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ABSTRACT

Recent mortality trends lead to the use of projected mortality tables when pricing and reserving for life

annuities (as well as for other living benefits, such as Long Term Care benefits, whole life sickness benefits,

etc.). However mortality patterns continuously evolve along time, so that any projection might reveal weak

when used for pricing new annuities and reserving for in-force business. Hence, adjustments must be made

in pricing and reserving bases. Monitoring mortality provides data, while an appropriate inferential model

should constitute the structure underpinning the adjustment procedure. In this paper, inference about

portfolio mortality trends is first focussed. Then, a Bayesian inferential model is proposed, aiming at mortality

adjustments based on prior information and statistical evidence. Numerical examples illustrate the inferential

mechanism. Finally, some actuarial applications are proposed.
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1. INTRODUCTION

Recent trends in mortality (see for example Macdonald (ed.), 1997; Macdonald et al,
1998) lead to the use of projected survival models when pricing and reserving for life
annuities and other long-term living benefits. Several projection models have been
proposed and are actually used in actuarial practice (for example, see Benjamin and
Pollard, 1993; Benjamin and Soliman 1993; CMIR, 1990; CMIR, 1999; Renshaw and
Haberman, 1996; Sithole, Haberman and Verrall, 2000). However, the future mortality
trend is random and hence, whatever kind of model is adopted, systematic deviations
from the forecasted mortality may take place. Then, a “model” (or “parameter”) risk
originates, which is clearly a non-pooling risk. Changes in the mortality pattern refer
to both young and old ages. When the random mortality trend at old ages is concerned,
the risk is usually referred to as “longevity risk”.
The longevity risk has been dealt with by Marocco and Pitacco (1998), where reinsur-
ance arrangements facing this risk are also discussed. Olivieri (2001) considers future
mortality trends at young ages and old ages as well, and suggests an assessment of the
impact of systematic deviations on term insurance and life annuities portfolios. The
longevity risk affecting sickness benefits for the elderly (for example, post-retirement
sickness benefits) is analysed by Olivieri and Pitacco (1999). The longevity risk in life
annuities portfolio and the relevant solvency requirements are dealt with in Olivieri
and Pitacco (2000), where also investment risk is considered. The papers by Ferri and
Olivieri (2000) and Olivieri and Pitacco (2001) concern long-term care (LTC) benefits
in a moving scenario in which both future mortality and future senescent disability are
random. Longevity risk under a risk management perspective is analysed by Riemer-
Hommel and Trauth (2000).
The continuous evolution of mortality patterns requires progressive adjustments in pric-
ing and reserving bases. Monitoring mortality provides data, while an appropriate
inferential model should constitute the structure underpinning the adjustment proce-
dure. In this paper, inference about portfolio mortality trends is first focussed. Then,
a Bayesian inferential model is proposed, aiming at mortality adjustments based on
prior information and statistical evidence. Finally, actuarial evaluations following the
adjustments in demographical bases are discussed. Some numerical examples illustrate
the inferential mechanism and the relevant actuarial consequences.
The paper is organized as follows. In Section 2 the basic aspects of mortality trends are
presented and the relevant demographical scenarios are depicted. Section 3 deals with
the concept of longevity risk, and describes demographical models allowing for this risk.
Section 4 deals with Bayesian inference on future mortality. A particular model is then
proposed in Section 5; numerical examples illustrate its implementation. In Section 6
actuarial issues are considered. Finally, in Section 7 some conclusions are presented.

2. MORTALITY TRENDS

Mortality experience over the last decades shows some aspects affecting the shape of
curves representing the mortality as a function of the attained age. In particular (see
Olivieri, 2001):



(a) an increasing concentration of deaths around the mode (at old ages) of the curve
of deaths (the graph of the probability density function of the random lifetime in an
age-continuous setting) is evident; so the survival function moves towards a rectangular
shape, whence the term “rectangularization” to denote this aspect (see Figure 2.1);
(b) the mode of the curve of deaths (which, owing to the rectangularization, tends to
coincide with the maximum age ω) moves towards very old ages; this aspect is called
“expansion” of the survival function (see Figure 2.2);
(c) higher levels and a larger dispersion of accidental deaths at young ages (the so-called
young mortality hump) have been more recently observed.
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Figure 2.1 – Survival function: Figure 2.2 – Survival function: Figure 2.3 – Mortality profile
rectangularization expansion at age x

Consider the mortality rate qx(y), i.e. the probability for an individual aged x in the
calendar year y, of dying between ages x and x + 1. The mortality profiles (i.e. the
behaviour of the mortality rates qx(y) as functions of the calendar year y) are typi-
cally decreasing at adult and old ages (as sketched in Figure 2.3). Rectangularization
and expansion phenomena are witnessed by mortality experience in a number of coun-
tries. The reader can refer to Macdonald et al (1998) for an interesting international
comparison.
Observed mortality trends lead to the construction of projected mortality models for
actuarial use, especially when living benefits are concerned. When projecting mortality,
the basic idea is to express the mortality itself as a function of the (future) calendar
year y. If a single-figure representation of mortality is concerned, a projected mortality
model is a real-valued function Ψ(y). For example, the expected lifetime for a newborn,
denoted by e0 in a non-projected context, is represented by a function e0(y) when the
future mortality trend is considered.
In actuarial calculations, the expression of mortality as a function of age is needed.
Then, in a projected context mortality at any age x must be considered as a function of
the calendar year y. Hence, in a rather general setting, a projected mortality model is a
function Ψ(x, y), which may be a real-valued or a vector-valued function. The function
is selected and, in particular, its parameters are estimated by applying appropriate
statistical procedures to past mortality experience. In concrete terms, a real-valued
function Ψ may represent mortality rates, mortality odds, a force of mortality, a survival
function, a mortality density function, some transform of the survival function, etc.
When a vector-valued function Ψ is concerned, its components typically refer to various
causes of death.
A number of projection models are described in the actuarial literature. General pre-
sentations are provided, for example, by Benjamin and Pollard (1993); Benjamin and



Soliman (1993); Petauton (1996). Specific models are proposed, in particular, by CMIR
(1990); CMIR (1999); Renshaw and Haberman (1996); Sithole, Haberman and Verrall
(2000). Projection models can be classified according to several points of view. In
particular, we can recognize the following types of models.
- Projection models referring to the mortality rates qx(y) and mainly based on ob-
servations concerning the mortality profiles (see Figure 2.3). The models themselves
consist in straight extrapolation procedures of the mortality rates observed in the past.
Generally, extrapolation procedures do not ensure the representation of sensible future
scenarios. Moreover, inconsistencies may emerge as a result of the extrapolations; for
example we may find, for some future calendar year y, qx′(y) < qx′′(y) with x′ < x′′,
even at old ages.
- Projection models based on mortality laws (such as Gompertz, Makeham, Thiele,
Weibull, Heligman-Pollard, etc.). These models are based on the extrapolation of the
parameters of the assumed mortality law, and allow us to express the main features of
the evolving scenario, such as the rectangularization and the expansion.
In this paper, we only focus on the latter type of models, which also allow for a simple
representation of the uncertainty in mortality trends. Moreover, in this framework the
definition of an inferential procedure is straightforward.

3. THE LONGEVITY RISK

The future mortality trend is obviously random and hence, whatever kind of projection
procedure is adopted, systematic deviations from the forecasted mortality may occur.
Depending on the statistical model adopted in analysing past data and forecasting mor-
tality, in some cases the assessment of uncertainty in future mortality trends constitutes
an output of the statistical model itself.
In general terms, thus disregarding the possibility of finding a risk assessment arising
from the statistical procedures adopted, we now focus on possibile systematic deviations
from the (point) estimation of future mortality, then on the “model” (or “parameter”)
risk inherent in mortality projections. Obviously, this risk has important consequences
on life insurance valuations, especially when living benefits are concerned. Restricting
our attention to trends of the mortality pattern at old ages only, we will refer to this
risk as “longevity risk”.
Let us now define a probabilistic structure allowing for uncertainty in future mortality
trends.
Refer to a newborn and denote by f(t) the probability density function (pdf) of his/her
random lifetime T . Consistently with a given forecast of the mortality trend, f(t)
should express a mortality projection. However, within a projection context, a specific
pdf should be used for each generation. Then, for any given calendar year of birth y,
let f(t, y) denote the pdf referring to individuals born in year y.
In order to express several possible evolutions of mortality, a family of projected pdf’s
should be considered for each year of birth y, rather then a single pdf f(t, y). Denote
by H(y) an hypothesis about the mortality trend for people born in year y. Hence, the
family of pdf’s

{f(t, y|H(y));H(y) ∈ H(y)} (3.1)



should be addressed, H(y) denoting a given set of hypotheses. In particular, if possible
evolutions of mortality are expressed via some parameters of the pdf, the family (3.1)
can be denoted as follows:

{f(t, y|θ(y)); θ(y) ∈ Θ(y)} (3.2)

where θ(y) denotes a vector-valued (in particular, a real-valued) parameter and Θ(y)
denotes the parameter space.
Note that, for any given calendar year y, f(t, y|H(y)) and, respectively, f(t, y|θ(y))
represent the lifetime pdf’s conditional on a specific hypothesis, expressed by H(y) and
θ(y) respectively, about the mortality trend.
For simplicity, in what follows we address one generation, i.e. a given year of birth.
Then, y can be left out. So, the family of projected pdf’s can be simply denoted as
follows:

{f(t|H); H ∈ H} (3.1′)

and respectively:
{f(t|θ); θ ∈ Θ} (3.2′)

Let us focus the parameterized case, viz. the family (3.2′). Let us express our opin-
ion about possible future mortality evolutions by assigning a probability distribution
on the parameter space Θ. Denote, in the continuous case, by g(θ) the pdf of the
random parameter θ̃, with

∫

Θ g(θ)dθ = 1. If a discrete setting is chosen, we have
g(θ) = Pr{θ̃ = θ} with

∑

θ∈Θ = 1.
The unconditional pdf of the random lifetime is given by:

f(t) =
∫

Θ
f(t|θ)g(θ)dθ (3.3)

in the continuous case, and in the discrete one by:

f(t) =
∑

θ∈Θ

f(t|θ)g(θ) (3.4)

Note that, conditional on a given mortality scenario, i.e. conditional on θ̃ = θ, the
expected value and the variance of the random lifetime T are respectively given, in the
continuous case, by:

E(T |θ) =
∫ +∞

0
tf(t|θ)dt (3.5)

V ar(T |θ) =
∫ +∞

0
(t− E(T ))2f(t|θ)dt (3.6)

The unconditional expected value and variance, on the contrary, are respectively given
by:

E(T ) =
∫ +∞

0
tf(t)dt =

∫ +∞

0

∫

Θ
tf(t|θ)g(θ)dθdt (3.7)

V ar(T ) =
∫ +∞

0
(t− E(T ))2f(t)dt =

∫ +∞

0

∫

Θ
(t−E(T ))2f(t|θ)g(θ)dθdt (3.8)



The corresponding expressions in the discrete case are straightforward.
In both the continuous and the discrete case, for the variance the following well known
result holds:

V ar(T ) = E[V ar(T |θ̃)] + V ar[E(T |θ̃)] (3.9)

the first term on the right-hand side of (3.9) gives account of random fluctuations
around the expected values, whereas the second one expresses systematic deviations of
observed values from expected ones, hence representing the longevity risk.
Finally, note that in a Bayesian inferential framework, the unconditional pdf f(t) must
be meant as the (prior) predictive pdf, whereas the function g(θ) represents the prior
pdf on the parameter space Θ.

4. BAYESIAN INFERENCE

So far we have introduced a probabilistic structure aiming at describing the randomness
of the future mortality evolution. Now we turn to inferential issues, and in particular
to the construction of a Bayesian inferential model.

4.1 The Bayesian inferential model. Consider, at a given point of time τ , a
homogeneous sample of n individuals, all born at time 0 and hence aged τ . Let Th

denote the (total) lifetime for the h-th individual (so that Th − τ represents his / her
residual lifetime, given that the individual is alive at age τ), h = 1, 2, . . . , n. Assume
that, conditional on any hypothesis θ̃ = θ, the random variables (r.v.) T1, T2, . . . , Tn

are independent and identically distributed (i.i.d.). The sampling pdf is then:

fτ (t|θ) =

{

0 for t ≤ τ
f(t|θ)

∫ +∞

τ
f(u|θ)du

for t > τ (4.1)

The quantity
∫ +∞

t f(u|θ)du is the probability for a newborn of being alive at age t,
given θ. If considered as a function of t, it represents the conditional survival function
S(t|θ):

S(t|θ) = Pr{Th > t|θ} =
∫ +∞

t
f(u|θ)du (4.2)

So we have:

fτ (t|θ) =
{

0 for t ≤ τ
f(t|θ)
S(τ |θ) for t > τ (4.3)

The multivariate sampling pdf is then given by:

fτ (t1, t2, . . . , tn|θ) =
n

∏

h=1

fτ (th|θ) (4.4)

Finally, note that

fτ (t) =
∫

Θ
fτ (t|θ)g(θ)dθ (4.5)

represents the (prior) predictive pdf restricted to the age interval [τ, +∞).



Assume now that the observation period is the (limited) interval of time [τ, τ ′]. The
number of deaths in this interval is a r.v. Let m (m ≤ n) denote the relevant realization,
observed in τ ′. With a proper renumbering, let

x = (x1, x2, . . . , xm) (4.6)

denote the vector of ages at death. Note that the defined observation procedure implies
a Type I censored sampling (see, for instance, Namboodiri and Suchindran, 1987).
The following problem will now be addressed. Using the information provided by the
pair (m,x), construct the (posterior) predictive pdf fτ (t|m,x). To this purpose we
adopt the following procedure (usual in the Bayesian context), consisting of two steps:
(1) update our opinion about the possible evolution of mortality, and hence about the
probability distribution over the parameter space Θ, calculating the posterior pdf

g(θ|m,x) ∝ g(θ)L(θ|m, x) (4.7)

where L(θ|m, x) denotes the likelihood function;
(2) calculate the (posterior) predictive pdf as

fτ (t|m,x) =
∫

Θ
fτ (t|θ)g(θ|m,x)dθ (4.8)

Step (1) requires the construction of the likelihood function L(θ|m,x). To this purpose,
denote by Sτ (t|θ) the survival function for a generic individual aged τ , whose random
lifetime (at birth) is T . Then for any t, t > τ :

Sτ (t|θ) = Pr{T > t|T > τ ; θ} (4.9)

and obviously

Sτ (t|θ) =
S(t|θ)
S(τ |θ)

(4.10)

For the likelihood we have (see for example Namboodiri and Suchindran, 1987):

L(θ|m,x) ∝ [
m
∏

h=1

fτ (xh|θ)][Sτ (τ ′|θ)]n−m (4.11)

It is straightforward to rewrite the above equations referring to the case in which a
discrete parameter space Θ is concerned.

4.2 Some particular models. Several applications of Bayesian inference can be found
within the fields of survival analysis, reliability analysis and actuarial studies as well.
However, to our knowledge, up to now no specific analysis has been devoted to mortal-
ity trends and, in particular, to longevity risk in life annuities portfolios and pension
schemes. Some papers and textbooks follow, dealing with applications of Bayesian
inference to problems within the fields mentioned above.
Daboni (1972) deals with inferential problems concerning the mortality of assured lives.
A survival function approximating the Makeham law was chosen, aiming at working
within the so-called exponential family. Two parameters were considered to be random



and a continuous joint pdf for the parameters was chosen as the natural conjugate of
the sampling distribution.
As it is well known, choosing a conjugate prior distribution leads to the property that
the posterior distribution belongs to the same family as the prior distribution. However,
several Authors do not emphasize this advantage, and actually also use a variety of prior
distributions without this property (see, for example, Leonard and Hsu, 1999).
In the textbook by Leonard and Hsu (1999) the case of a Weibull sampling distribution is
discussed, in particular using gamma prior distributions for the two random parameters,
assumed to be independent.
The textbook by Martz and Waller (1982) deals with various inferential problems. In
particular, the case of a Weibull distribution is considered, with one or two random
parameters; in the latter case, a prior distribution is chosen, which is continuous with
respect to one parameter and discrete with respect to the other one.
Kim and Ibrahim (2000) investigate the properties of the posterior distribution under
the uniform improper prior for two commonly used proportional hazard models: the
Weibull model and the extreme value model.
Leonard and Hsu (1999) also consider the problem in which the uncertainty is repre-
sented by a family of pdf’s {f(t|H); H ∈ H}, thus disregarding parameterized represen-
tations. Assuming a finite space H, the uncertainty is expressed in terms of a discrete
probability distribution over H. The inferential model is embedded in the context of
the more general problem of model selection.

5. A BAYESIAN INFERENTIAL MODEL FOR FUTURE MORTALITY

5.1 The model. Assume that the probability distribution of the random lifetime (for
a fixed generation of lives) is represented by the Weibull model, hence with pdf given
by

f(t|α, β) =
α
β

(

t
β

)α−1

e−( t
β )α

; α, β > 0 (5.1)

the corresponding survival function is then

S(t|α, β) = e−( t
β )α

(5.2)

It is well known that, whilst the Weibull distribution does not fit well the mortality
pattern throughout the whole life span (especially owing to infant and young-adult
mortality), it provides a sensible representation of mortality at old ages. Moreover, the
choice of the Weibull model is supported by the possibility of easily expressing, in terms
of its parameters, the mode (for adult ages) of the distribution of the random lifetime
T ,

Mode(T |α, β) = β
(

α− 1
α

) 1
α

with α > 1 (5.3)

as well as the expected value and the variance,

E(T |α, β) = β Γ
(

1
α

+ 1
)

(5.4)



V ar(T |α, β) = β2

[

Γ
(

2
α

+ 1
)

−
(

Γ
(

1
α

+ 1
))2

]

(5.5)

where Γ denotes the complete gamma function (see, for example, Johnson and Kotz,
1970). This possibility allows us to easily choose projected survival functions reflecting
specific future trends of mortality (see also Olivieri and Pitacco, 1999; Ferri and Olivieri,
2000; Olivieri and Pitacco, 2001).
It should be stressed that, anyhow, the overall structure of the inferential model remains
unchanged if different laws are used, such as the Gompertz or Makeham law.
Assume now that the two parameters in (5.1) and (5.2) are random, and denote them
by α̃ and β̃ respectively. Let αi, i = 1, 2, . . . , r and βj , j = 1, 2, . . . , s indicate their
possible values, thus working within a finite parameter space. Finally, let

g(αi, βj) = Pr{α̃ = αi ∧ β̃ = βj} (5.6)

trivially with
r

∑

i=1

s
∑

j=1

g(αi, βj) = 1 (5.7)

The (prior) predictive pdf is hence given by

f(t) =
r

∑

i=1

s
∑

j=1

f(t|αi, βj)g(αi, βj) (5.8)

Let us turn again to the inference problem introduced in Section 4.1. Since the obser-
vation process concern people all aged τ , the pdf and the survival function involved are
respectively given by fτ (t|αi, βj) and Sτ (t|αi, βj) (see (4.1), (4.9) and (4.10)).
Denoting the observed sample as in Section 4.1, for the likelihood function we have:

L(αi, βj |m,x) ∝

[

m
∏

h=1

fτ (xh|αi, βj)

]

[Sτ (τ ′|αi, βj)]
n−m =

=













αi
βj

e
−
(

τ
βj

)αi







m
(

m
∏

h=1

(

xh

βj

)αi−1

e
−
(

xh
βj

)αi )














e
−
(

τ′
βj

)αi

e
−
(

τ
βj

)αi









n−m

(5.9)

For the posterior pdf we have:

g(αi, βj |m,x) ∝ g(αi, βj)L(αi, βj |m, x) (5.10)

obviously with
r

∑

i=1

s
∑

j=1

g(αi, βj |m,x) = 1 (5.11)

Finally, the (posterior) predictive pdf can be calculated as

fτ (t|m, x) =
r

∑

i=1

s
∑

j=1

fτ (t|αi, βj)g(αi, βj |m,x) (5.12)



5.2 Numerical examples. Let us consider a cohort of n = 1000 males aged τ = 60
in current year and choose the observation period [60,65]. The cohort is assumed to
be homogeneous; therefore the same pdf can be adopted for the random lifetimes Th,
h = 1, 2, . . . , n; in what follows, we denote the random lifetime of a generic individual
in the cohort simply by T . Adopting the Weibull model for representing the pdf of the
duration of life, the following parameter space has been considered

Θ = {(α1, α2, . . . , α5), (β1, β2, . . . , β5)}
= {(7, 8, 9.15, 10.45, 12), (82, 83.5, 85.2, 87, 89)}

Hence, 25 scenarios describe the possible future evolution of mortality. Table 5.1–5.3
quote the expected value, variance and mode at adult ages (i.e. the so-called “Lexis
point”) of the duration of life under each scenario at age 65 (i.e. at the end of the
observation period). Note in particular the phenomena of expansion (witnessed by the
expected value and mode) and rectangularization (witnessed by the variance) assumed
in each scenario.

α, β 82 83.5 85.2 87 89

7 16.097 17.187 18.450 19.816 21.364
8 15.548 16.680 17.991 19.411 21.021

9.15 15.155 16.331 17.695 19.170 20.841
10.45 14.902 16.126 17.542 19.072 20.802
12 14.764 16.036 17.506 19.090 20.877

Table 5.1 – E(T−65|T>65;α,β)

α, β 82 83.5 85.2 87 89

7 82.599 90.181 99.035 108.646 119.473
8 69.555 76.119 83.758 92.042 101.422

9.15 58.894 64.518 71.013 77.999 85.857
10.45 50.135 54.895 60.337 66.126 72.563
12 42.406 46.326 50.749 55.389 60.477

Table 5.2 – V ar(T−65|T>65;α,β)

α, β 82 83.5 85.2 87 89

7 80.214 81.681 83.344 85.105 87.062
8 80.643 82.118 83.790 85.560 87.527

9.15 80.969 82.450 84.129 85.906 87.881
10.45 81.214 82.700 84.384 86.167 88.147
12 81.408 82.897 84.584 86.371 88.357

Table 5.3 – Mode(T |α,β) (Lexis point)

The prior pdf chosen for the random parameters α̃, β̃ is quoted in Table 5.4. We have
assumed a rather concentrated pdf, where in particular the “central” scenario (i.e. the
one corresponding to α̃ = α3, β̃ = β3) is the most probable, whilst the probability of the
other scenarios is the lower the more they differ from this central mortality hypothesis.

α, β 82 83.5 85.2 87 89

7 0.0025 0.0075 0.03 0.0075 0.0025 0.05
8 0.0075 0.0225 0.09 0.0225 0.0075 0.15

9.15 0.03 0.09 0.36 0.09 0.03 0.6
10.45 0.0075 0.0225 0.09 0.0225 0.0075 0.15
12 0.0025 0.0075 0.03 0.0075 0.0025 0.05

0.05 0.15 0.6 0.15 0.05 1

Table 5.4 – Case I: prior pdf g(α,β)



Observations have been obtained through stochastic simulation, assigning for each sim-
ulation a given mortality scenario, chosen among the available 25 ones. In order to
reduce the effects of random fluctuations, a number of deaths equal to the one expected
under the assumed actual scenario has been generated in each simulation. Results ob-
tained in terms of posterior pdf on the parameter space are quoted in Tables 5.5–5.9,
each experience belonging to a different scenario, as specified in the relevant table.

α, β 82 83.5 85.2 87 89

7 0.19441 0.30156 0.15176 0.00121 0 0.64894
8 0.22923 0.07390 0.00552 0.00001 0 0.30866

9.15 0.04085 0.00153 0.00001 0 0 0.04238
10.45 0.00002 0 0 0 0 0.00002
12 0 0 0 0 0 0

0.46450 0.37699 0.15729 0.00121 0 1

Table 5.5 – Case Ia: posterior distribution g(α,β|m,x); actual scenario (α1,β1)

α, β 82 83.5 85.2 87 89

7 0.00107 0.02087 0.17260 0.02461 0.00120 0.22035
8 0.02316 0.13262 0.23821 0.00612 0.00004 0.40015

9.15 0.16863 0.16569 0.03734 0.00010 0 0.37177
10.45 0.00701 0.00070 0.00001 0 0 0.00772
12 0.00001 0 0 0 0 0.00001

0.19987 0.31989 0.44816 0.03084 0.00125 1

Table 5.6 – Case Ib: posterior distribution g(α,β|m,x); actual scenario (α2,β2)

α, β 82 83.5 85.2 87 89

7 0 0.00001 0.00085 0.00218 0.00243 0.00547
8 0.00001 0.00102 0.04422 0.03034 0.00728 0.08287

9.15 0.00294 0.07640 0.64172 0.07426 0.00248 0.79780
10.45 0.01139 0.04688 0.04853 0.00064 0 0.10744
12 0.00457 0.00172 0.00013 0 0 0.00642

0.01891 0.12602 0.73545 0.10742 0.01219 1

Table 5.7 – Case Ic: posterior distribution g(α,β|m,x); actual scenario (α3,β3)

α, β 82 83.5 85.2 87 89

7 0 0 0 0 0.00005 0.00006
8 0 0 0.00011 0.00113 0.00525 0.00649

9.15 0 0.00030 0.05227 0.13679 0.13383 0.32320
10.45 0.00010 0.00889 0.28427 0.12977 0.01975 0.44276
12 0.00342 0.04437 0.17017 0.00938 0.00016 0.22750

0.00351 0.05356 0.50681 0.27707 0.15904 1

Table 5.8 – Case Id: posterior distribution g(α,β|m,x); actual scenario (α4,β4)

α, β 82 83.5 85.2 87 89

7 0 0 0 0 0 0
8 0 0 0 0 0.00002 0.00002

9.15 0 0 0.00003 0.00098 0.01491 0.01592
10.45 0 0.00001 0.00506 0.04105 0.14152 0.18764
12 0.00001 0.00253 0.23389 0.34680 0.21320 0.79642

0.00001 0.00254 0.23898 0.38883 0.36964 1

Table 5.9 – Case Ie: posterior distribution g(α,β|m,x); actual scenario (α5,β5)



Note that in each case the inferential mechanism increases the probability of the actual
scenario, reducing to zero the probability of very different mortality hypotheses. The
mechanism is more satisfying, in terms of the relative weight of the posterior proba-
bility of the actual scenario with respect to that of the others, the higher is the prior
probability of the actual scenario itself.
In order to realize the effect of the information obtained in terms of some synthetic
quantities, in Table 5.10 the prior and posterior expected value, the variance and its
components of the residual duration of life for an individual aged 65 are quoted, together
with the Lexis point.

prior posterior posterior posterior posterior posterior
case Ia case Ib case Ic case Id case Ie

E(T−65|T>65) 17.792 16.677 17.092 17.675 18.417 19.352
E(V ar(T−65|T>65;α̃,β̃)) 71.921 82.952 77.779 70.998 65.567 58.739
V ar(E(T−65|T>65;α̃,β̃)) 1.466 1.030 1.605 0.815 1.807 1.696

V ar(T−65|T>65) 73.387 83.982 79.384 71.813 67.374 60.435
Mode(T ) 84.072 81.298 82.429 83.940 84.941 86.368

Table 5.10 – Case I: prior and posterior valuation of the duration of life

From the posterior expected value and mode of the lifetime it is evident the effect
of expansion implied by each experienced scenario. From the posterior variance and
its component E(V ar(T − 65|T > 65; α̃, β̃)) (due to random fluctuations) it emerges
the effect of rectangularization. However, the quantity V ar(E(T − 65|T > 65; α̃, β̃)),
witnessing the longevity risk, does not always reduce as a result of the new information;
this is due to the possibly higher posterior dispersion of the pdf g(α, β|m, x), mainly
experienced when the prior probability of the actual scenario is low.
In order to understand the influence of the prior pdf g(α, β) on the inferential results,
calculations have been performed also using a prior uniform pdf (see Table 5.11). We
point out that a prior uniform pdf on the parameter space originates from a serious
lack of information about mortality evolution. The posterior pdf’s are quoted in Tables
5.12–5.16 and confirm what shown by case I. However, a greater dispersion than case I
may arise, as suggested for example by the values of V ar(E(T − 65|T > 65; α̃, β̃)) (see
Table 5.17, where the expected value, variance and mode of the lifetime are reported).

α, β 82 83.5 85.2 87 89

7 0.04 0.04 0.04 0.04 0.04 0.2
8 0.04 0.04 0.04 0.04 0.04 0.2

9.15 0.04 0.04 0.04 0.04 0.04 0.2
10.45 0.04 0.04 0.04 0.04 0.04 0.2
12 0.04 0.04 0.04 0.04 0.04 0.2

0.2 0.2 0.2 0.2 0.2 1

Table 5.11 – Case II: prior pdf g(α,β)

α, β 82 83.5 85.2 87 89

7 0.49067 0.25371 0.03192 0.00101 0.00001 0.77732
8 0.19285 0.02073 0.00039 0 0 0.21397

9.15 0.00859 0.00011 0 0 0 0.00870
10.45 0.00002 0 0 0 0 0.00002
12 0 0 0 0 0 0

0.69213 0.27454 0.03231 0.00102 0.00001 1

Table 5.12 – Case IIa: posterior distribution g(α,β|m,x); actual scenario (α1,β1)



α, β 82 83.5 85.2 87 89

7 0.01289 0.08390 0.17346 0.09893 0.01451 0.38368
8 0.09309 0.17771 0.07980 0.00821 0.00017 0.35897

9.15 0.16947 0.05551 0.00313 0.00003 0 0.22814
10.45 0.02816 0.00094 0 0 0 0.02911
12 0.00011 0 0 0 0 0.00011

0.30371 0.31806 0.25639 0.10717 0.01468 1

Table 5.13 – Case IIb: posterior distribution g(α,β|m,x); actual scenario (α2,β2)

α, β 82 83.5 85.2 87 89

7 0 0.00006 0.00202 0.02078 0.06939 0.09225
8 0.00009 0.00323 0.03505 0.09618 0.06922 0.20378

9.15 0.00700 0.06055 0.12716 0.05886 0.00589 0.25946
10.45 0.10836 0.14861 0.03846 0.00202 0.00002 0.29748
12 0.13033 0.01639 0.00031 0 0 0.14703

0.24579 0.22885 0.20300 0.17784 0.14452 1

Table 5.14 – Case IIc: posterior distribution g(α,β|m,x); actual scenario (α3,β3)

α, β 82 83.5 85.2 87 89

7 0 0 0 0.00001 0.00064 0.00066
8 0 0 0.00004 0.00151 0.02113 0.02268

9.15 0 0.00010 0.00438 0.04586 0.13461 0.18496
10.45 0.00039 0.01192 0.09531 0.17404 0.07945 0.36110
12 0.04123 0.17852 0.17117 0.03773 0.00196 0.43060

0.04162 0.19054 0.27090 0.25915 0.23779 1

Table 5.15 – Case IId: posterior distribution g(α,β|m,x); actual scenario (α4,β4)

α, β 82 83.5 85.2 87 89

7 0 0 0 0 0 0
8 0 0 0 0 0.00002 0.00002

9.15 0 0 0 0.00007 0.00309 0.00316
10.45 0 0 0.00035 0.01134 0.11726 0.12895
12 0.00003 0.00210 0.04845 0.28735 0.52996 0.86788

0.00003 0.00210 0.04880 0.29876 0.65032 1

Table 5.16 – Case IIe: posterior distribution g(α,β|m,x); actual scenario (α5,β5)

prior posterior posterior posterior posterior posterior
case IIa case IIb case IIc case IId case IIe

E(T−65|T>65) 17.979 16.351 17.097 17.454 18.323 20.159
E(V ar(T−65|T>65;α̃,β̃)) 73.621 82.218 81.003 70.609 62.427 60.075
V ar(E(T−65|T>65;α̃,β̃)) 4.189 0.502 2.502 4.752 3.362 1.045

V ar(T−65|T>65) 77.810 82.720 83.505 75.361 65.789 61.120
Mode(T ) 83.923 80.783 82.039 82.804 84.586 87.416

Table 5.17 – Case II: prior and posterior valuation of the duration of life

It is known that results coming from a Bayesian inferential procedure are affected
by the specific sample we are dealing with; in the case of mortality investigations,
this means that random fluctuations may significantly affect our opinion about future
trends. In order to investigate this aspect, five samples have been generated under the
same mortality scenario (scenario α̃ = α3, β̃ = β3), adopting the prior pdf in Table 5.4.
The posterior pdf’s originated are quoted in Tables 5.18–5.22 and valuations concerning
the lifetime are in Table 5.23. Actually, the inferential mechanism is affected by random
fluctuations (note, for example, the posterior values of E(V ar(T − 65|T > 65; α̃, β̃)));
however, the mechanism itself is able to catch the mortality trend (the magnitude of
g(α3, β3|m, x) is roughly the same for any sample). Observations generated by scenarios
with a lower prior probability confirm such conclusions.



α, β 82 83.5 85.2 87 89

7 0 0.00001 0.00176 0.00437 0.00471 0.01086
8 0.00002 0.00156 0.06503 0.04319 0.01006 0.11984

9.15 0.00315 0.07882 0.63961 0.07186 0.00233 0.79578
10.45 0.00786 0.03126 0.03138 0.00040 0 0.07090
12 0.00188 0.00069 0.00005 0 0 0.00262

0.01291 0.11233 0.73784 0.11982 0.01711 1

Table 5.18 – Case IIIa: posterior distribution g(α,β|m,x); actual scenario (α3,β3); sample no. 1

α, β 82 83.5 85.2 87 89

7 0 0.00001 0.00158 0.00394 0.00426 0.00980
8 0.00001 0.00147 0.06154 0.04098 0.00957 0.11357

9.15 0.00314 0.07883 0.64137 0.07222 0.00235 0.79792
10.45 0.00837 0.03335 0.03355 0.00043 0 0.07570
12 0.00216 0.00079 0.00006 0 0 0.00301

0.01368 0.11446 0.73811 0.11757 0.01618 1

Table 5.19 – Case IIIb: posterior distribution g(α,β|m,x); actual scenario (α3,β3); sample no. 2

α, β 82 83.5 85.2 87 89

7 0 0.00001 0.00130 0.00327 0.00356 0.00814
8 0.00001 0.00131 0.05549 0.03728 0.00878 0.10288

9.15 0.00309 0.07833 0.64330 0.07302 0.00239 0.80013
10.45 0.00928 0.03734 0.03788 0.00049 0 0.08499
12 0.00276 0.00102 0.00008 0 0 0.00386

0.01515 0.11801 0.73805 0.11406 0.01473 1

Table 5.20 – Case IIIc: posterior distribution g(α,β|m,x); actual scenario (α3,β3); sample no. 3

α, β 82 83.5 85.2 87 89

7 0 0.00001 0.00113 0.00287 0.00315 0.00716
8 0.00001 0.00121 0.05157 0.03492 0.00828 0.09598

9.15 0.00304 0.07769 0.64365 0.07361 0.00243 0.80042
10.45 0.00992 0.04025 0.04116 0.00054 0 0.09187
12 0.00326 0.00121 0.00009 0 0 0.00456

0.01622 0.12038 0.73760 0.11193 0.01386 1

Table 5.21 – Case IIId: posterior distribution g(α,β|m,x); actual scenario (α3,β3); sample no. 4

α, β 82 83.5 85.2 87 89

7 0 0 0.00067 0.00174 0.00196 0.00438
8 0.00001 0.00089 0.03889 0.02693 0.00652 0.07323

9.15 0.00287 0.07517 0.63749 0.07439 0.00250 0.79241
10.45 0.01273 0.05287 0.05520 0.00073 0 0.12153
12 0.00600 0.00228 0.00017 0 0 0.00845

0.02160 0.13120 0.73243 0.10379 0.01097 1

Table 5.22 – Case IIIe: posterior distribution g(α,β|m,x); actual scenario (α3,β3); sample no. 5

prior posterior posterior posterior posterior posterior
case IIIa case IIIb case IIIc case IIId case IIIe

E(T−65|T>65) 17.792 17.764 17.750 17.725 17.710 17.645
E(V ar(T−65|T>65;α̃,β̃)) 71.921 72.416 72.191 71.801 71.541 70.549
V ar(E(T−65|T>65;α̃,β̃)) 1.466 0.829 0.824 0.816 0.814 0.823

V ar(T−65|T>65) 73.388 73.245 73.015 72.618 72.355 71.371
Mode(T ) 84.072 84.009 83.999 83.981 83.969 83.913

Table 5.23 – Case III: prior and posterior valuation of the duration of life

As far as the length of the observation period is concerned, the period [60,70] has been
considered in alternative to [60,65]. The results obtained are similar to those discussed
above. However, when dealing with actuarial applications, such as reserving or capital
allocation (see Section 6), an interval of five years seems on the one hand long enough



for catching the mortality trend and on the other hand more suitable then a ten year
period for updating the reserving basis or the solvency margin.
Finally, further investigations have concerned observations generated by a scenario with
a prior probability equal to zero. In this case, the inferential model assigns the higher
posterior probability to the scenario, among those with a positive prior probability, more
similar to the actual one in terms of the phenomena of expansion and rectangularization.
For the sake of brevity, relevant numerical results are omitted.

5.3 Possible generalizations. It should be stressed that the proposed inferential
model regards the mortality in one generation only. Hence, a straightforward actuarial
application of monitoring mortality according to the described procedure consists in
updating the demographical bases to be used for evaluating some generation-related
quantities after the observation period elapsed. Typically, the portfolio reserve and the
required solvency margin will be concerned (see Section 6).
The extension of mortality adjustments to more generations requires (a) some particular
assumptions, or (b) a much more complicated inferential model.

(a) Assume that, for all couples of generations in a given set, the mortality of one
generation is linked to the mortality of the other one in a given way. For example
(referring to notation (3.2)), assume that

θ(y) = φy[θ(y − 1)] (5.13)

for all y, where φy is an assigned (vector-valued or, in particular, real-valued function);
a further simplification could result in:

θ(y) = φ[θ(y − 1)] (5.13′)

Referring to the Weibull model, the following link

α(y) = γ α(y − 1) (5.14a)

β(y) = δ β(y − 1) (5.14b)

with γ, δ > 0, can express hypotheses of rectangularization and expansion both increas-
ing as the calendar year of birth increases.
The assumption of a fixed link allows us to extend the inferential results concerning a
generation to other generations (at least to generations closed to the monitored one).

(b) A random link between generations can be assumed to represent uncertainty in
rectangularization and expansion processes. In this case, the randomness of the link
itself should be included in the inferential model, which must be applied to a set of
generations jointly. Of course, Bayesian modelling in this framework is much more
complicated.

6. ACTUARIAL APPLICATIONS

6.1 Some preliminary ideas. As mentioned in Section 5.3, a straight actuarial
application of the inferential results, concerning a given generation, consists in updating



the bases to be used for evaluating some generation-related quantities, such as the
portfolio reserve and the required solvency margin. We now focus on the calculation of
these quantities, thus disregarding the updating of premiums, which should be based
on the adjustment of mortality of annuitants in following generations.
As far as updating the reserving basis is concerned, some points should be stressed.
Current valuation techniques mostly lie on the adoption of prudential bases, which
means, in the case of annuities, survival probabilities higher than the realistic ones. On
the contrary, fair value accounting principles require valuations in realistic terms. So,
in both cases a realistic, and hence updated, demographical hypothesis is needed. In
order to evaluate the portfolio reserve V , Bayes inference results can suggest the choice
of the most probable mortality law, according to the posterior pdf g(α, β|m, x) or, in
alternative, the posterior (unconditional) expected value of liabilities.
The required solvency margin, M , is the minimum shareholders’ capital needed to meet
the liabilities with an assigned probability, i.e. to face risks related to the portfolio.
The quantity SR,

SR = V + M (6.1)

is the so-called (minimum) solvency reserve. Taking into account the effect of risks
leads to the assessment, possibly via stochastic simulation, of the solvency reserve SR
(see for example Olivieri and Pitacco, 2000); then, for any given portfolio reserve V ,
the required solvency margin is given by M = max(SR− V, 0).
When life annuity portfolios are concerned, an important component of the demograph-
ical risk is given by the longevity risk (which is a model risk, see Section 3), arising
from the uncertainty in future mortality. So, in order to assess the demographical risk
(and the consequent solvency requirements) taking into account its longevity compo-
nent, several mortality scenarios should be considered, and the relevant probability
distribution used as the underlying stochastic model. In general terms, the predictive
pdf provides the tool to be used to express uncertainty in future mortality. In the
Bayesian framework, the posterior predictive pdf expresses the uncertainty adjusted by
the experienced mortality.

6.2 Applications. We consider a homogeneous cohort of time-continuous straight life
annuities, with benefits paid at the instantaneous rate b = 1. We denote by Yt the
random present value at age t of future benefits for a given annuitant. Disregarding
financial risks (hence focussing only demographical aspects), let δ be the (constant)
expected instantaneous investment yield. We have

Yt =
∫ T−t

0
e−δs ds = āT−te (6.2)

where āse = 1−e−δs

δ denotes the present value of a continuous annuity certain paid
up to time s. (The generalization of (6.2) to the case of variable benefits or variable
investment yields is straightforward.)
Referring to notation (3.2′), the conditional expected value, variance and distribution
function are

E(Yt|θ) =
∫ ∞

0
e−δs ft(s|θ) ds (6.3)



V ar(Yt|θ) =
∫ ∞

0
e−2δs ft(s|θ) ds−

(

E(Yt|θ)
)2

(6.4)

FYt(y|θ) = Pr{Yt ≤ y|θ} =
∫ t∗

0
ft(s|θ) ds (6.5)

where t∗, t∗ = ln(1 − δ y)−1/δ, is the realization of the residual lifetime such that
āt∗e = y. The unconditional quantities can be easily obtained. In the case of a contin-
uous pdf g(θ) we have

E(Yt) =
∫

Θ
E(Yt|θ) g(θ) dθ (6.6)

V ar(Yt) = E(V ar(Yt|θ̃)) + V ar(E(Yt|θ̃))

=
∫

Θ
V ar(Yt|θ) g(θ) dθ +

(

∫

Θ

(

E(Yt|θ)
)2

g(θ) dθ −
(

E(Yt)
)2

) (6.7)

FYt(y) =
∫

Θ
FYt(y|θ) g(θ) dθ (6.8)

Expressions for the case of a discrete pdf g(θ) are straightforward.
The present value of future benefits at the portfolio level, Ŷt, is simply given by the
sum of the individual items Yt. If the portfolio is homogeneous and n annuitants are
present at time t, whose lifetimes are independent under any mortality hypothesis, the
following results hold

E(Ŷt|θ) = n E(Yt|θ) (6.9)

E(Ŷt) = n E(Yt) (6.10)

V ar(Ŷt|θ) = n V ar(Yt|θ) (6.11)

V ar(Ŷt) = n E(V ar(Yt|θ̃)) + n2 V ar(E(Yt|θ̃)) (6.12)

Note in particular that the second term of V ar(Ŷt), which witnesses longevity risk, is
proportional to n2; this reflects the fact that longevity risk has a systematic character.
As far as the distribution function of Ŷt is concerned, given the parameter θ it can be
obtained as the convolution of the (i.i.d.) distribution function of the r.v. Yt; so

FŶt
(y|θ) = Pr{Ŷt ≤ y|θ} =

[

FYt(y|θ)
]n∗ (6.13)

(where we have used the symbol commonly denoting the convolution operation). Then
we have

FŶt
(y) = Pr{Ŷt ≤ y} =

∫

Θ
FŶt

(y|θ) g(θ) dθ (6.14)

Similar results hold when the posterior pdf g(θ|m,x) is considered.
Turning to reserving aspects, the definition of reserve involves the expected value of
future benefits, such expected value being based on a given hypothesis (either conser-
vative or realistic) of the future scenario. As has been mentioned above, the Bayesian
inferential model suggests to take the expected value based on the most probable sce-
nario or alternatively the predictive expected value. Given that the Bayesian inferential
mechanism is affected by random fluctuations, in our opinion the latter choice is more



appropriate, so that sudden changes of the reserving basis as a result of the new infor-
mation are avoided. Moreover, in the long run the predictive expected value tends to
the expected value of the most probable scenario (to this regard, some examples are
discussed at the end of this Section). In our view, the portfolio reserve at time t should
be defined as

Vt = E(Ŷt) (6.15)

In Table 6.1 and 6.2 the conditional expected value and variance of the present value of
future benefits for a given annuitant are quoted. The same hypotheses of Section 5 have
been used; the force of interest is δ = ln(1.03) = 0.02956. Similarly to the valuation
of the duration of life, the expected value reflects the hypothesis of expansion, whilst
the variance that of rectangularization assumed in the relevant scenario. Tables 6.3–
6.5 quote the unconditional values at the individual and portfolio level for the three
types of observations discussed in Section 5 (case I, II and III). Note in particular the
dramatic increase of the variance of the present value of future payments when a cohort
of policies is considered, owing to the longevity risk. Moreover, reflect on the required
change of the reserve at age 65 after new information have been obtained and on what
would be required if the expected value of the most probable scenario were chosen as
reserving basis instead of (6.15).
We point out that in order to obtain a conservative valuation of the reserve, a safety
loading can be added to (6.15) and therefore to the results quoted in Table 6.3–6.5.

α, β 82 83.5 85.2 87 89

7 12.060 12.681 13.377 14.104 14.895
8 11.819 12.481 13.224 13.997 14.839

9.15 11.658 12.362 13.150 13.969 14.858
10.45 11.572 12.316 13.147 14.009 14.941
12 11.553 12.336 13.208 14.109 15.079

Table 6.1 – E(Y65|α,β)

α, β 82 83.5 85.2 87 89

7 31.831 33.039 34.242 35.317 36.263
8 28.190 29.278 30.336 31.252 32.024

9.15 24.859 25.795 26.671 27.388 27.939
10.45 21.833 22.595 23.268 23.768 24.085
12 18.915 19.480 19.931 20.205 20.289

Table 6.2 – V ar(Y65|α,β)

prior posterior posterior posterior posterior posterior
case Ia case Ib case Ic case Id case Ie

E(Y65) 13.190 12.416 12.713 13.132 13.616 14.220
V65=E(Ŷ65) 13190.110 12416.068 12713.379 13131.950 13616.320 14220.036

E(V ar(Y65|α̃,β̃)) 26.701 31.240 29.135 26.585 23.986 20.990
V ar(E(Y65|α̃,β̃)) 0.454 0.299 0.453 0.238 0.494 0.497

V ar(Y65) 27.155 31.538 29.588 26.822 24.481 21.488
V ar(Ŷ65) 480304.577 329871.128 481900.405 264239.086 518299.286 518420.382

Table 6.3 – Case I: prior and posterior valuation of the reserve

Let us finally address solvency aspects. Generally speaking, a portfolio is solvent if
assets keep higher than liabilities with a given probability and within a given time



prior posterior posterior posterior posterior posterior
case IIa case IIb case IIc case IId case IIe

E(Y65) 13.270 12.221 12.684 12.975 13.575 14.674
V65=E(Ŷ65) 13269.716 12221.042 12684.090 12975.356 13575.141 14673.668

E(V ar(Y65|α̃,β̃)) 26.752 31.402 30.019 26.066 22.902 20.755
V ar(E(Y65|α̃,β̃)) 1.291 0.148 0.694 1.296 0.965 0.309

V ar(Y65) 28.043 31.550 30.712 27.363 23.866 21.064
V ar(Ŷ65) 1317648.604 179816.455 723873.018 1322227.581 987431.622 329568.694

Table 6.4 – Case II: prior and posterior valuation of the reserve

prior posterior posterior posterior posterior posterior
case IIIa case IIIb case IIIc case IIId case IIIe

E(Y65) 13.190 13.174 13.167 13.156 13.148 13.118
V65=E(Ŷ65) 13190.110 13174.118 13167.252 13155.846 13148.426 13117.640

E(V ar(Y65|α̃,β̃)) 26.701 26.948 26.892 26.793 26.725 26.468
V ar(E(Y65|α̃,β̃)) 0.454 0.236 0.236 0.235 0.235 0.241

V ar(Y65) 27.155 27.185 27.128 27.028 26.961 26.709
V ar(Ŷ65) 480304.577 263410.335 262631.392 262031.145 262209.874 267622.322

Table 6.5 – Case III: prior and posterior valuation of the reserve

horizon. Different solvency requirements derive from such a definition, depending on the
way liabilities are described (either in terms of the portfolio reserve or of their random
present value), on the accepted probability level and on the time span. Considering
the random present value of liabilities, an infinite time span is implicitly assumed
(see Olivieri and Pitacco, 2000). Given an accepted ruin probability ε, the following
definitions of solvency reserve required at time t originates

SR(θ)
t = inf

{

y : Pr{Ŷt > y|θ} ≤ 1− ε
}

(6.16)

SRt = inf
{

y : Pr{Ŷt > y} ≤ 1− ε
}

(6.17)

The difference between (6.16) and (6.17) consists in the types of demographical risks
considered: SR(θ)

t accounts only for the risk of random fluctuations, whilst SRt also for
systematic risks, in particular the longevity risk. It is evident that if we believe that
the solvency reserve has to be tailored to all the risks affecting the portfolio, definition
(6.17) must be adopted.
Turning to numerical evaluations, we mention that the solvency reserve according to
(6.16) or (6.17) can be easily calculated from the distribution function of Ŷt. Table
6.6 shows the required solvency reserve according to definition (6.16) and for different
levels of the ruin probability (for the sake of brevity, only five scenarios have been
considered). Note that as a result of a strong assumed rectangularization, lower values
of the solvency reserve per unit of the portfolio reserve are required. In Tables 6.7–
6.9 definition (6.17) has been adopted. Note in particular the dramatic increase of
magnitude of the solvency margin with respect to Table 6.6, given that now longevity
risk is considered.
Two final examples follow (see Tables 6.10 and 6.11), in which the mortality has been
monitored on a five year basis, assuming two different scenarios. The prior pdf is
that of Table 5.4. In order to stress longevity risk, a size of n = 1000 annuitants has
been considered at the beginning of any observation period (in this way, the influence



ε α1,β1 α2,β2 α3,β3 α4,β4 α5,β5

0.5 99.911% 99.958% 99.990% 99.996% 100.010%
0.8 101.128% 101.124% 101.054% 101.006% 100.845%
0.9 101.782% 101.672% 101.580% 101.470% 101.263%
0.95 102.380% 102.118% 102.095% 101.764% 101.613%
0.99 103.399% 102.954% 102.931% 102.548% 102.129%

V65=E(Ŷ65|α,β) 12060.105 12481.497 13149.624 14008.583 15078.668

Table 6.6 – Solvency reserve,
SR(α,β)

65
V65

ε prior posterior posterior posterior posterior posterior
case Ia case Ib case Ic case Id case Ie

0.5 99.839% 99.760% 100.019% 100.096% 97.993% 99.558%
0.8 103.500% 103.742% 104.924% 101.712% 104.040% 105.509%
0.9 106.627% 107.278% 106.088% 105.196% 108.801% 106.378%
0.95 109.654% 108.546% 107.233% 106.921% 109.797% 106.909%
0.99 113.954% 110.220% 111.616% 111.865% 111.067% 107.774%

V65=E(Ŷ65) 13190.110 12416.068 12713.379 13131.950 13616.320 14220.036

Table 6.7 – Case I: solvency reserve, SR65
V65

ε prior posterior posterior posterior posterior posterior
case IIa case IIb case IIc case IId case IIe

0.5 99.574% 99.104% 99.042% 100.007% 99.412% 101.814%
0.8 109.040% 103.175% 105.960% 108.549% 108.420% 103.156%
0.9 112.490% 104.680% 109.914% 113.838% 109.923% 103.702%
0.95 113.451% 105.846% 111.753% 115.167% 110.698% 104.106%
0.99 114.812% 110.464% 116.714% 116.747% 111.754% 104.696%

V65=E(Ŷ65) 13269.716 12221.042 12684.090 12975.356 13575.141 14673.668

Table 6.8 – Case II: solvency reserve, SR65
V65

ε prior posterior posterior posterior posterior posterior
case IIIa case IIIb case IIIc case IIId case IIIe

0.5 99.839% 100.036% 100.030% 100.014% 99.988% 99.915%
0.8 103.500% 105.720% 105.642% 105.455% 105.258% 103.600%
0.9 106.627% 107.535% 107.447% 107.309% 107.211% 106.967%
0.95 109.654% 111.819% 111.667% 111.265% 110.686% 108.516%
0.99 113.954% 114.247% 114.231% 114.221% 114.194% 114.134%

V65=E(Ŷ65) 13190.110 13174.118 13167.252 13155.846 13148.426 13117.640

Table 6.9 – Case III: solvency reserve, SR65
V65

of random fluctuations has been kept roughly constant through time). Note that in
both cases in the long run the Bayesian inferential model assigns probability 1 to the
assumed actual scenario, the rapidity of the convergence depending on the initial prior
probability of such scenario. Results can be easily interpreted.



age τ ′=65 age τ ′=70 age τ ′=75 age τ ′=80
prior post. prior post. prior post. prior post.

g(α3,β3) 0.36000 0.63961 0.63961 0.79552 0.79552 0.89912 0.89912 0.95334

E(Yτ′ ) 13.190 13.174 10.934 10.953 8.833 8.812 6.901 6.861
E(V ar(Yτ′ |α̃,β̃)) 26.701 26.948 25.127 25.196 21.597 21.512 16.897 16.709
V ar(E(Yτ′ |α̃,β̃)) 0.454 0.236 0.289 0.169 0.213 0.071 0.089 0.015

Vτ′=E(Ŷτ′ ) 13190.110 13174.118 10934.388 10953.076 8833.127 8811.828 6901.041 6860.571

SRτ′
Vτ′

; ε=0.5 99.839% 99.875% 99.759% 99.610% 99.353% 99.561% 99.307% 99.798%
SRτ′
Vτ′

; ε=0.8 103.500% 101.581% 102.114% 101.319% 101.498% 101.274% 101.249% 101.557%
SRτ′
Vτ′

; ε=0.9 106.627% 105.483% 107.009% 103.575% 105.566% 102.682% 103.196% 102.660%
SRτ′
Vτ′

; ε=0.95 109.654% 106.913% 109.064% 108.488% 111.878% 105.000% 108.208% 104.124%
SRτ′
Vτ′

; ε=0.99 113.954% 112.474% 116.741% 112.346% 118.039% 114.308% 119.422% 109.350%

Table 6.10a – Monitoring on a five year basis; actual scenario (α3,β3)

age τ ′=85 age τ ′=90 age τ ′=95
prior post. prior post. prior post.

g(α3,β3) 0.95334 0.99137 0.99137 0.99999 0.99999 1

E(Yτ′ ) 5.221 5.203 3.865 3.863 2.819 2.819
E(V ar(Yτ′ |α̃,β̃)) 12.027 11.947 7.937 7.926 4.920 4.920
V ar(E(Yτ′ |α̃,β̃)) 0.020 0.004 0.004 0.000 0.000 0.000

Vτ′=E(Ŷτ′ ) 5220.853 5203.472 3865.394 3862.795 2818.770 2818761

SRτ′
Vτ′

; ε=0.5 99.658% 99.933% 99.855% 99.912% 99.888% 99.888%
SRτ′
Vτ′

; ε=0.8 101.636% 101.777% 101.920% 101.940% 102.078% 102.078%
SRτ′
Vτ′

; ε=0.9 102.839% 102.840% 103.155% 103.167% 103.439% 103.439%
SRτ′
Vτ′

; ε=0.95 104.548% 103.777% 104.037% 103.789% 104.186% 104.186%
SRτ′
Vτ′

; ε=0.99 113.864% 105.723% 106.296% 105.671% 106.099% 106.100%

Table 6.10b – Monitoring on a five year basis; actual scenario (α3,β3)

7. CONCLUSIONS

The longevity risk, originating from uncertainty in future mortality, has a tremendous
impact on the global riskiness of a life annuity portfolio. Uncertainty in future mortal-
ity, and hence the magnitude of longevity risk, can be reduced monitoring mortality and
implementing inferential procedures. Bayesian theory provides a sound logical frame-
work for the construction of appropriate procedures. In this paper a particular Bayes
model has been proposed and some actuarial applications have been presented and dis-
cussed. Results seem to be encouraging, from both a theoretical and a practical point
of view. Further research work should be devoted to some related problems, such as



age τ ′=65 age τ ′=70 age τ ′=75 age τ ′=80
prior post. prior post. prior post. prior post.

g(α1,β4) 0.00750 0.02877 0.02877 0.05581 0.05581 0.15783 0.15783 0.68983

E(Yτ′ ) 13.190 12.929 10.774 10.972 8.966 9.307 7.508 8.470
E(V ar(Yτ′ |α̃,β̃)) 26.701 28.405 26.187 26.987 23.221 24.552 19.964 24.301
V ar(E(Yτ′ |α̃,β̃)) 0.454 0.352 0.454 0.319 0.417 0.322 0.414 0.180

Vτ′=E(Ŷτ′ ) 13190.110 12928.535 10774.048 10971.798 8965.791 9306.740 7507.832 8469.696

SRτ′
Vτ′

; ε=0.5 99.839% 101.211% 101.266% 100.568% 100.896% 98.496% 98.476% 101.783%
SRτ′
Vτ′

; ε=0.8 103.500% 103.226% 104.429% 103.132% 104.393% 106.089% 108.077% 104.014%
SRτ′
Vτ′

; ε=0.9 106.627% 104.560% 106.708% 105.688% 108.812% 111.084% 115.447% 104.880%
SRτ′
Vτ′

; ε=0.95 109.654% 107.808% 110.497% 110.044% 114.146% 112.593% 117.215% 105.618%
SRτ′
Vτ′

; ε=0.99 113.954% 110.851% 115.105% 113.112% 118.121% 114.644% 119.494% 107.235%

Table 6.11a – Monitoring on a five year basis; actual scenario (α1,β4)

age τ ′=85 age τ ′=90 age τ ′=95
prior post. prior post. prior post.

g(α1,β4) 0.68983 0.86547 0.86547 0.99525 0.99525 1

E(Yτ′ ) 6.941 7.122 5.802 5.904 4.785 4.789
E(V ar(Yτ′ |α̃,β̃)) 19.523 20.351 15.743 16.209 12.090 12.105
V ar(E(Yτ′ |α̃,β̃)) 0.211 0.060 0.072 0.003 0.003 0.000

Vτ′=E(Ŷτ′ ) 6.941.429 7122.216 5802.389 5904.276 4785.255 4789.089

SRτ′
Vτ′

; ε=0.5 102.706% 100.914% 101.387% 100.000% 100.122% 100.044%
SRτ′
Vτ′

; ε=0.8 105.203% 102.903% 103.464% 101.903% 102.108% 102.026%
SRτ′
Vτ′

; ε=0.9 106.146% 103.679% 104.285% 102.688% 102.926% 102.844%
SRτ′
Vτ′

; ε=0.95 106.972% 104.503% 105.228% 103.555% 103.874% 103.791%
SRτ′
Vτ′

; ε=0.99 108.642% 105.925% 106.894% 105.100% 105.599% 105.515%

Table 6.11b – Monitoring on a five year basis; actual scenario (α1,β4)

inference on the mortality of a set of generations, in particular to gain a deeper insight
into the problem of premium adjustment according to mortality evolution.
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