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“Rate making and large claims” 
 

 P. Gigante, L. Picech, L. Sigalotti 
 
 
 

Summary 
 
In this paper, we deal with the problem of taking account of large claims in rate making procedure. 
Both Generalised Linear Models and Extreme Value Theory are applied in order to build a model 
to evaluate the fair premiums in a tariff system. A numerical application concerning motor insurance 
is developed. 
 
 
 
  

« Tarification et grands sinistres « 
 

P. Gigante, L. Picech, L. Sigalotti 
 

Résumé 
 

L'objet de cet article est de considérer le problème des "grands" sinistres dans les méthodes de  
tarification des risques. Aufin de tenir compte de ce genre de sinistres on propose une méthode 
d'évaluation de la prime pure, basée sur les Modèles Linéaires Généralisés et sur la Théorie des 
Valeurs Extremes. Les résultats sont appliqués a un portefeuille d'assurance automobile. 
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1. INTRODUCTION 
 
It is well-known (Van Eeghen et al. (1983), Czernuszewicz et al. (1998)) that the estimated tariff for 
a general insurance coverage is highly affected by the presence of large claims in the data. In fact, 
the occurrence of a particularly high claim in a tariff class may have a dominating effect on the 
estimation process and distort the pricing analysis. These large claims need therefore being handled, 
both to reduce their impact on the evaluations and to investigate their possible dependence on the 
tariff variables. 
In the actuarial practice (Czernuszewicz et al. (1998)), it is generally accepted that large claims are 
funded for by a contribution from all risks in the portfolio. To calculate the amount of this 
contribution, one can operate as follows: 
− select a truncation point or trimming point; it can be defined as the amount over which a claim 

should be considered as a large claim; 
− top-slice all claims at the truncation point; 
− fit a tariff model to top-sliced data; 
− add on loads to premiums to allow for excess costs over the truncation point. 
Two main problems arise: how to select the truncation point and how to calculate the loadings for 
large claims. In the actuarial practice, there are several approaches for the selection of the truncation 
point, for instance: 
− choose an amount equal to a given rate of the earned premiums or of the total claim amount; 
− fix a conveniently high quantile of the empirical claim distribution (e.g. 95%); 
− choose as truncation point the reinsurance retention limit of a possible reinsurance treaty. 
In the actuarial literature, statistical methods for the truncation point selection have been developed 
for instance within the context of Credibility Theory (Gisler (1980), Bühlmann et al. (1982)). As for 
the loading evaluation, in some models it is assumed that large claim occurrence does not depend on 
the tariff classes, then a constant amount is added to the premiums of all classes. On the other side, 
one could observe that the frequencies of large claim occurrence differ in the tariff classes (Van 
Eeghen et al. (1983)). In this case, different loading amounts could be determined in accordance 
with the evaluation of different probabilities of large claim occurrence in the tariff classes. 
In this paper, statistical techniques developed within the Extreme Value Theory (Embrechts, et al. 
(1997), McNeil, (1997)) are applied as a possible approach to the trimming point selection and in 
order to estimate the expected claim amount exceeding this point. For each tariff class the premium 
is then given by the product between the expected claim number and the expected claim amount, 
where the last one is a mixture of the expected claim amounts below and above the trimming point. 
The weights of the mixture are the probabilities that one incurred claim be below and, respectively, 
above the trimming point and are estimated in such a way to allow for large claim dependence on 
the tariff classes to be taken into account. The expected claim numbers and the expected claim 
amounts below the trimming point are estimated by the largely used Generalised Linear Models 
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(McCullagh, Nelder (1989)). As for the weights of the mixture, we discuss some estimation 
methods: empirical estimates, fitted values throughout regression models and a smoothing model 
inspired by Credibility Theory. 
Numerical examples on a motor insurance data file illustrate the proposed approach. All the 
numerical evaluations have been performed in S-PLUS. 
 
 
2. PRELIMINARIES 
 
In a-priori pricing, the observations on a portfolio of risks are used in order to detect and select the 
a-priori observable characteristics that mainly influence the risk propensity. The aim is to subdivide 
the portfolio into homogeneous risk classes, the so called tariff classes, and to determine the 
insurance premium for each class. Under the hypothesis of compound distribution, the pure premium 
for a risk in tariff class i, ( )iXE , is given by: 
(1) ( ) ( ) ( )iii ZENEXE =  
where ( )iNE  and ( )iZE  are the expected claim number and the expected claim amount. The tariff 
can be obtained by estimating, for any i, ( )iNE  and ( )iZE . 
In the actuarial practice, the generalised linear models (GLMs) are largely used (see for instance 
Brockmann, Wright (1992)) to estimate regression models for the claim number and the claim 
amount. However, as mentioned in the introduction, before applying this model a pre-processing of 
the data is necessary to manage the very high claim amounts. In fact, they can have a relevant effect 
on the estimates of ( )iZE  in the classes in which they have occurred. To show this aspect, we have 
built a tariff according to (1) keeping all the observed claim amounts as they were reported in the 
data file. 
The data are drawn from a motor insurance portfolio of an Italian company and consist of 172.161 
policies observed over one year. For each policy, the following information are available: 
− Sex of the insured: 1 for female, 2 for male; 
− Age of the insured (grouped into 8 levels); 
− Chief town: 1 means that the insured lives in a chief town, 2 otherwise; 
− KW Power of the vehicle (grouped into 5 levels); 
− Fuel: 1 for petrol supplied vehicles; 2 for diesel cars; 
− Mass of the vehicle (grouped into 10 levels); 
− Time exposure; 
− Number of claims incurred; 
− Total claim amount.  
In addition, for each policy having reported claims, the claim amounts have been detected. )1(  
The Poisson and the Gamma distributions, both with logarithmic link function, have been used to 
model the claim numbers and the claim amounts, respectively. For the claim numbers, the following 
variables have been selected: Age, Fuel, Chief town, KW Power and Mass. The estimated 
regression model includes also the interactions: Chief town and KW Power, Age and Chief town. 
As for the claim amounts, the selected variables are: Age, Fuel, Chief town and Mass. By applying 
this tariff to our portfolio of risks, the total earned premiums (42,373 millions ITL) would be slightly 
lower than the observed total claim amount (42,430 millions ITL). Note that, by using the Gamma 
distribution, in presence of few but noticeably high claims, the claim amount distribution could be 
underestimated. Moreover, the pure premiums are considerably affected by large claims, as can be 
seen in Figure 1. 
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We note the well-known pattern of the premiums at varying the Age classes: high premiums for 
young drivers, then decreasing and then again slightly increasing for old drivers. In each age class the 
premiums show notable fluctuations. Looking, for instance, at the first age class, the fluctuations are 
due to the presence in our data file of very high claim amounts in some tariff classes having the Mass 
levels 6 and 8. For this reason we have high premiums when Mass=6, lower when Mass=7, higher 
again when Mass=8 and lower when Mass=9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: premiums for some tariff classes defined by Sex=1, Chief 
town=2, Fuel=2, and ordered by Age, KW Power and Mass. 

 
In order to take account of the large claims, it seems natural to assume for the claim distribution a 
mixture model: one distribution for “ordinary” claims (with amounts not particularly high) and one 
heavy-tailed distribution for large claims. Obviously, the trimming point R distinguishing ordinary 
and large claims, the respective probability distributions and the weights of the mixture have to be 
determined, by taking also account of the risk classification. The pure premium can then be 
described by the following model: 
(2) ( ) ( ) ( ) ( ) ( ) ( )[ ]RZZERZPRZZERZPNEXE iiiiiiii >>+≤≤= . 
The expected claim amount is a mixture of two components: the one concerning ordinary claims 

( )RZZE ii ≤  and the other one for large claims ( )RZZE ii > . 
In pricing, mixture models for the claim amount distribution have been applied by many authors. For 
instance, Bühlmann et al. (1982) afford in this way, within the Credibility Theory, both the problem 
of choosing the trimming point and the one of evaluating the premium; Benabbou, Partrat (1994) 
determine, for a given level of the trimming point, maximum likelihood estimates of the two 
conditional distributions and the weights of the mixture, by assuming the independence of the “large-
claim” component from the a-priori tariff characteristics. 
In this paper we consider a mixture model for the claim amount distribution and analyse some 
methodologies for the estimation of the different components in (2). 
 
 
3. AN APPLICATION OF EXTREME VALUE THEORY TO CLAIM ANALYSIS 
 
In order to choose the trimming point and to estimate the probability distribution of the claim amount 
exceeding this point we take advantage of some methodologies developed within Extreme Value 
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Theory (EVT). These methodologies, allow us to obtain an analytical model for the distribution of 
the claim amount exceeding a threshold u . In this way, for any trimming point  uR ≥  we can 
calculate the expected values  )( RZZE ii >  which appear in (2). 
The Pickands, Balkema, de Haan Theorem provides a useful result for the estimation of large claim 
distributions. In fact, it shows that that for any ℜ∈ξ , the distribution of a random variable Z 
belongs to the maximum domain of attraction of a generalised extreme value distribution iff it exists a 
positive function ( )uσ  such that 

 ( ) ( )( ) 0suplim ,
0 00

=−
−<<→

zGzF uu
uzzzu

σξ  

where Fu is the distribution function of the conditional excesses uZuZ >− ,
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with z≥ 0 if 0≥ξ and 
ξ
1

0 −≤≤ z  if 0<ξ  and z0 is the right endpoint of the distribution of Z.  

The distribution ( )zG σξ ,  is named generalised Pareto distribution (GPD). It is characterised by two 

parameters, the shape ξ and the scale σ. 
We just recall that the class of probability distributions belonging to the maximum domain of 
attraction of a generalised extreme value distribution is remarkably wide and it includes almost all the 
distributions that are commonly used to model the claim amount distribution (see Embrechts et al. 
(1997)). From a practical point of view, the quoted theorem suggests that over a sufficiently high 
threshold u the conditional excesses of a claim amount distribution can be approximated by a 
generalised Pareto distribution. The parameters ξ and σ can then be estimated, for instance, by the 
maximum likelihood method, using all the observations exceeding u. 
Note that if, for uz > , we take ( )zFu  equal to the approximating distribution ( )zG σξ , , then 

( )uzFu − = ( )uzG −σξ , = ( )zG u σξ ,,  which is a three parameter generalised Pareto distribution. 
Given that 
 ( ) { } { }( ) ( ) { }uZPuzFuZPzZPzF u ≤+−≤−=≤= 1 ,  uz > , 
if we take { }uZP ≤ = ( )uFn , where ( )uFn  is the empirical distribution function evaluated at u , 
then the tail of the distribution of Z is estimated by 
(3) ( ) ( )( ) ( ) ( ) ( )zGuFzGuFzF uu σξσξ ~,~,n,,n1ˆ =+−= ,  uz > , 

where ( )zG u σξ ~,~,  is the distribution function of a three parameter GPD with shape parameter ξ, and 
convenient scale and location parameters σ~ and u~  (see McNeil (1997)). 
We recall two more results concerning GPD. If a random variable Z has the generalised Pareto 
distribution ( )zG σµξ ,, , its expectation is finite iff 1<ξ  and it is given by ( ) )1/( ξσµ −+=ZE . 

Moreover, the mean excess function of Z, ( )uZuZEue >−=)( , is linear in u  and it is given by 

 
ξ

µξσ
−

−+
=

1
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ue  

with 0)( >−+ µξσ u  and 0zu < . 
These results are useful to analyse the fitted model with respect to the data and, preliminarily, to 
investigate the choice of the threshold u. Indeed this is a crucial point in the application of the EVT 
methodology. At a general level, we can say that the threshold needs to be sufficiently high in order 
to fulfil the applicability conditions of the theorem, however it cannot be too high so that an 
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acceptable number of observations be available to estimate the parameters. Graphical analysis are 
proposed in literature as tools of investigation when choosing the threshold: e.g. the empirical mean 
excess function, the pattern of the parameter estimates as a function of the threshold, the plot of the 
estimated quantiles. 
In the following, we are applying these analyses to our data file containing the claim amounts caused 
by the 172,161 risks, in one year. Some very low amounts have been excluded, so that the data file 
consists of n=12,662 figures (compared to 12,691 claims). The numerical evaluation have been 
performed in S-PLUS by means of the Library EVIS (www.math.ethz.ch/∼mcneil). 
We report in Table1 some statistics that summarise the data characteristics. A remarkable positive 
asymmetry is shown. 
 

n 12,662 
minimum 53,000 

1° quartile 800,000 
median 1,802,000 
average 3,351,000 

3° quartile 2,836,000 
maximum 504,000,000 

99.0x)  27,000,000 

995.0x)  46,390,000 

999.0x)  183,475,000 

Table1: summary statistics on the data file. 
  px)  is the empirical p quantile. 

 
To check whether a heavy tail distribution is suitable to describe our data we can look at the QQ-
plot of the quantiles of the empirical distribution against the ones of the exponential distribution: 

 ( )
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where 1
0,1G−  is the inverse of the distribution function of the exponential distribution with parameter 1 

and ( ) ( )n1 zz ≥≥ Κ  are the ordered claim amounts. In Figure 2, the concave departure from the 
linear shape shows that the tail of our data is heavier than the one of the exponential distribution. 
Another useful graphical tool is the sample mean excess plot: 
 ( ) ( )( )( ){ }  ,...,  k ze,z kk n1n =  
where 

 ( ) ( ) ( )
( )

∑
∆∈

−
∆

=
uk

kn uz
ucard
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nn

1
 , 

with ( ) { }uz,  ,kku k >==∆ ,n1n Κ . 

The empirical mean excess function ( )uen  is a sample version of the mean excess function ( )ue . If 
the points show an upward trend, this is a sign of heavy tail behaviour (see Embrecths et al. (1997), 
Hogg, Klugman (1984)). In particular, if the pattern of the plot is approximately a straight line with 
positive slope above a point u , this is an indication that a GPD with 1<ξ  could be a model to 
describe the data in the area above u and that u can be chosen as threshold.  
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Figure 2: QQ-plot against the exponential distribution. 

(Scale on the x-axis: 1=100,000 ITL) 
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Figure 3: Empirical mean excess function. 

(Scale on the x-axis: 1=100,000 ITL) 
 
Looking at Figure 3, excluding the points at the very high levels of u, which are calculated on few 
data and show an erratic pattern, the plot supports the choice of a generalised Pareto with positive 
shape parameter in the tail area. However, we cannot clearly single out one threshold level; in fact, 
different values of u between 200 and 400 could be suitable. 
Further investigations on the choice of the threshold are necessary and, following some suggestions 
in literature (see Embrechts et al. (1997), McNeil (1997)), we estimate the shape parameter ξ of 
the generalised Pareto distribution for uZuZ >−  for different values of u. 
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As a preliminary analysis, we estimate ξ by the Hill estimator. If k, the number of the exceedances 
above the threshold, is properly chosen also with respect to n, the Hill estimate of the parameter 

1−= ξα , with 1<ξ , is: 

 ( ) ( )
( ) ( )

1

1

loglog
1

ˆˆ
−

=








−== ∑ k

k

j
j

H
k,n

H zz
k

aa .  

The graphical analysis based on the Hill estimator is generally summarised in the Hill-plot: 
 ( )( ){ }n2,...,k:âk, H

nk, = . 
Looking at Figure 4, we note that for 300>u  the asymptotic confidence intervals of the estimates 
are quite width and the estimates are not stable. When u is between 250 and 300 the estimates are 
based on a number of exceedances reasonably high (137 and 102, respectively) and they seem 
rather stable: a value of u in this interval seems to be a compromise between the bias and the 
variance of the estimator. 
 

Figure 4: Hill-plot. 
(Scale of the threshold on the upper x-axis: 1=100,000 ITL) 

 
We continue the analysis with the maximum likelihood estimates of the shape parameter ξ which are 
shown in Figure 5. Looking for intervals of stability, such that the choice of a slightly different 
threshold will not produce a completely different fit of the distribution over the threshold, we note 
that the pattern fluctuate notably near the thresholds 150 and 200. This might be due to the high 
number of values all equal to 150 and 200 in our data file, which could correspond to reserved 
claims. In the interval between 210 and 250 (k=195 and k=137, respectively) the estimates seem to 
be rather stable. For this reason, the central value 230 (k =164) will be considered in the following. 
Another analysis concerns the comparison of the 0.99 empirical quantile, reported in Table 1, with 
those of the probability distributions estimated by (3) for different values of u. In Figure 6, the 
quantile of the estimated distributions with threshold between 210 and 250 are rather stable and 
they are also quite close to the empirical one, while the quantile of the estimated distribution with 
threshold equal to 300 is remarkably lower than the empirical one. From these considerations, the 
thresholds 230 and 250 seem convenient. 
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Now, on the ground of previous analyses, we determine the maximum likelihood estimates of the 
parameters ξ and σ of three generalised Pareto distributions with thresholds 230, 250 and for the 
sake of comparison also with the threshold 300. 
As an example of the resulting fit, we report in Figure 7 the estimated distribution function 

)( uzFu − , where u=230. Similar fits are obtained with the other two estimated distributions. 
 

Figure 5: maximum likelihood estimates of the shape parameter. 
(Scale of the threshold on the upper x-axis: 1=100,000 ITL) 

 
 

Figure 6: 0.99 quantile estimates. 
(Scale of the threshold on the upper x-axis: 1=100,000 ITL) 

 
Table 2 contains the estimates of the shape parameter and some quantiles of the three distributions. 
Note that the estimated 0.99 and 0.995 quantiles are not so different from the empirical ones. On 
the contrary, the 0.9999 empirical quantile is considerably higher then the estimated ones. However, 
the analysis of this quantile is not particularly significant because it is based on very few data. 
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From the pricing point of view, it is interesting to compare the expected values +− )( RZEu , 
,uR ≥  at different values of R, with the corresponding sample values (see McNeil (1997), Beirlant 

et al. (2001)). Here +− )( RZEu  denotes the expectation of { }RZ −,0max  taken with respect to 
the GPD estimated from the threshold u . We observe in Table 2 that, for the three considered 
thresholds u, the expected values are higher then the sample ones when R=300 and R=500. The 
differences are notably dependent on the threshold u and hence on the related value of the shape 
parameter. For instance, when u=230 we get the higher estimate of ξ and the most conservative 
evaluation. In the case R=1500, the empirical value is higher than the one estimated from the 
threshold u=300 which results from the lowest value of ξ . 
Since the threshold 230 leads to quite conservative evaluations and threshold 250 gives estimates 
closer to the empirical values, we decide to go on with the analysis choosing these two levels. The 
threshold 300 seems to be unsuitable for the purpose of a prudential pricing. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 7: GPD fitted from the threshold 230. 

 
 

u k ξ u  0,99 0,995 0,9999 Eu(Z-300) +   Eu (Z-500) +
  Eu (Z-1500) +

  
230 164 0,78004 274,7946 450,6125 1506,9663 8,4571 7,2345 5,2460 
250 137 0,66695 267,1415 463,9284 1487,4891 6,3990 5,1513 3,1019 
300 102 0,52327 234,8622 472,6039 1505,2903 5,3839 4,1565 1,9966 

         
Empirical values 270 463,9 1834,75 4,7957 3,5732 3,0409 

Table2: estimated ξ, percentiles, expected values of the excesses, for different threshold u. 
 
 
4. ESTIMATES OF THE WEIGHTS OF THE MIXTURE 
 
In this paragraph we deal with the problem of estimating, for each tariff class i, the probabilities 
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If we assume that these probabilities do not depend on the tariff characteristics, a common estimate 
for all the tariff classes could arise e.g. from a balance condition on the portfolio or, alternatively, 
from the incidence on all claims of those exceeding the trimming point (the observed frequency of 
the exceedances). 
On the contrary, we can carefully investigate on the dependence of the probabilities ( )RZP i >  on 
the tariff characteristics in order to take properly account of the incidence of large claims in the tariff 
model. This can be done, for instance, by the GLM methodology. 
Let )( jZ  be the claim amount of the j-th claim in the portfolio and consider as response variable the 
indicator RZ j >)( , j = 1, 2, … . We can assume for these variables the Binomial distribution and, 

after choosing a suitable link function, a selection procedure leads to identify the significant tariff 
variables. When two or more tariff variables are selected, we can take the probabilities estimated by 
the GLM technique. When only one factorial variable is selected, the GLM estimates are just the 
observed frequencies in the tariff classes described by this unique tariff variable; hence no smoothing 
effect is produced.  
Estimating the probabilities ( )RZP i >  by the observed frequencies, could not be an advisable 
solution, in particular in those classes with very few data. An alternative solution is given by a model 
suggested by the Credibility Theory, which allows to take account of the specific experience of each 
tariff class but, on the other side, produces a smoothing effect due to the whole experience all over 
the portfolio. 
Let RZX j

iij >= )(  , with )( j
iZ  the claim amount of the j-th claim in tariff class i, i =1,…,s, s the 

number of tariff classes. 
We take the following hypothesis for the tariff class i. For the process Κ,, 21 ii XX  assume that: 
- the probability distribution of the process depends on a random parameter iΘ ; 
- conditioned to iΘ , the random variables Κ,, 21 ii XX  are i.i.d. 
For the different classes we assume that 
- the processes ( )

iniiii XXX ,,,, 21 ΚΘ , with ni the observed number of claims in tariff class i, i 
=1,…,s, are independent; 

- sΘΘ ,...,1   are identically distributed; 

- for any i, the variables ?=ΘiihX  are identically distributed. We denote 

 ( )[ ]iihXEE Θ=µ , ( )[ ]iihXEv Θ= var  and ( )[ ]iihXEa Θ= var . 
The model assumptions imply that, in our prior judgement, the probabilities that a claim amount 
would exceed the trimming point are the same for all tariff classes. The observed frequencies of 
claim amounts exceeding the trimming point, in the different tariff classes, allow us to update the 
prior estimates by taking account of the experience in each class. 
Using a linear credibility formula (Bühlmann (1967)) the probability estimate ip  of P )( RZ i >  is: 
 ( ) iiii xp αµα +−= 1  
where 

 ∑
=

=
in

j
ij

i
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n
x
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1
, with ijx  the observed value of ijX  
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we consider the following estimators for the parameters µ, v, and a, respectively (see e.g. Klugman, 
Panjer, Willmot (1998)), 
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The estimates ip  are evaluated by adjusting the estimate of µ, obtained from data of all the 
collective, to reflect the experience on each tariff class. 
By means of GLM, we have applied a selection procedure to our data file both for the thresholds 
23 and 25 millions. In both cases we have selected only one tariff variable, Mass and KW Power, 
respectively. The probabilities estimated using the above described model are reported in Table 3. 
 

 Mass u=230 µ=0.012923 KW Power u=250 µ=0.010795 
 i ix  pi i ix  pi 

 1 0.007329 0.009802 1 0.004505 0.007184 
 2 0.005908 0.010044 2 0.011241 0.011195 
 3 0.014885 0.014354 3 0.007530 0.008485 
 4 0.014037 0.013598 4 0.014191 0.013239 
 5 0.014085 0.013673 5 0.027778 0.013841 
 6 0.009751 0.011378    
 7 0.008209 0.010192    
 8 0.023018 0.018441    
 9 0.011070 0.011946    
 10 0.018667 0.014521    

 
Table 3: observed frequencies and probability estimates. 

 
 
5. SOME NUMERICAL APPLICATIONS TO MOTOR INSURANCE PRICING 
 
In this paragraph, we report some numerical applications of the proposed approach to the pricing of 
motor vehicle insurance. The data are those described in paragraph 2 and already used in the 
previous evaluations. 
We are interested into applying the rating model (2) in which the amounts of large claims and their 
incidence in the tariff classes are taken into account explicitly. We are going to discuss the effects on 
these premiums, denoted by P2, of different levels of the threshold and of the trimming point; in 
details, the three selected combinations are shown in Table 4. We have assumed that the expected 
values ( )RZZE ii >  in (2), do not depend on the tariff variables. Even though this hypothesis can 
appear quite restrictive, it can be accepted in force of some analysis developed by means of GLMs. 
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In fact, in our data, the probability distribution of large claims shows a weak dependence on at most 
one tariff variable. 
Being uξ  and uσ  the estimated parameters of the GPD from the threshold u, we have: 

 
( )

R
uR

RZZE
u

uu
iiu +

−
−+

=>
ξ

ξσ
1

)(  

since in our case 1<uξ . 
The results are reported in Table 4. 
 
 
 
 
 
 
 
 
 
The component “ordinary” claim, ( )RZZE ii ≤  in (2), has been estimated by a GLM with Gamma 
distribution function and logarithmic link function. By applying a selection procedure, the tariff 
variables Sex, Age and Mass have been selected. 
Note that, whereas the Gamma distribution has an upper unlimited support, the response variable 

uZZ ii ≤  is limited with values in the interval [ ]u,0 . For this reason, one could assign a proper link 

function, defined on [ ]u,0  and having values in ℜ . However, since the probability assigned by the 
Gamma on the right tail can be considered negligible, supported by the numerical results, we feel 
confident that the Gamma distribution and the logarithmic link function are reasonable assumptions. 
As for the weights of the mixture in (2), we have applied the GLM methodology to investigate on 
the possible dependence of the incidence of “large” claims on the tariff characteristics. For this 
purpose, as mentioned in paragraph 4, we have assumed a Binomial distribution for the response 
variable and the logit link function. The model selection is clearly affected by the threshold level. If it 
is fixed at 23 millions, both Mass and Chief town are selected at a 4% significance level. If the 
significance level is dropped to 2%, only Mass is selected. Remember that in this case the fitted 
values are equal to the observed frequencies so that the credibility model, described in paragraph 4, 
seems to be much more suitable. For this reason, when we consider the threshold 23 millions, we 
have three different choices for the weights of the mixture: a two-variable GLM regression model 
(to which we will refer to as “glm”); the observed frequencies (“f”) and the credibility weights (“c”). 
If we fix the threshold at 25 millions, only the KW Power is selected and in this case we can take as 
weights in the mixture, either the frequencies or the credibility weights. 
When the trimming point is 50 millions, since only few claim amounts exceed this value, a statistical 
selection process on the tariff variables would not give significant results. For this reason, one can 
assume that the occurrence of one large claim does not depend on the tariff characteristics. In this 
case, we can assign as weight in the mixture, for instance, the observed frequency of claims over 50 
millions (we will refer to this case as “constant”). Another possibility is to make, in any case, the 
weights depend on some tariff characteristics; since the KW Power is selected when the trimming 
point is 25 millions, one can, e.g. decide to assign the credibility weights varying with the KW 
Power class of the vehicle.  
We report in Table 5 the total earned premiums evaluated for our portfolio of risks by applying the 
above mentioned premium models. P1 denotes the premiums calculated according to (1) in 

 u R ξu σu Eu(Z i |Z i >R) 
 230 230 0.7800395 156.2871 940.52348 
 250 250 0.6669510 211.8857 886.19978 
 250 500 0.6669510 211.8857 1636.84007 

Table 4: parameter estimates and expected claims over the trimming points R. (The 
amounts u, R and Eu(Z i |Z i >R) are expressed in ITL divided by 100,000). 
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paragraph 2. The total premiums are subdivided into the two components: the one financing 
“ordinary” claims and the other financing “large” claims. 
 

u R Premium model “ordinary” claims “large” claims Total earned 
premiums 

  P1       42,372,634,500  

230 230 P2 glm    31,646,473,878      15,438,929,545      47,085,403,424  

230 230 P2 f    31,647,140,256      15,424,495,338      47,071,635,595  

230 230 P2 c    31,644,823,102      15,541,277,506      47,186,100,608  

250 250 P2 f    32,306,771,311      12,140,937,067      44,447,708,378  

250 250 P2 c    32,307,856,391      12,143,178,477      44,451,034,869  

250 500 P2 c    35,150,303,036        8,865,352,677      44,015,655,713  

250 500 P2 constant    35,149,588,016        9,002,620,480      44,152,208,496  

      

  Total observed claim amount     42,429,570,073  

Table 5: earned premiums. 
 
We can see that the global effect of different choices of the weights in the mixture model (2) is 
moderate, much more important is the probability distribution of the conditioned excesses. In fact, 
when we set the threshold at 230, as already remarked in paragraph 3, we get the expected total 
claim amount considerably overestimated, with respect to the total observed claim amount. If the 
threshold is 250 the overestimation is more reasonable. Anyway, we have reported the premiums 
evaluated with the threshold u=230, to enlighten how different estimates of the weights do not 
produce, on the whole, substantially different results. 
Looking at the premiums obtained with the threshold u=250, we can appreciate the effect of 
different choices of the trimming point R. In fact, if R=250 the “large” claim component amounts to 
about the 27% of whole premiums, whereas if R=500 the incidence of this component decreases to 
about 20%. Note that the evaluations in the last two columns refer to policies with unlimited liability. 
However, in practice, we often face policies having limited liability. In this case the large claim 
component could be considerably reduced. 
To illustrate the different effects of the proposed models on the premium evaluations in the different 
classes, we report some graphs. 
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Figure 8: premiums P1 and P2 c, for some tariff classes defined by Sex=1, 
Chief town=2, Fuel=2, and ordered by Age, KW Power and Mass. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: premiums P2 c, trimming points R = 25 millions and R = 50 
millions. Tariff classes defined by Sex=1, Chief town=2, Fuel=2, and 
ordered by Age, KW Power and Mass. 

 
In Figure 8, we note thate the premiums P1 show much more notable fluctuations then P2. As we 
would have expected, premiums P2, with credibility weights, show a smoother pattern. Taking the 
observed frequencies, instead of the credibility weights, the results are quite similar: in some tariff 
classes the smoothing effect could be slightly reduced. 
As shown in Figure 9, if the trimming point is raised from R=25 millions to R=50 millions, the 
premiums show again some fluctuations and this is due to the fact that in the component “ordinary” 
claims we have again some high claim amounts. The fluctuations are, generally, less pronounced than 
those of premium P1. If the weights of the mixture are taken constant (P2 constant) and R=50 
millions, the pattern of the premiums is very similar to that one given by P2 c. 
The results of the evaluations and the reported graphs show that setting the trimming point equal to 
the threshold (in our example 25 millions) fulfils the aim of building a tariff in which the smoothing 
reduces the impact of large claims conveniently. This suggests that the EVT methodology could be 
effectively applied not only to estimate the tail of the loss distribution but also to choose the trimming 
point for rate making purposes. 
As closing remarks, we would like to point out that the integrated use of sound statistical tools such 
as EVT, GLM and Credibility, allows to take conveniently account of large claims, by considering 
both their amounts and the influence of the tariff variables on their occurrence. In this way we can 
achieve a-priori tariff models that provide careful evaluations but at the same time show features of 
flexibility which make them appropriate for a practical use. 
 
 
NOTES: 
 
* This research work was partially supported by Regione Autonoma Friuli-Venezia Giulia (research project: 

Modelli matematici innovativi per lo studio dei rischi finanziari e assicurativi). 
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(1) The data file has been prepared by Mariella Rossi, who also made some explorative analysis while working 
on her Thesis in Actuarial Statistics “Tariffazione R.C.A.: sinistri eccezionali e classi tariffarie”, A.A. 1999-
2000. 
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