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1 Introduction

Prediction of the future mortality of life annuity portfolios is one of the major con-

cerns faced by life insurance companies. This longevity is a known problem. Welfare

plans, general life planning and actuarial products are strongly depending on reliable

mortality estimation and life span prediction. Previous studies have established that

life expectancy is increasing (e.g. Macdonald, Cairns, Gwilt and Miller, 1998). Most

of these studies investigate the decline in mortality of the general population. In

this paper we will investigate the prediction problem and go through back-testing for

validation of the model. The single most important rule of prediction is that any

prediction model has to be validated. This paper makes a thorough examination of

the simplest and most popular prediction model, namely the prediction model using

the currently observed mortality as a prediction for future old-age mortality. We

call this predictor for the �at risk� estimator. This prediction estimator is compared

to the actually observed old-age mortality throughout the period 1900-1996 in Den-

mark. The latter comparison corresponds to what mathematical statisticians would

describe as a back-test validation of the model. The errors made by the prediction

model throughout the last century can be instructive as a rule-of-thumb type of mea-

sure of the magnitude of the errors made by the simple �at risk� prediction model.

Our study shows that the maximal error made by the simple prediction model corre-

sponds to an interest rate of 0.7% on life annuities. Another way of formulating this

is that old-age retirees have lived up to two years longer than the �at risk� prediction

model has indicated. We consider this result as an illustration of the usefulness of the

simple prediction model, since it did relatively well during the turbulent 20�th cen-

tury. If actuaries, selling life annuities today, reserve, lets say, something around 1%

on the interest rate as a safety margin, then we would consider the reserving problem

satisfactorily solved. Our point of validation implies that any other prediction model

used should be validated in a similar manner as the validation in this paper. It is an

established fact from general prediction theory that complication of the model often

harms the quality of a prediction. Therefore, we expect it to be difficult, but not im-

possible, to make a better prediction than the one performed by the simple �at risk�
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method. However, we do expect many currently used prediciton models to actually do

worse than the simple prediction model considered here. Some more complicated pre-

diction techniques include parametric graduation techniques (see Cramer and Wold,

1935, Buus, 1960 and Benjamin and Soliman, 1995) followed by a projection of these

parameters into the future.

Methodologically our starting point is the two-dimensional mortality estimator

that was deÞned theoretically in Nielsen and Linton (1995) and applied to Danish and

Spanish mortality data in Felipe, Guillen and Nielsen (2001). This two-dimensional

estimator considers the mortality, α (t, x), as a function of chronological time, t and

age x. All the statistics of this paper are functions of the two-dimensional curve

α (t, x) .

In §2 we specify the Danish data for the period from 1900 to 1996. In §3 we

consider the prediction principle and the underlying hazard estimator. In §4 we

compare the �at risk� hazard estimator with the experienced hazard estimator. In §5

we compare life expectancy derived from the two different hazard estimators and in

§6 we discuss the economic aspects of the two hazards when considering liabilities for

old age retirees.

All technicalities and estimation techniques are deferred to the appendix that

starts with the general model formulation based on counting processes followed by

the deÞnition of the version of the kernel hazard estimator of Nielsen and Linton

(1995) which is of particular interest to our study.

2 Data

The present case study is based on Danish population data. We have chosen to work

with the subset covering the period 1900-1996 selected from the original data covering

the period 1835-1996, see Andreev (1999). The data are discretized annually, i.e. we

have observed Ot,x, the number of occurred deaths in each year at a certain age, and

Et,x the number of people under exposure of death in the same period. We have

separate reporting on men and women. Here we show an example of the data for

Danish women.
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Table 1. Danish women. Number of occurred deaths Ot,x

for Danish women aged 48-53 in the years 1950-1955

48 49 50 51 52 53
1950 153 135 154 150 163 164
1951 140 113 140 144 183 163
1952 115 127 145 139 122 176
1953 124 131 109 137 171 180
1954 121 148 123 138 153 150
1955 112 102 137 138 141 173

Table 2. Danish women. Number of Danish women Et,xaged

48-53 in the years 1950-1955 under exposure for dying.

48 49 50 51 52 53
1950 27, 950 27, 240 26, 861 26, 139 26, 066 24, 946
1951 28, 038 27, 634 27, 080 26, 540 26, 322 25, 559
1952 28, 448 27, 915 27, 492 26, 941 26, 403 26, 160
1953 28, 956 28, 331 27, 771 27, 358 26, 800 26, 257
1954 29, 151 28, 829 28, 191 27, 649 27, 208 26, 651
1955 29, 526 29, 027 28, 693 28, 065 27, 506 27, 055

In table 1 O1950,49 denotes the number of people at age 49 dying in year 1950.

The occurrence O1950,49 is calculated from the original data by taking the sum of the

death counts in two lexis triangles. In this case 135 is the total of 72 deaths of people

born in 1900 and 63 deaths of people born in 1901 all aged 49. In table 2 E1950,49

denotes the number of people at age 49 under exposure of dying in year 1950. The

exposure is calculated as the average of people aged 49 at 1 January 1950 and people

aged 49 at 1 January 1951.

The simple estimator of the mortality of a 50 year-old in 1952 can be deÞned as:

bα (1952, 50) = O1952,50/E1952,50 = 145/27, 492 = 0.005274262

A simple kernel smoothed estimator can be expressed as:

α (1952, 50) =
P
O1951:1953,49:51/

P
E1951:1953,49:51 = 1, 185/247, 062 = 0.004796367
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Regarding the α (1952, 50) calculated above, we used the uniform kernel, i.e. the

kernel where all observations within the window applies in the expression for α with

the same weight. In the empirical study we use the Epanechnikov kernel function

weighting the observations with respect to the distance from the chosen values of

year, t and age, x.

The standardised occurrence- and exposure data are used for all further calcula-

tions in this paper.

3 The prediction principle and the underlying haz-
ard estimator

In this section we discuss the difference between the mortality of the population and

the mortality of a selected cohort of lives. We use our data plane to explain the

differences between the population risk and the cohort risk. Assume that we tried to

predict the future mortality in 1960.
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Year

1996

1995

1994

1980

1979

1978

1964

1963

1962

1961

1960

1900

0 1 65 66 67 68 69 70 71 99 100

Age

5 years

35 years

Cohort

Population

Fig 1. Cohort vs. Population.

The striped area in Fig. 1 describes the populations� mortality in 1960 for the age

range 65-100 years. The estimator based on the available data in 1960, α (1960, x),

is called the �at risk� estimator of mortality. This is the simplest and most widely

used predictor of mortality. The correct future mortality of a 65 year-old person in

1960 is, however, not described by data of a 65 year-old in 1960, a 66 year-old in

1960 and a 67 year-old in 1960 and so on. It is described by a data of 65 year-old

in 1960, a 66 year-old in 1961 and a 67 year-old in 1962 and so on. Therefore, data

from the striped area is used to predict the mortality corresponding to the solid dark

grey area of Fig. 1. As mentioned in the introduction, some prediction methods,

(see among many others Daykin (1998, p333)), try to develop methods that take the

difference of the known striped area and the unknown dark grey area into account.

Daykin�s conclusion is based on a rate of decline in mortality and it corresponds more
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or less to a model assumption of a multiplicative relationship of the hazard with the

entering components age and chronological time. It is seen from the study of Felipe et

al. (2001) and Fledelius, Guillen, Vogelius and Nielsen (2001) that this mulplicative

model can not be supported by historical data. This does not imply that the model

assumption of multiplicative hazards is useless for prediction, but it does indicate that

we have to be very careful with this type of quite strong model assumptions. A careful

validation method should be implemented of the multiplicative hazard assumption

before it can be said that its predictive power is better than the predictive power of

the simple �at risk� estimator considered in this paper.

Note that we need 35 years of data to be able to compare the future mortality,

up to 100 years, of a 65 year-old. Therefore 1960 is the last year, where we are able

to calculate and validate the prediction.

In the rest of the paper we compare the �at risk� prediction method with the

actual observed future mortality of the 65 years with chronological starting points

in 1900-1960. We consider both the mortality itself, the expected life times and

present values of annuities while performing these comparisons. All of these three

quanties are functionals of the underlying two-dimensional hazard described in the

introduction. We use two-dimensional kernel smoothing as introduced by Nielsen

and Linton (1995) to get a nice starting point for our investigations, (see Appendix).

As a quick introduction to the concept of multidimensional smoothing of hazards

consider the mortality estimate based on the raw fractions of the yearly occurences

and exposures from Section 2, see Fig. 2. Clearly, the ragginess is rather confusing,

while the smoothed two-dimensional hazard is a better starting point for an analysis

(see Fig. 3).
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Fig 2. The raw two-dimensional mortality estimator.

Danish women 1835-1996
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Fig 3. The kernel smoothed two-dimensional mortality estimator.

Danish women 1835-1996. Bandwith 5 years in age direction and 5 years in time direction.

4 Comparing the predicted mortality and the ob-
served mortality

In this section we compare the predicted values based on the �at risk� estimator with

the observed mortalities. We illustrate this through the ratio between the mortality

in year t of the population aged 65-100 years and the realized mortality for a cohort of

people aged 65 in year t. We graphically display the results for the years 1900-1980.

For the years 1970 and 1980 we were not able to observe the cohorts until a 100 years

of age. Therefore, the graphs for the 1970 cohort the 1980 cohort depict age ranges

from 65-90 and 65-80 respectively.
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Regarding women we see that from year 1930 and onwards the �at risk� prediction

of mortality is overestimating the cohorts experienced mortality by 15-40 percent.

This is a natural consequence of the decline in mortality rate in this period. Regarding

Danish men, again the population�s mortality is an overestimation of the experienced

mortality. Yet the results for Danish men are not as signiÞcant as for Danish women.

In Fig. 4 the Þrst graph shows the ratio between the �at risk� mortality in year 1900

and the experienced mortality of the cohort of women aged 65 in year 1900. The

value at age 65 is exactly one, as it is deÞned as α(1900,65)
α(1900,65)

. The value at age 66

corresponds to α(1900,66)
α(1901,66)

, the value at age 100 corresponds to α(1900,100)
α(1935,100)

. Values larger

than one indicate declining levels of mortality with respect to calender time. All the

graphs are provided with conÞdence bands. The conÞdence bands are calculated by

using the bootstrap method, (see Fledelius et al. 2001). The conclusion of Fig. 4 on

Danish women is that prediction errors on the mortality are observed up to 40% of

the underlying mortality.
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Fig 4. Hazard Ratios. Danish Women 1900-1980

It is also clear from Fig. 4 that there has been a tendency towards a longevity effect

during the observed period leading to a systematic overestimation of the mortality by

the �at risk� estimator. However, since the two Þrst graphs from 1900 and 1910 both

have values at approximately 1 there is no indication of decreasing mortality through

the Þrst twenty years of the previous century. On the 1920-graph we see that from age

85 years until 100 years the ratio increases to a level 15− 20% over the baseline. The

direct interpretation is that the mortality of 95 year-old in year 1920 was 12 − 13%

higher than the mortality of a 95 year-old in 1950. All the years 1930-1970 result in
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ratios larger than one. The largest difference is seen in year 1960, where the difference

increases to almost 40%. We were not able to follow the 1970 and 1980 cohorts for

until age 100. The 1970 graph indicates decreasing mortality, the 1980 graph does

not give any precise conclusion. The overall conclusion is that Danish women tend

to have a declining mortality and that the �at risk� method has underestimated the

prediction of the future mortality signiÞcantly in the period 1940-1960.
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Fig 5. Hazard Ratios. Danish Men 1900-1980

In Fig. 5, we show the same graphs for Danish men. They also show signs of

decreasing mortality with respect to calender time. Regarding the 1900 and the 1910
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cohort, we note that the level of the ratio is generally greater than one. In 1920 the

level is very close to one. The 1930 cohort follows the baseline the Þrst ten years before

the ratio slopes upward indicating that the mortality is dropping to lower levels. The

1940 cohort clearly has a lower mortality than the 1940 �at risk� estimator . This is

less signiÞcant in 1950 and 1960, but the levels are generally larger than one. The

graph from the 1960 observed cohort even shows an increase in mortality the Þrst

ten years compared to the mortality of the �at risk� population in 1960. In 1970 and

1980 we note that the ratios follow the baseline, i.e. there are no signiÞcant changes

in mortality for elderly Danish men in these years. The overall conclusion concerning

Danish men is that the 1900 and the 1910 cohorts underwent a slow decrease in

mortality. In 1930 and more signiÞcantly in 1940, again we experienced declining

mortality for Danish men aged 65-100. In 1960 we have a short period of increasing

mortality followed by a decrease in mortality. The error of prediction experienced by

the �at risk� estimator was between 0% and 20%.

5 Comparing the predicted life expectancy and
the observed life expectancy

In this section we perform the same type of comparison of past prediction errors on

life expectancies as we did in the previous section on the mortality curve itself. Life

expectancy is a functional of the two-dimensional hazard α (t, x). For a given age

and a given chronological time, the remaining lifetime for a cohort is deÞned as:

◦
et,x=

Z ∞

0
exp

½
−

Z s

0
α (t+ u, x+ u) du

¾
ds

and life expectancy can therefore be estimated simply by plugging in the estimated

smooth two-dimensional hazard as described in the appendix, see also Gerber (1995)

or Jordan (1967) for classical references to expected remaining lifetime formulation

and estimation. We call the estimator
◦
et,x the observed expected life time. The

problem we face while applying
◦
et,x in practice is that it can only be estimated

retrospectively and it is therefore not suitable for prediction purposes. The time

invariant estimator deÞned as
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et,x =
Z ∞

0
exp

½
−

Z s

0
α (t, x+ u) du

¾
ds

can, however, be used for prediction. Newman (1986) considered this (calendar)

time invariant estimator that exactly corresponds to our �at risk� prediction of the

life expectancy when our two-dimensional smooth mortality estimator is plugged

in. We calculate the experienced remaining life expectancy for selected cohorts and

the expected remaining lifetime for the sample under exposure in every year from

1900 until 1996. We restrict our presentation to 65 years old. The calculation of

the remaining life expectancy is carried out under the assumption that we have a

maximum obtainable age of 100 years. With data from years 1900 until 1996 we are

able to make a full comparison of the two estimators regarding the interval 1900 until

1960.

Remaining Life Expectancy in age 65-100, Women

Year

1900 1910 1920 1930 1940 1950 1960

1
3

1
4

1
5

1
6

1
7

Fig 6. Comparison between life expectancy of a 65 year-old

and the realized life span of a 65 year-old. Women.

Regarding the �at risk� estimator for Danish women, see Fig. 6, we note that it

remains at a level around 13 years from 1900 until 1933. From 1935 until 1960 the

graphs slope upwards showing an increase in life expectancy. In the late 1950�s the

estimator reaches 15 years. We experience an increase from 13 to 15 years over 25
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years. We see a constant slope from 1940 until 1960. There is no sign of convergency.

The realized life expectancy of Danish women also starts at a level around 13 years.

In 1924 the graph starts sloping upward. From 1925 until 1956 the graph has an

increasing slope. From 1957 to 1960 we experience an increase in life expectancy, but

we do not see an increasing slope in this interval. The observed life expectancy for

Danish women aged 65 in 1960 was approximately 16.8 years.

When comparing the two graphs we see that from 1900 until 1923 there was

no signifcant difference between the two estimators. From 1924 until 1960 we see

a signiÞcant difference between the two estimators. The �at risk� life expectancy

predictor underestimates the life span up to 9− 10%.

Remaining Life Expectancy in age 65-100, Men

Year

1900 1910 1920 1930 1940 1950 1960

1
2

.0
1

2
.5

1
3

.0
1

3
.5

1
4

.0

Fig 7. Comparison between life expectancy of a 65 year-old

and the realized life span of a 65 year-old. Men.

Regarding the �at risk� estimator for Danish men in Fig. 7, we see an increase in

life expectancy from 11.6 years to 12.8 years in the interval 1900 until 1922. From

1923 until 1938 life expectancy starts a slow decline to a level of 12.7 years. From

1938 until 1952 again we see an increase from 12.7 years to 13.9 years. From 1953

until 1960 the graphs decline to a level of 13.7. The overall impression is a general

increase in life expectancy. The observed life expectancy for Danish men aged 65

was 12.1 years in 1900. We see an increase in life expectancy until 1955, where
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the level almost reaches 14 years. From 1956 until 1960 we experience a minor

decrease in life expectancy. A comparison of the two graphs makes us conclude that

the observed life expectancy estimator generally has larger values than the �at risk�

estimator. In 1938 we experience a difference of 7%. The overall impression is, that

the observed life expectancy estimator has values 2 − 3% larger than the �at risk�

estimator. Before calculating the estimators, the two-dimensional hazard estimator

α (t, x) was smoothed by kernel smoothing. Yet it is easy to see that the �at risk�

estimator is ragged compared to the observed life expectancy estimator. The reason

for this is that the �at risk� estimator primarily is based on data from a single year.

If this year was an �outlier� year, i.e. a year with one or more epidemics, we would

expect a high mortality that single year. When calculating the life expextancy for

the population at risk this year, we therefore experience a high mortality causing

a low life expectancy. Therefore the �at risk� estimator will be more volatile than

the cohort estimator. When using the �at risk� estimator as a predictor of future

mortality, we need to take these aspects into consideration. In the next section, we

consider different interest rate scenarios and discuss how the longevity tendencies can

be taken into account when calculating reserves in life insurance.

6 Financial aspects of prediction errors

In this section we will discuss the Þnancial aspects of prediction errors due to changes

in mortality. When mortality changes the value of a life annuity changes. We discuss

the prediction errors due to the longevity effect under different basic interest rate

scenarios. Clearly, an insurance company selling life annuities is forced to reserve for

the uncertainty in future mortality. Furthermore we conclude that a reasonable safety

margin is around 1% on the technical interest rate corresponding to a safety margin

of two more lived years for each old-age retiree. Originally, we used three levels of

interest rates, r, namely 3%, 5% and 10%, but we have restricted the presentation to

the analysis based on the 5% scenario, since our conclusions were surprisingly robust

to the choice of basic interest rate.

Basically the technique is to add discounting factors to the survival probabilities.
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In the previous section we did not have any discounting. That corresponds to a zero

interest scenario, i.e. a payment of one unit today is worth the same as a payment

of one unit in e.g. Þve years. When introducing an interest level for discounting, we

will deÞne the present value of the future payments as:

◦
PV t,x,r=

Z ∞

0
exp(−δrs) exp

½
−

Z s

0
α (t+ u, x+ u) du

¾
ds, where δr = log(1 + r)

As in the previous chapter we will also introduce the present value based on the

time invariant mortality estimator. In this case we deÞne:

PVt,x,r =
Z ∞

0
exp(−δrs) exp

½
−

Z s

0
α (t, x+ u) du

¾
ds, where δr = log(1 + r)

It is seen that
◦
PV t,x,0 equals to

◦
et,x as the term δr = log(1 + r) = 0 and the

following term exp(−δrs) = 1. With a positive basic interest level, r>0, we will see

that
◦
PV t,x,r<

◦
et,x. In the zero interest scenario in the last section we saw that the

mortality greatly inßuenced the expected present value of a life annuity. In scenarios

with interest we will see, again, that mortality has great inßuence on present values

of future payments.

Present Value of Life insurance age 65-100, interest rate = 5%, Women

Year

1900 1910 1920 1930 1940 1950 1960

9
.0

9
.2

9
.4

9
.6

9
.8

1
0

.0
1

0
.2

Fig 8. Comparison between expected present value of a life annuity and

realized present value of a life annuity for 65 years old Danish women.

Basic interest rate equals 5%
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Regarding Danish Women in Fig. 8, the shape of the graphs looks similar to the

graph in the previous section. As expected the general level of the present values is

now lower due to the introduced interest rate, r = 5%. The general level is now 9−11

years. In the zero interest scenario it was 13 − 17 years. Note that the difference

between
◦
PV t,x,r and PVt,x,r is reduced to approximately 7% in year 1960. It was

9− 10% in the scenario without discounting.

Present Value of Life insurance age 65-100, interest rate = 5%, Men

Year

1900 1910 1920 1930 1940 1950 1960

8
.4

8
.6

8
.8

9
.0

9
.2

9
.4

Fig 9. Comparison between expected present value of a life annuity and

realized present value of a life annuity for 65 years old Danish men.

Basic interest rate equals 5%

Regarding the Danish men in Fig. 9, again we note that the general shape of the

curves is the same as before and that the general level is lowered to 8.5-9.5. In the

zero interest scenario the level was 12-14. The largest difference between the
◦
PV t,x,r

and PVt,x,r in year 1938 is now approximately 5%, in the zero interest scenario it was

7%.

We would now like to describe these differences as an excess discount on the
◦
PV t,x,r. We are able to introduce additional discounting on

◦
PV t,x,r simply by this

deÞnition:

◦
PV t,x,r,ε=

Z ∞

0
exp(−δr,εs) exp

½
−

Z s

0
α (t+ u, x+ u) du

¾
ds, where δr,ε = log(1+r+ε)
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The general formula is left unchanged, but the deÞnition of δr,ε is new. Our aim

is to Þnd the level of excess discount ε, resulting in
◦
PV t,x,r,ε= PVt,x,r. By different

choices of ε we are able to Þnd a level of the excess discount, suitable for valuation

the mortality risk, but measured in a standard Þnancial term. We have tried with ε

taking values in the value set (0%, 0.1%, 0.3%, 0.5%, 0.7% and 0.9%).

Excess discount on cohort - age 65-100, Women

Year

1900 1910 1920 1930 1940 1950 1960

1
2

1
3

1
4

1
5

1
6

1
7

Excess discount on cohort - age 65-100, interest rate = 5%, Women

Year

1900 1910 1920 1930 1940 1950 1960

8
.0

8
.5

9
.0

9
.5

1
0

.0
1

0
.5

1
1

.0

Fig 10a+b. Women. Valuation af the difference between expected present value of life annuity

and realized present value of life annuity.

Additional discounting (0.1%, 0.3%, 0.5%, 0.7%, 0.9%) on realized present value of life annuity.

Regarding Danish women in Fig. 10a the zero interest scenario, we see that the
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changes in mortality can be expressed as an extra discounting on future payments.

We note that from 1935 until 1960 the suitable level of extra discount is approximately

0.7%− 0.9%. The straightforward interpretation of this result is: If we had sold life

annuities to 65 years old Danish women, priced on the most updated mortality data,

we would have underestimated the liabilitites. The experienced annual payments are

supposed to be discounted by 0.7%− 0.9% to equal the expected present value of the

life annuity.

Regarding the 5% in interest scenario in Fig 10b we note that the excess discount

is now reduced to 0.6% − 0.7%. So, even in a more realistic scenario, we establish

that changes in mortality for elderly people have great impact on the life annuity

reserving.

Excess discount on cohort - age 65-100, Men

Year

1900 1910 1920 1930 1940 1950 1960

1
1

1
2

1
3

1
4

1
5

20



Excess discount on cohort - age 65-100, interest rate = 5%, Men

Year

1900 1910 1920 1930 1940 1950 1960

8
.0

8
.5

9
.0

9
.5

1
0

.0

Fig 11a+b. Men. Valuation of the difference between expected present value of life annuity

and realized present value of life annuity.

Additional discounting (0.1%, 0.3%, 0.5%, 0.7%, 0.9%) on realized present value of life annuity.

Regarding Danish men in Fig. 11a the zero interest scenario, we see that the

largest difference between
◦
PV t,x,r and PVt,x,r is in year 1938-1939. To match the

changes in mortality we have to introduce an excess discount, ε equal 0.8%. Further-

more we note that the problem was not a large problem at the end of our observation

period 1950-1960. In the 5% in Fig 11b scenario we determine ε at almost 0.7%.

7 Concluding remarks

This paper investigates the simplest and most popular prediction model, the �at risk�

estimator. This prediction estimator is compared to the actually observed mortality

throughout the period 1900-1996 in Denmark. Our investigations show that the max-

imal error made by the simple mortality prediction model corresponds to an interest

rate of 0.7% on life annuities. In other words must the insurance company generate

a 0.7% better Þnancial result to neutralize the longevity changes. Though the trends

for the two genders are quite different, we do obtain the same results when regarding

a safety margin on reserve calculations on life annuities.

The results make us conclude that the traditional �at risk� estimator of future

mortality is not that bad and that it can serve as a basis for reserving purposes.

21



We also note that any other prediction method should be validated in a similar

manner. One could for example envision a semiparametric multiplicative model with

a non-parametric age effect and a parametric calender time effect. The parametric

model on the calender time effect could for example imply an exponential decrease in

mortality. However, such a semiparametric model is not necessarily better than the

simple prediction model presented in this paper. One way of validating the quality

of the semiparametric approach would be to go through the same type of validation

calculations for the semiparametric prediction model as we have given in the present

paper for the simple �at risk� estimator of future mortality. A direct comparison of the

prediction behaviour of the two prediction approaches would then serve as a useful

evaluation of which one to use in praxis.

8 APPENDIX

In this appendix we deÞne our two-dimensional hazard estimator and our basic model.

We observe n individuals i = 1, .., n. Let N (n)
i count observed failures for the i�th

individual in the time interval [0, 1]. We assume that N(n) = (N
(n)
1 , .., N (n)

n ) is an n-

dimensional counting process with respect to an increasing, right continuous, complete

Þltration F (n)
t , t ∈ [0, 1], i.e. one that obeys les conditions habituelles, see Andersen

et al. (1992, p60). We model the random intensity process λ(n) = (λ
(n)
1 , ..,λ(n)

n ) of

N(n) as depending on marker values,

λ
(n)
i (t) = α{X(n)

i (t), t}Y (n)
i (t),

but do not restrict the functional form of α(�). Here, Yi is a predictable process taking
values in {0, 1}, indicating (by the value 1) when the i�th individual is under risk, t

is chronological time and X(n)
i (t) is age of the i�th individual and the chronological

time t.

The estimator suggested by Nielsen and Linton (1995) is

bα(x, t) =

Pn
i=1

R 1996
1900 Kb1 (t− s)Kb2 {x−Xi(s)} dNi(s)Pn

i=1

R 1996
1900 Kb1 (t− s)Kb2 {x−Xi(s)}Yi(s)ds

=
Ox,t
Ex,t

. (n1)
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where

Ox,t =
nX
i=1

Z 1996

1900
Kb1 (t− s)Kb2 {x−Xi(s)} dNi(s)

and

Ex,t =
nX
i=1

Z 1996

1900
Kb1 (t− s)Kb2 {x−Xi(s)}Yi(s)ds

are respectively the smoothed occurence and the smoothed exposure. Nielsen

(1998) pointed out that this estimator could be interpreted as a local constant marker

dependent hazard estimator. Let for a moment the kernel K(x) equal I(|x| < 1),then

Ot,x corresponds to the observed number of failures with deaths in the chronological

time interval [t−b, t+b] and age in the interval [x−b, x+b] and Et,x corresponds to the

exposure time observed in the area in the chronological time interval [t− b, t+ b] and
age in the interval [x−b, x+b].The local constant kernel estimator hereby corresponds

to the well known occurrence exposure ratio.
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