27th International Congress of Actuaries

The Immunisation of a Workers' Compensation Fund

Carlos Pereira da Silva (ISEG) Joaquim Cadete (Univ. Católica) João Pedro Nunes (CEMAF/ISCTE)

1. Plan of Presentation

1st Part

- 1. Workers' Compensation Insurance in Portugal
- 2. The Market Operating Account
- 3. The Model of Deterministic Immunisation
- 4. Empirical Application
- 2nd Part
 - 5. Stochastic Approach Models
 - 6. Longstaff & Schwartz (1992)
 - 7. Immunisation Rule
 - 8. Model Estimation
 - 9.Conclusions

2. The Workers' Compensation Social Insurance in Portugal

Aims:

- compensation for loss of income due to temporary incapacity

- pension for life in event of permanent disability

Those insured:

3rd-party legal obligation on employers to cover all the work-force

Also, the self-employed (since 1999)

Management: Created by law in 1936. Managed by insurance companies since 1965.

3. The Market Operating Account for Workers' Compensation Insurance

TABLE 1

Workers' Compensation in Portugal

	1990	1995	1996	1997
Premiums	253	376	391	396
Earned Premiums	99%	99,1%	99,1%	99,7%
Loading	80,3%	78,1%	81,3%	83,5%
Underwriting Margin	19,7%	21,0%	17,7%	16,2%
Operating Costs	40,2%	29,2%	30,4%	28,5%
Net Margin	-20,5%	-8,2%	-12,7%	-12,4%
Reinsurance Balance	0,2%	-0,2%	-0,1%	-0,1%
Op. Result	-20,3%	-8,4%	-12,7%	-12,5%
Fin. Income	23,6%	17,0%	19,1%	27,3%
Final Result	3,3% 537.960.166	8,6% 741.039.096	6,3% 822.657.396	14,8% 911.608.025
TP/Premiums	2,13	1,97	2,10	2,30

U:Millions Euros

4. The Model of Deterministic Immunisation of Worker's Compensation Pensions

Workers' Compensation pensions are sensitive to *interest-rate movements* and to *longevity*:

$$a_x \leq a_{\overline{n}}, \forall x$$

- where *n* equals the pensioner's life expectancy at age x

Effect on the annuity when:

- change in the mortality rate = change in the continuous interest rate

5. Redington Immunisation As long as:

$$\frac{\partial VA}{\partial r} = \frac{\partial VL}{\partial r}$$
 (Duration)

 $\frac{\partial^2 VA}{\partial r^2} > \frac{\partial^2 VL}{\partial r^2}$ (Convexity),

where

VA= the present value of the assets

VL= the present value of liabilities

r= the market interest rate

The Fund is immunised.

BUT in this situation, **arbitrage profits** could **occur**

 $S(r+\Delta r) \cong S(r) + S'(r)\Delta\delta + \frac{1}{2}S''(r)(\Delta r)^2$ As S''(r)>0 thus $S(r+\Delta r) > S(r)$.

6. Empirical Application

- Portfolio of a Portuguese insurance company (3% of the market)

Year	Cash-flow of assets	Present value	Cash-flow of	Present value
			lia bilities	
1	1.263.960	1.192.415	1.445.220	1.363.416
2	4.661.528	4.148.744	1.434.743	1.276.916
	1 612 616	1 012 402	1.327.191	022.606
8	1.613.616	1.012.403		832.696
9	2.762.996	1.635.413	1.303.313	771.429
10	12.428.006	6.939.733	15.305.874	8.546.720
	Total	20.282.348		17.959.217
	Net value	/		2.323.136
1	Dur.	6,4	6,73	
	Disp.	12	10,88	

U: Euros, Present Values at 6% interest rate

-The two conditions:

\$VA*DA>=VL*DL and \$DA > DL are fulfilled. 7. Stochastic Approach - models

Two *equilibrium*, *affine* and *non-negative* interest rate models, are compared:

- Only need to model discount factors (⇒ equilibrium framework);
- With explicit solutions (\Rightarrow affine models); and
- Under realistic assumptions (⇒ square-root processes).

A New Millennium. New Challenge for Actuarie

8. Stochastic Approach – L&S (1992)

Two-factor (r, v) model: Longstaff and Schwartz (1992).

- **Discount factors**: $P(r, v, \tau) = A^{2\gamma}(\tau)B^{2\eta}(\tau)e^{(k\tau+C(\tau)r+D(\tau)v)}$ where $A(\tau), B(\tau), C(\tau), D(\tau)$

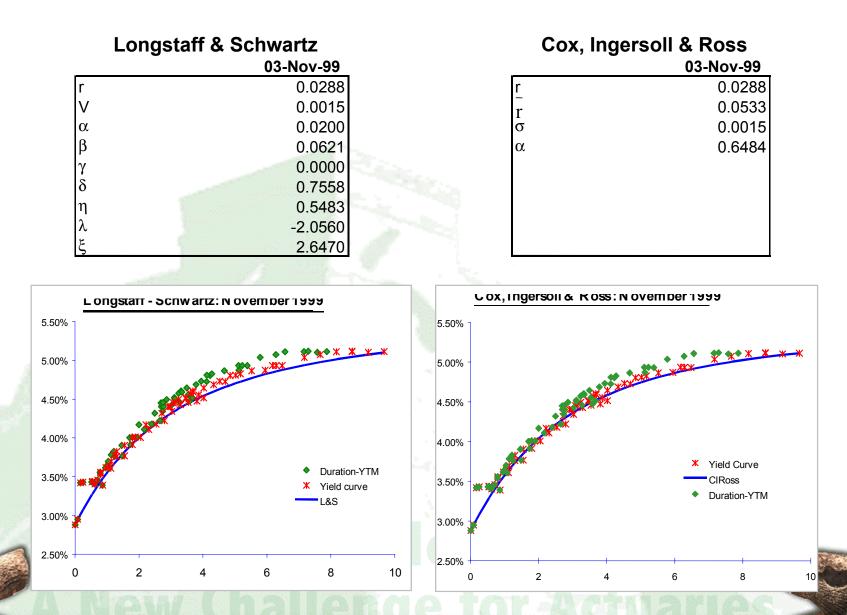
are model-dependent deterministic functions.

– consistent with PCA results.

- 9. Stochastic Approach *immunisation*
- Immunisation rule: $\left\| \frac{1}{VA} \frac{\partial VA}{\partial \underline{X}'} \cdot \sigma(\underline{X}) \right\|^2 = \left\| \frac{1}{VL} \frac{\partial VL}{\partial \underline{X}'} \cdot \sigma(\underline{X}) \right\|^2$

where

VA (VL) is the present value of assets (liabilities), \underline{X} is the vector of state variables, and matrix $\sigma(\underline{X})$ is its instantaneous variance.


- That is: adjust stochastic durations of assets $(\frac{1}{VA} \frac{\partial VA}{\partial X'})$ and of liabilities $(\frac{1}{VL} \frac{\partial VL}{\partial X'})$.

10. Empirical Analysis – model estimation

- Cross-sectional fit to gross prices of German Govt. Bonds (with synthetic zero-coupons for short maturities),
- Through Non-linear Least Squares, and
- Subject to: r = O/N; v = 0.15%; admissibility restrictions.

A New Millennium. New Challenge for Actuarie

11. Empirical Analysis – model estimation

12. Empirical results

Longstaff & Schwartz (03-Nov-99)

		<u> </u>		/	
time	discount	cash flows	assets'	cash flows	liabilities'
(years)	factor	from assets	present value	from liabilities	present value
1	0.96532	1,263,960	1,220,123	1,445,220	1,395,097
2	0.92381	4,661,528	4,306,366	1,434,743	1,325,430
3	0.88011	886,767	780,456	1,406,500	1,237,880
7	0.71465	2,838,568	2,028,588	1,342,167	959,182
8	0.67772	1,613,616	1,093,575	1,327,191	899,460
9	0.64264	2,762,996	1,775,609	1,303,313	837,560
10	0.60935	12,428,006	7,573,018	15,305,874	9,326,650
Artes	Total		21,663,472		19,268,452
Stochastic duration (years)			3.500		3.887
U: EUR	1997				

The value of the liabilities has increased about 8% in comparison with the deterministic model (90% of the value of assets)

13. Conclusions

- The value of the **liabilities** is significantly **higher** in the **stochastic approach**, causing a **mismatch of approximately 8%** in the case studied.
- The durations of assets and liabilities are considerably lower with a stochastic model \Rightarrow need to consider the volatility of the interest rates and its influence on the net value.
- The legal (mandatory) discount rate for insurance liabilities related to Workers' Compensation had to be revised **down**, in order to accommodate the environment of low interest rates induced by the **European Monetary Union** process (1992 1999).