8385
4 ¥ v
4,
3.
@
s s
—
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(%]
E
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>
e
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i o o ™
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Fig. 3. Thefit of Lognorm2 distribution to data of the claim amounts,

Time intervals between claims

In Table 2 there are frequencies of the time intervals between the claims.

Table 2. Frequenciesof timeintervals between claims.

Time Frequency % 8
interval 5
0 2509 78.3 8 2

1 491 15.3 10 1

2 33 1.0 11 1

3 104 3.2 13 2

4 32 1.0 14 1

5 14 04 15 1

14

0.2
0.2
0.1
0.0
0.0
0.1
0.0
0.0
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17 1 0.0 Total 3206 100.0
18 1 0.0

Random number generation

Before we start smulations we need to choose a method of generating random numbers. Below
we discuss different possible methods.

Frda of dl, we examine the uniform variates, which are random numbers that lie within a range
from O to 1. There is the so-cdled linear congruential generator which generates a sequence of
integras W,,W,,.... This dgorithm darts with explict setting of the firgt integer W, with the
following recursve cdculation of the remaining integers
W., = (KW +C)mod p. (6.4)

Here k,C, p — are congtants. k is caled the multiplier, and C and p are integers cdled the
increment and modulus respectivdly. A uniform random number from [0;1] is obtained by
dividing W, by modulus

0, =W

P

The period of such generator equas p-1. The condants k,C, p ought to be chosen very

(6.5)

caefully. For example, the following vaues would be suitéble p=2%- 1= 2147483647,
C=0, k=16807, W, =12345.

There are many other uniform random number generators with other periods and other CPU
timing, for example, nonlinear congruentia generators, generators with shuffle, generators based

on data encryption and others. For detailsand references see{9].

For modeing the standard Poisson process with the rate | , note that the interarriva times
d, =T - T.., have exponentia distribution with c.df. F(x) =1- e ** with parameter a =1/1 .

Exponential deviates X with parameter a can be obtained from uniform deviaes in interva

[0,1] based on the so-cdled inversion method. Let F(x) — be some cdf., then F*(x) —is

aninverse of the F (x) . Then

15
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X~F*U)
where U ~ uniform(0,1) . For the random deviate with exponential distribution we can write

Exp(a)~-al|n(1-u)~-a£|n(u). (6.6)

The same method can be easily used to produce Pareto random deviates (F (x) =1- x °):

Pa(c)~U """,

-l
The random number with Weibul c.df. (F(x) =1- e 5 1 >0,c>0) can be caculated as

1/c

Weib(c) ~b(- InU) .
For the generation of a par of standard normal random deviates, we can use the Box-Muller
method:

N, (0,1) ~[-2InU, sin(2pu, ), 67
N, (0,2) ~ /- 2InU, cos(2pU,),
where U,,U, — is a par of random deviates with a uniform digtribution in the interva (0,1). To
congtruct adeviate N (m,s 2) we can use the following formula
N(ms?)~s*N(0,2)+m. (6.8)
The random deviate with lognormd didribution can be obtaned from the dandard norma

random deviates

Lognorm(ms ) ~ mexp(s N (0,1)) . (6.9)

Example 4. Egimation of the probability of ruin by smulation. We construct N processes
with parameters

T =2500,

N =1000,

p ~ Lognorm?2(20.932,0.8824) +0,22,

Y~ Lognorm2(155.1457,1.1023) +2,8385.

From (6.1) and (6.2) we can essly edimate the probability of ruin. For initid surplus varying
from O to 40000 with step 1000 we have calculated following values of y (u):

16
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Table 3. The probability of ruin for Example 4.

u y (u) u y (u)
0| 0.947 21000 | 0.047
1000 | 0.796 22000 | 0.051
2000 | 0.694 23000 | 0.036
3000 | 0.591 24000 | 0.041
4000 | 0.511 25000 | 0.039
5000 | 0.423 26000 | 0.021
6000 | 0.413 27000 | 0.022
7000 | 0.353 28000 | 0.022
8000 | 0.265 29000 | 0.014
9000 | 0.257 30000 | 0.022
10000 | 0.223 31000 | 0.009
11000 | 0.199 32000 | 0.012
12000 | 0.178 33000 | 0.015
13000 | 0.165 34000 | 0.008
14000 | 0.131 35000 0.01
15000 | 0.126 36000 | 0.009
16000 | 0.106 37000 | 0.004
17000 | 0.107 38000 | 0.006
18000 | 0.079 39000 | 0.007
19000 | 0.074 40000 | 0.004
20000 | 0.069

17
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Fig. 4. Thevisualization of Table 2.

The obtained resuits can be fit by the exponential curvey (u) =0.91392e %5

Example 5. Severity and time to ruin. Let us show the results of smulaion of 20000
processes with parameters

u =5000,

T =3000,

p~ Lognorm2(20.932,0.8824) +0.22,

Y ~ Lognorm2(155.1457,1.1023) + 2.8385 .

Thefitting of the Lomax (Pearson-2) digtribution with c.df.

_ b
F(x)=1- O

to the data of severity gives the following parameters. b =581.5212, q=1.8068, shift = 0.0056 (see
Fig. 5).

18
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Pareto2(581,52; 1,8068)
Shift=+0,0056239

3 % v

Values x 10"-3
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90,0% 50% >
0,0168 2,4710
Fig. 5.

Thefitting of the Inverse Gaussian distribution with dengty function

o & | (x-m?0
f(X)_\/zpfex'oé' 2ntx 3
to the data of the timeto ruin (if the processis ruined) gives the following parameters
m=24.1549, | =9,0753, shift =-1,336.

19
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InvGauss(24,155; 9,0753)
Shift=-1,3357

7 Y

Values x 107-2

7. ON THE PRECISION OF THE RESULTS OBTAINED

Suppose the smulation gives us n vaues of ruin probability. Each of these vaues is obtained as
aresultof N runs Thentheestimateof y can be obtained as empirical mean:
1
:H(y1+y2+,_yn), (7.1)

. 2 _ .. . .
andvaiance s, =Vary asempiricd variance:

et L AR S I < VAR e (72

i=1 n-lgll

The quedtion is how laage n and N we should choose in order to obtain a given leve of

precison. For Monte-Calo method we can only get some confidence interva for ruin

probability. We will show what n we need to choose to obtain a result close enough to true
answer with a given probability.
From centrd limit theorem it follows that

Jn{Hy )@5 N(0s?). (7.3)

20



Trans 27" ICA S.Spivak, A.Klimin, G.Minullina(Russia)
Then 95% confidenceintervd is

1,964 &, 19644 1,964, U

+ = - M+ -

RN G S o

For example, if we need to evaluate a number n of redizations so that the error is amdler than

(7.4)

e with probability 95% we can write the following formula
_196%s/

e2

n (7.5)

In practice the vadue sy2 is unknown. But we can take some initid number n¢ of the vaues

Y 1Y 20 e CAlCUlate the variance s ¢ and then calculate n=1,96"s ¢/ e”.

Example 6. Thereis ahistogram of the y , with norma curve with parameters:

n=1615,
T_ =2500,

u =5000,
p ~ Lognorm2(20.932,0.8824) +0,22,
Y ~ Lognorm{55.1457,1.1023) +2,8385
inthe Fg. 7.
Esimations of ${u) and 1 ° are equal #'=0.45507 and S * =0.000179 . Therefore we can

give the result:
y =0.45509+ 0.00065 . (7.6)
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Normal(0.455071; 0.013381)
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Fig. 7. The histogram of the estimationsof y (u).

8. CONCLUSION

The risk models described in this paper do not am a an exhaudtive coverage of red processes
occurring in insurance practice. However, the imposshility of obtaning andyticd results
compels the researcher to use the methods proposed in this paper.

Regrettably, the Monte-Carlo method requires considerable time expenditure in order to reach an
acceptable precison, and in direct smulation a dight gain in the precison of result is achieved at
a condderable increase of caculation time. Besdes in this case we cannot obtain the ruin
probability a infinity. But these disadvantages are offsst by the smplicty of congructing
modes for anumber of complex risk processes.

For example, the classica risk model assumes that the number of clams N, by time t obeys the
Poisson didribution with rate 1 . More redidic is the method in which dams are put in in
accordance with the inhomogeneous Poisson process whose rate changes with time. A change of
the rate | (t) can describe various phenomena, for example, a seasond increase in the frequency
of firesin dry and hot wesather, a rise in traumatism, a rise in road accidents on an ice-dick, and
30 on. The agpplication the inhomogeneous Poisson process to premium income can help describe
the various cycdes and trends in concluding contracts with insurance clients. It is rather difficult
to obtan specific results within the framework of dasscd theory, but smulaion of the
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inhomogeneous Poisson process both for putting in dams and premium income can yidd ruin
probability vaues for smilar processes.

It is assumed in the classcd risk modd thet the number of clams by the moment t- N, hasa

Poisson digribution with parameter | . A more redisic modd would be the one describing
dams aigng by time-inhomogeneous Poisson process with intengty varying over time
Changes in intengtyl (t)can reflect different events, for example, seasond factors. more fires in

summer, more car accidents during snowy winter, etc.

The applicaion of time-inhomogeneous Poisson process describing cdams aisng might be
useful for understanding al sorts of cycles and seasond trends in the work of an insurance
company.
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