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Abstract 

The classical actuarial approach to the valuation of a life portfolio comes from the embedded 

value framework, under which the value of in-force business is given by the present value of 

future industrial profits net of the cost of capital, the amount of the latter being a function of 

the discount rate.  

In recent years, the adoption of market-consistent valuations of the insurance business has 

been advocated, mainly because of the lack of transparency of the classical model in setting 

the discount rate, joint to its inadequacy in reflecting properly the cost of the risks 

encumbering the portfolio. A market-consistent value usually acknowledges a reward for 

shareholders' capital as long as the market does, i.e. if the risk is systematic or 

undiversifiable.  

Aim of this paper (which actually represents a preliminary study) is to investigate how the 

cost of shareholders' capital can be assessed referring to a portfolio of immediate life 

annuities, and allowing in particular for uncertainty in future mortality trends, namely for 

longevity risk. To this purpose a link between traditional valuations and market-consistent 

valuations is proposed, whence a proper risk discount rate can be obtained. 
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1. Introduction 

The classical actuarial approach to the valuation of a life portfolio comes from the 

embedded value framework, under which the value of in-force business is given by the 

present value of future industrial profits net of the cost of shareholders' capital, the amount of 

this cost being a function of the discount rate. See, for example, Turner (1978), Burrows and 

Whitehead (1987), LAVMWP (2001), Olivieri and Pitacco (2005). 

A number of papers have been devoted to problems concerning the choice of the 

discount rate in the valuation process; usually it is meant that such a rate includes a proper 

reward for the risk inherent in the flows to be discounted and therefore it is referred to as a 

“risk discount rate”. The reader can refer, for example, to Turner (1978), Burrows and 

Whitehead (1987), Pemberton et al. (2000). In particular, Sherris (1987), Coleman et al. 

(1992) and Burrows and Lang (1997) discuss the use of the CAPM for determining the risk 

discount rate to be used in the life insurance valuation process. 

In recent years, the adoption of market-consistent valuations of the insurance business 

has been advocated, mainly because of the lack of transparency of the classical model in 

setting the discount rate, joint to its inadequacy in reflecting properly the cost of the risks 

encumbering the portfolio. See, for example, CFO Forum (2004a, 2004b) and Tillinghast-

Towers Perrin (2004). A market-consistent value usually acknowledges a reward for capital 

as long as the market does, namely if the risk is systematic or undiversifiable. 

Shareholders' capital must be allocated to each portfolio, aiming at increasing the 

assets backing the portfolio liabilities and hence facing the risk of a poor experience, because 

of mortality, yield from investment, expenses, etc.  Capital allocation should be the result of 

calculations worked out via an appropriate "internal model" (see, for example, Brender 

(2002)) whereas, in practice, only the legal requirements - typically concerning the solvency 

margin - are frequently accounted for. Whatever the allocation policy may be, the cost of 

capital depends on the capital actually assigned to the portfolio. 

Risks affecting insurance portfolios and capital allocation policies have been analyzed 

by many Authors, from both a theoretical and a practical point of view. For useful insights 

into this topic, the reader can refer to the report by the IAA (2004). 

When life annuity portfolios are concerned, special attention should be devoted to the 

"longevity risk". As is well known, observations of past mortality suggest to adopt projected 

mortality models for the actuarial appraisal of annuities (and other living benefits), i.e. to use 

mortality assumptions including a forecast of future mortality. Notwithstanding, whatever 

hypothesis is assumed, the future mortality trend is random, whence an uncertainty risk 



arises. When this risk mainly refers to mortality trend at old ages, it is usually called 

longevity risk. 

Unlike the risk of random fluctuations in mortality, the longevity risk is a "systematic" 

risk, namely a risk of systematic deviations from the expected mortality (see, for example, 

Olivieri (2001)). Hence, it cannot be pooled, i.e. diversified increasing the portfolio size. 

Appropriate capital allocation strategies, driven by an adequate target capital, must be 

determined in order to manage the longevity risk (for example, see Olivieri and Pitacco 

(2003)). Clearly, capital allocation should coexist with other technical tools, including an 

appropriate pricing for life annuity products, traditional reinsurance arrangements, alternative 

risk transfers via modern financial instruments, e.g. longevity bonds. The latter topic is dealt 

with, for example, by Blake and Burrows (2001), Cairns et al. (2004), Lin and Cox (2005). 

As mentioned above, cost of shareholders' capital is a key element in the portfolio 

valuation process. Aim of this paper is to investigate how the cost of capital can be assessed 

referring to a portfolio of life annuities and allowing in particular for the need of capital 

facing the longevity risk. The investigation is a preliminary study, in particular as far as the 

pricing of longevity risk is concerned. 

The paper is organized as follows. In Section 2 the traditional approach to portfolio 

valuations and the market approach are briefly described and compared. Section 3 focusses 

on capital allocation for solvency purposes and the notion of target capital. The survival 

model, allowing for longevity risk, adopted to represent annuitants' mortality is described in 

Section 4. Portfolio valuation, accounting for longevity risk and the related capital allocation, 

is addressed in Sections 5 and 6. Numerical results are presented in Section 7. Some remarks 

in Section 8 conclude the paper. 

 

2. Portfolio valuation: the traditional vs the market approach  

The traditional approach to portfolio valuation is based on the so-called "value of the 

in-force business" (VIF), defined as the present value of future distributable earnings 

calculated with a given Risk Discount Rate (RDR), net of the amount of shareholders' capital 

currently within portfolio assets. The distributable earning related to a given period, say a 

year, is defined as the flow from the portfolio to the insurance company (or vice versa) such 

that portfolio assets are equal to a given level, viz the mathematical reserve plus the target 

capital (for a definition of target capital, see Section 3). 

According to this definition, the VIF at time t , tVIF , is given by 
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where hK denotes the distributable earning in year h , ),( htvρ  is the discount factor based on 

the annual RDR’s htt ,,, ρρρ K21 ++ , and tM  is the shareholders' capital contributing to the 

portfolio assets at time t . 

 It is possible to show (for example, see Olivieri and Pitacco (2005)) that, under 

reasonable hypotheses, an alternative (equivalent) expression for the VIF is as follows: 
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where I
hU  denotes the "industrial profit" (an example referred to an annuity portfolio is 

provided by formula (5.2)), *hi  is the estimated yield from investments, and ( )*
hh i−ρ  

represents the "risk premium" for one monetary unit of shareholders' capital (usually constant 

over time) rewarding shareholders for the risks encumbering the life portfolio (all but the 

market risk, whose reward is already embedded in *
hi ). The first term on the right-hand side 

of equation (2.2) is usually called "present value of future profits" (PVFP), whereas the 

second term represents the "cost of capital", i.e. the present value of risk premiums required 

on the allocated capital. Hence, equation (2.2) can also be written as follows:  

ttt CCPVFPVIF −=        (2.2') 

 It is worth stressing some features of the traditional valuation model, represented by 

equations (2.1) to (2.2'). First, a deterministic approach is adopted for the valuation of future 

cash flows. The calculation of main quantities, e.g. the distributable earnings hK  in formula 

(2.1), is commonly based on the best-estimate scenario. Conversely, in latest years stochastic 

models are frequently used for the evaluation of options and guarantees embedded in life 

insurance products. 

 Secondly, in the traditional valuation model, portfolio riskiness could be allowed for 

mainly through the RDR’s hρ , which as mentioned should account for various risks inherent 

in the portfolio itself (mortality risk, investment risk, etc.), but also for inefficiencies in 

managing the portfolio, etc. However, the RDR’s are usually chosen according to current 

market practice, whence they are not specifically tailored to portfolio features. 

 The market approach to portfolio valuations aims at overcoming some weak points of 

the traditional actuarial model. It resorts to a “risk-neutral” valuation approach, according to 



which the discount factor is based on the risk-free rate. It follows, in particular, that the term 

tCC  (see equation (2.2')) is not accounted for.  

It is worth noting that, according to this approach, only undiversifiable risks (in 

particular systematic risks) are rewarded.  In practice, risks with a market evidence can be 

“easily” accounted for. The value of the portfolio to the insurance company is anyhow 

affected also by: 

(a)  systematic risks with no market evidence; 

(b) inefficiency in managing the portfolio (for example, pooling risks not fully diversified); 

(c) agency costs. 

 The longevity risk belongs to the class (a) above. In Sections 5 and 6 we describe a 

possible approach to the problem of including longevity risk in the cost of capital. 

 

3. Solvency and target capital 

Shareholders' capital must be assigned to each insurance portfolio, with the goal of a 

high probability of meeting the relevant obligations, namely aiming at solvency. Solvency 

assessment, if worked out on a sound basis (e.g. via an "internal model"), requires an 

appropriate evaluation of the risks borne by the insurer. In particular, mortality risks and 

market risks should be accounted for.  

The result of the solvency assessment procedure, applied at time t , is the "target 

capital" target
tM , which should be allocated to the portfolio. An amount of assets equal to the 

sum of the mathematical reserve and the target capital should ensure that the insurer's 

obligations will be met (over an assigned time horizon) with a given (high) probability. 

The total amount of assets required in order to meet future obligations is also called 

the "solvency reserve". This amount can be globally determined, via an appropriate stochastic 

model, looking at the probability of meeting obligations over the stated time horizon, and 

hence disregarding, a priori, the concept of mathematical reserve (for example, see Olivieri 

and Pitacco (2003)). Splitting the solvency reserve into mathematical reserve and target 

capital is then a matter of regulation (which may require, for example, a minimum 

mathematical reserve for a given portfolio). 

A (simplified) procedure for calculating the target capital facing the longevity risk in a 

portfolio of life annuities is presented in Section 5.  

As regards the amount of shareholders' capital allocated to a portfolio, further 

constraints may come from requirements other than the solvency assessment worked out by 



the insurance company and leading to the target capital target
tM . In particular, a minimum 

capital allocation, leg
tM , may be required by law (e.g. the "required solvency margin", 

according to the European legislation). Moreover, a minimum capital allocation rating
tM  may 

arise from rating criteria. Clearly, the shareholders' capital, )(r
tM , to allocate in order to meet 

the three requirements is given by 

{ }ratinglegtarget)( ,,max ttt
r

t MMMM =      (3.1) 

 In what follows we assume the simplified requirement 

   { }tt
(r)
t VMM 04.0,max target=      (3.1') 

i.e. we disregard rating requirements, and assume the required margin calculated according to 

the European legislation. As far as the calculation of target
tM  is concerned, we adopt 

alternatively parameters based on the Solvency 2 project and on internal rules of conduct (see 

Section 7). 

 

4. The survival model 

In what follows, we refer to a portfolio of immediate life annuities, initially consisting 

of a given number 0N  of annuitants, all aged 0x . We assume that the portfolio is 

homogeneous in terms of entry time, age (hence it consists of a "cohort"), annual amount, etc. 

For simplicity, we disregard expenses and consider unitary annual benefits, to be paid at the 

end of each year. 

As regards the survival model, we assume that the random lifetime of a generic 

annuitant can be described by the Weibull distribution, namely with probability density 

function given by 
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where the parameters βα ,  (common to all annuitants) are unknown, consistently with the 

uncertainty in future mortality trend. The assumed (discrete) probability distribution of the 

parameters is given in Table 4.1. We point out that the best estimate (BE) scenario, namely 

the scenario with the highest probability, is given by  2.85,15.9 == βα . In any case the 

maximum duration of life has been set equal to 120 years. 



 Some features of the mortality scenarios result from Tables 4.2 and 4.3. In particular, 

Table 4.2 shows the relation between the parameters and the location of the Lexis point. So, 

an appropriate choice of the parameter values allows us to represent the so-called "expansion" 

phenomenon (for example, see Olivieri (2001)), whereas the randomness in future expansion 

trend is expressed by the parameter uncertainty and the relevant probability distribution (see 

Table 4.1). 

 

       ββββ    
            αααα 

82 83.5 85.2 87 89  

7 0.01033 0.03155 0.04352 0.02287 0.00200 0.11028 

8 0.00933 0.03055 0.04832 0.02582 0.00600 0.12003 

9.15 0.00833 0.02955 0.39708 0.02828 0.00500 0.46825 

10.45 0.00733 0.02755 0.11204 0.02701 0.00400 0.17794 

12 0.00633 0.02855 0.06301 0.02461 0.00100 0.12351 

 0.04165 0.14777 0.66397 0.12859 0.01801 1 
 

Table 4.1 - Probability distribution of the Weibull parameters 

 

          ββββ    
αααα    82 83.5 85.2 87 89 

7 80.214 81.681 83.344 85.105 87.062 

8 80.643 82.118 83.790 85.560 87.527 

9.15 80.969 82.450 84.129 85.906 87.881 

10.45 81.214 82.700 84.384 86.167 88.147 

12 81.408 82.897 84.584 86.371 88.357 
 

Table 4.2 - Modal age at death (Lexis point) 

 

          ββββ    
αααα    82 83.5 85.2 87 89 

7 82.599 90.181 99.035 108.646 119.473 

8 69.555 76.119 83.758 92.042 101.422 

9.15 58.894 64.518 71.013 77.999 85.857 

10.45 50.135 54.895 60.337 66.126 72.563 

12 42.406 46.326 50.749 55.389 60.477 
 

Table 4.3 - Variance of the lifetime 

 
Conversely, Table 4.3 shows the relation between the Weibull parameters and the 

variance of the random lifetime. To this regard, an appropriate choice of the parameter values 



allows us to represent the so-called "rectangularization" phenomenon (i.e. the concentration 

of deaths around the expected lifetime), whereas the randomness in future rectangularization 

trend is expressed, as above, by the parameter uncertainty. 

 

5. Allowing for longevity risk: the traditional approach  

We assume that the only risk perceived by the market is the longevity risk, i.e. a risk 

of systematic deviations from the expected number of survivors. Conversely, the risk of 

random fluctuations in mortality is assumed as fully diversified by the insurer, whence no 

reward is allowed for. Further, we assume that there is no financial risk, so that the yield from 

investment is the risk-free rate i  (constant, for brevity). Finally, we disregard any expense or 

transaction cost. 

Information asymmetries between the insurer and the annuitants concern both 

information held by annuitants only (whence the adverse selection risk arises) and 

information available to the insurer only (with regard to the description of the future mortality 

trend). Overall, such asymmetries lead to a safety loading embedded into the annuity single 

premium. We assume that all agents on the market (but the annuitants) hold the same 

information. Hence the same mortality model, featured by the same parameters, is adopted by 

all agents. 

The insurer's income at time 0  is given by the single premiums paid by the 

annuitants, whose total amount is 00 VN , where 0N  (as already mentioned) is the initial size 

of the portfolio and 0V  is the individual mathematical reserve at time 0 , calculated according 

to a mortality table embedding a safety loading with respect to the (projected) BE mortality 

assumption. In formal terms, we assume that  0V   is such that 

γ=−1
]BE[

0

0

V

V
         (5.1) 

where ]BE[
0V  denotes the mathematical reserve based on the BE mortality assumption and γ   

is the given safety loading for a monetary unit of premium. 

 As a unitary annual amount is assumed for all annuities, the random outflows of the 

insurer are given by nNNN ,...,, 21 , where tN  denotes the random number of annuitants alive 

at time t , i.e. at age tx +0 ; 0xn −= ω  is the maximum residual lifetime of an individual 

aged 0x . 



 According to the traditional actuarial approach, the value of the portfolio to the insurer 

can be calculated as follows. First, the expected industrial profit, conditional on the BE 

scenario, is given by  

[ ] ( ) [ ] [ ]
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I
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where [ ]BE
tN  denotes the expected number of annuitants alive at time t   under the BE 

mortality scenario. Then, the (traditional) VIF at time 0  is given (see formula (2.2)) by 
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which clearly depends on the RDR ρ  (which is constant, due to the assumption on the risk-

free rate), as stressed by the notation )(0 ρTVIF . 

 In order to calculate )(0 ρTVIF , a capital allocation policy must be chosen. In what 

follows we assume that the shareholders' capital tM , nt ,...,1,0= ,  contributing to the 

portfolio assets is equal at any time to the required capital )(r
tM  determined according to 

(3.1'). The target capital target
tM  is calculated via a stochastic model, with the following 

structure.  

Let hA  denote the assets at time h  facing portfolio liabilities. Assume that no 

shareholders' capital flow after a starting time t   affects the level of portfolio assets. Hence, 

starting from a given initial amount tA , the (random) evolution of assets is described by the 

following recursion 

K,2,1)1(1 ++=−+= − tthNiAA hhh     (5.4) 

We assume the following solvency target: 
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where T  is the time horizon, hV  is the individual mathematical reserve at time h , and ε  is 

the accepted "ruin probability" (whence ε−1  can be interpreted as the "degree of solvency"). 

From equation (5.5) via a stochastic simulation procedure, the amount tA , and hence the 

capital target
tM , can be determined. 

 It is worth stressing that, in what follows, we assume that randomness in the numbers 

hN  is due to longevity risk only, whilst we disregard random fluctuations in mortality. 



6.  Allowing for longevity risk: the market approach 

 Turning to the market approach, first we have to assume some hypotheses coherent 

with a risk neutral valuation. To this purpose, we assume that the insurer transfers the 

longevity risk to a reinsurer through a swap-like arrangement. Let RP  denote the reinsurance 

premium, paid by the cedant at time 0 . According to the reinsurance arrangement, in each 

year the reinsurer pays to the insurer the random amount [ ]BE
tt NN −  if positive; otherwise 

the amount [ ]
t

BE
t NN −  is paid by the insurer to the reinsurer. It follows that the net annual 

outflow of the insurer is 

   [ ]( ) [ ]BEBE
tttt NNNN =−−        (6.1) 

 Thus, the annual net flows of the insurer are known, whence the discount rate to be 

used for the valuation must be the risk-free rate i . The (market) VIF of the portfolio is then 

given by 
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From (5.2) it turns out 
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represents the present value at time 0  of the insurer's cash flows (certain in the presence of 

the swap-like arrangement; expected according to the BE scenario otherwise). 

 As regards the position of the reinsurer, we first note that the reinsurer needs to 

counterbalance its risk. To this purpose, we assume that the reinsurer issues a bond with the 

following features: 

- principal: 0 ; 

- annual random coupon: tNN −0  (i.e. equal to the random number of deaths in the cohort 

up to time t ); 

- price (at time 0 ): BP . 



 We point out that maybe the reinsurer cannot access directly the capital market, but 

intervention of a Special Purpose Vehicle (SPV) is required. This could lead to some 

transaction costs, not specifically addressed in this paper. 

 The annual net outflow of the reinsurer is given by 

[ ]( ) ( ) [ ]BE
00

BE
tttt NNNNNN −=−+−      (6.4) 

where the first term on the left-hand side denotes the annual flow paid to the insurer if 

positive (or received from the insurer if negative), while the second term denotes the annual 

flow to the market (i.e. to the buyer of the bond). The right-hand side of (6.4) shows that the 

annual outflow is known, whence the reinsurer's position is certain. 

 As regards the reinsurance premium and the bond price, bounds can be obtained from 

feasibility conditions. The feasibility of the overall situation for the insurer is described by 

the following condition: 
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i.e. the net inflow of the insurer at time 0  must be greater or equal to the present value of the 

outflows (certain). Using (6.3), condition (6.5) can be simply written as 

   00 ≥MVIF         (6.5') 

 Conversely, the feasibility of the overall situation of the reinsurer requires 
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i.e. the net inflow of the reinsurer at time 0  must be greater or equal to the present value of 

the outflows (certain). 

 Note that if conditions (6.5) and (6.6) are fulfilled in terms of a strict inequality, then 

they embed in particular a reward for transaction costs. 

 From (6.5) and (6.6), we find a lower and an upper bound for the reinsurance 

premium RP : 
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In order to ensure that the lower bound is actually less than the upper bound, i.e. 

  [ ]( ) ( ) [ ] ( )∑∑
=

−−

=
+−≤−+−

n

t

t
t

t
n

t
t iNVNBPiNN

1

BE
00

1

BE
0 11     (6.8) 

a constraint on the bond price BP  must be imposed, namely 
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Note that violation of this inequality would give rise to arbitrage opportunities with respect to 

the reinsurer. 

 Given the unavailability of a market for longevity risk, adoption of a risk-neutral 

probability raises a lot of issues. In what follows, we assume for the bond price a very naïf 

and basic rule, namely 
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where the symbols E  and σ  denote the expected value and the standard deviation 

respectively, and λ  represents the market price of risk. For an alternative approach, see Lin 

and Cox (2005). 

 We now turn to the main purpose of this work. For any given reinsurance premium 

RP ,  the (market) VIF at time 0  is given by expression (6.3). Assume that the traditional 

approach to portfolio valuation (expressed by formula (5.3)) leads, via an appropriate choice 

of the RDR ρ , to the same value of the VIF; hence 

   MT VIFVIF 00 )( =ρ                 (6.11) 

 Condition (6.11) allows us to determine the "equivalent RDR", i.e. the RDR such that 

the traditional valuation coincides with the market one. As the only risk accounted for is the 

longevity risk, the resulting RDR expresses the riskiness of the portfolio due to uncertainty in 

future mortality trends. 

      

7. Numerical examples 

Consider a portfolio initially consisting of 10000 =N  annuitants, aged 650 =x .  The 

annual rate of interest is %5.2=i . 

As regards the safety loading of the insurer, we assume (see (5.1)) %5=γ .  Let [ ]BE
xq   

denote the best estimate mortality rate at age x  (derived from the Weibull distribution with 

the BE parameters, see Table 4.1), while the mortality rate used in the pricing and reserving 

basis, xq′ ,  is such that 

   [ ] %246.87
BE

=
′

x

x

q

q
 



 The required capital at time t , (r)
tM , is determined according to formula (3.1'), and 

the target capital at time t , target
tM , is calculated aiming at portfolio solvency and adopting 

the approach described in Section 5 (see formula (5.5) in particular). We have assumed, 

alternatively, %05.0,1 == εT  (following Solvency 2 parameters) and %5.0,5 == εT  

(thinking to internal parameters of the insurance company, reflecting its capital allocation 

politicy); we will refer to these two cases respectively as “target Solvency 2” and “internal 

target”.  Table 7.1 quotes some values of the required capital (r)
tM , under the two alternative 

assumptions; at each time, the calculation has been performed assuming that the current size 

of the portfolio is as expected under the BE scenario. Note that the internal rule of conducts 

(which refers to a longer time horizon) usually leads to a higher target capital than the legal 

requirement, due to the fact that longevity risk is a long term risk. 

 

t target 
Solvency 2 

internal  
target 

0 557.25 557.25 
1 530.76 530.76 
2 504.10 504.10 
3 477.32 477.32 
4 450.48 450.48 
5 423.66 423.66 
… … … 
15 176.46 322.35 
16 156.09 322.93 
17 136.92 319.56 
18 119.01 312.24 
19 102.44 301.07 
20 87.26 286.33 
… … … 
30 23.85 75.50 
31 18.87 58.93 
32 14.54 44.73 
33 10.88 32.97 
34 7.90 23.54 
35 5.56 16.26 
… … … 

 
Table 7.1  -  Required capital 

  



The present value of the insurer's cash flows (see (6.3')) is 66340.00 =CF . From 

constraint (6.7) the upper bound for the reinsurance premium is 66340.0max =RP , whereas 

from constraint (6.9) the maximum market price of risk (see (6.10)) is 86164.0max =λ .  

 In Table 7.2 values of the minimum reinsurance premium, minRP , as it results from 

the lower bound in (6.7), are tabulated against some values of the parameter λ .    

 

λλλλ    RPmin 

0 0 
0.5 384.96 

0.86164 663.40 
 

Table 7.2 - Minimum reinsurance premium 

 
Finally, Table 7.3 and 7.4 present some results concerning the "equivalent RDR". For 

any given value of the reinsurance premium RP  (consistent with the market price of risk λ ), 

the resulting (market) VIF is reported. Assuming that the traditional VIF coincides with the 

market VIF (see (6.11)), the equivalent risk discount rate ρ  can be calculated. Then, the 

positive term ( 0PVFP ) and the negative term ( 0CC ) of the VIF (according to expressions 

(2.2) and (2.2')) can be derived. 

 

λλλλ    RP VIF0 

0 0 663.40 
0.5 384.96 278.43 
0.5 500.00 163.40 

0.86164 663.40 0.00 
 

Table 7.3 - Market price for risk, reinsurance premium, VIF 

 

Target Solvency 2 Internal target 
RP VIF0 

RDR ρρρρ    PVFP0 CC0 RDR ρρρρ PVFP0 CC0 

0 663.40 2.500% 663.40 0 2.500% 663.40 0 
384.96 278.43 5.326% 471.78 193.35 2.878% 631.87 353.43 
500.00 163.40 6.746% 405.02 241.63 3.023% 620.30 456.91 
663.40 0.00 9.700% 305.24 305.24 3.274% 601.07 601.07 

 
Table 7.4 - Reinsurance premium, VIF, equivalent RDR and splitting of the VIF 

 



Note that when a more severe target capital (as implied by the choice “internal target” 

compared to the choice “target Solvency 2”), a lower RDR follows. Actually the risk is 

absorbed by the higher amount of capital. 

 

8. Final remarks 

We have described a possible approach to include the market price of risk in the embedded 

value framework. The pricing of longevity risk constitutes the main problem in the valuation 

process. More generally, the presence of non-traded risks require further research work. 

The numerical results we have presented clearly depend on the assumed hypotheses 

and the values assigned to a number of parameters. In particular, the Weibull assumption, the 

parameter space and the relevant probability distribution used to represent possible future 

mortality trends clearly affect the results. Another important assumption concerns the 

expression of the market price of risk. 

Nonetheless, in our opinion the proposed model can provide a useful tool for linking 

the traditional valuation approach to the market one, via an appropriate quantification of the 

riskiness due to uncertainty in future mortality trends. 
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