“Rate making and large claims”

P. Gigante, L. Ficech, L. Sigdotti

Summary

In this paper, we ded with the problem of taking account of large clams in rate making procedure.
Both Generdised Linear Modds and Extreme Vadue Theory are gpplied in order to build a mode
to evauate the fair premiums in atariff sysem. A numerica gpplication concerning motor insurance

is developed.

« Tarification et grands sinistres «
P. Gigante, L. Picech, L. Sigdotti
Résumé
L'objet de cet article est de considérer le probléme des "grands' sinistres dans les méthodes de
tarification des risques. Aufin de tenir compte de ce genre de sinistres on propose une méthode

dévduation de la prime pure, basée sur les Modées Linéaires Généralisés et sur la Théorie des
Vdeurs Extremes. Les résultats sont gppliqués a un portefeuille d'assurance automobile.
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1. INTRODUCTION

It is wel-known (Van Eeghen et d. (1983), Czernuszewicz et d. (1998)) that the estimated tariff for
a generd insurance coverage is highly affected by the presence of large cdlams in the data. In fact,
the occurrence of a particularly high clam in a tariff class may have a cominating effect on the
egtimation process and digtort the pricing analyss. These large claims need therefore being handled,
both to reduce their impact on the evauations and to investigate their possible dependence on the
tariff variables.
In the actuarid practice (Czernuszewicz et d. (1998)), it is generaly accepted that large clams are
funded for by a contribution from dl risks in the portfolio. To cdculate the amount of this
contribution, one can operate as follows.

select atruncation point or trimming point; it can be defined as the amount over which acdam

should be consdered asalarge clam;

top-dice dl cams a the truncation point;

fit atariff modd to top-diced data;

add on loads to premiums to alow for excess costs over the truncation point.
Two main problems arise: how to select the truncation point and how to cdculate the loadings for
large clams. In the actuaria practice, there are severd approaches for the selection of the truncation
point, for ingtance:

choose an amount equd to a given rate of the earned premiums or of the totd clam amount;

fix aconveniently high quantile of the empirica daim digtribution (eg. 95%);

choose as truncation point the reinsurance retention limit of a possible reinsurance treety.
In the ectuarid literature, statistical methods for the truncation point selection have been developed
for ingance within the context of Credibility Theory (Gider (1980), Biihimann et d. (1982)). Asfor
the loading evauation, in some moddsit is assumed that large claim occurrence does not depend on
the tariff classes, then a constant amount is added to the premiums of al classes. On the other Sde,
one could observe that the frequencies of large clam occurrence differ in the tariff casses (Van
Eeghen et d. (1983)). In this case, different loading amounts could be determined in accordance
with the evaluation of different probabilities of large claim occurrence in the tariff classes.
In this paper, datigtica techniques developed within the Extreme Vaue Theory (Embrechts, et d.
(1997), McNell, (1997)) are applied as a possible gpproach to the trimming point selection and in
order to estimate the expected clam amount exceeding this point. For each tariff class the premium
is then given by the product between the expected clam number and the expected clam amount,
where the last one is a mixture of the expected claim amounts below and above the trimming point.
The weights of the mixture are the probabilities that one incurred clam be below and, respectively,
above the trimming point and are estimated in such a way to dlow for large clam dependence on
the tariff classes to be taken into account. The expected claim numbers and the expected clam
amounts below the trimming point are esimated by the largely used Generdlised Linear Models



(McCullagh, Nelder (1989)). As for the weights of the mixture, we discuss some estimation
methods. empirica edtimates, fitted values throughout regresson models and a smoothing model
ingpired by Credibility Theory.

Numerical examples on a motor insurance data file illustrate the proposed approach. All the
numerical evauations have been performed in SPLUS.

2. PRELIMINARIES

In apriori pricing, the observations on a portfolio of risks are used in order to detect and select the
apriori observable characterigtics that mainly influence the risk propensity. The am is to subdivide
the portfolio into homogeneous risk classes, the so cdled tariff classes, and to determine the
insurance premium for each class. Under the hypothesis of compound distribution, the pure premium
for arisk in tariff dassi, E(X, ), isgiven by:
) E(X,)=E(N,)E(z))
where E(N,) and E(Z,) are the expected claim number and the expected claim amount. The tariff
can be obtained by estimating, for any i, E(N,) and E(Z, ).
In the actuaria practice, the generalised linear modds (GLMs) are largely used (see for instance
Brockmann, Wright (1992)) to estimate regresson modds for the clam number and the dam
amount. However, as mentioned in the introduction, before gpplying this mode a pre-processing of
the data is necessary to manage the very high dlaim amounts. In fact, they can have ardevant effect
on the estimates of E(Z, ) in the dlasses in which they have occurred. To show this aspect, we have
built a tariff according to (1) keeping al the observed clam amounts as they were reported in the
datafile.
The data are drawn from a motor insurance portfolio of an Itaian company and consist of 172.161
pohcnes observed over one year. For each palicy, the following information are available:

Sex of theinsured: 1 for femde, 2 for mae;

Age of the insured (grouped into 8 levels);

Chief town: 1 means that the insured livesin a chief town, 2 otherwise;

KW Power of the vehicle (grouped into 5 levels);

Fud: 1 for petrol supplied vehicles, 2 for diesd cars,

Mass of the vehicle (grouped into 10 levels);

Time exposure;

Number of clamsincurred;

Totd dam amount.
In addition, for each policy having reported claims, the claim amounts have been detected. )
The Poisson and the Gamma digtributions, both with logarithmic link function, have been used to
modd the clam numbers and the clam amounts, respectivey. For the clam numbers, the following
variables have been sdected: Age, Fud, Chief town, KW Power and Mass. The estimated
regresson model includes aso the interactions: Chief town and KW Power, Age and Chief town.
As for the clam amounts, the sdlected variables are: Age, Fud, Chief town and Mass. By gpplying
this tariff to our portfolio of risks, the totd earned premiums (42,373 millions ITL) would be dightly
lower than the observed total claim amount (42,430 millions ITL). Note that, by usng the Gamma
digribution, in presence of few but noticeably high dlaims, the daim amount distribution could be
underestimated. Moreover, the pure premiums are consderably affected by large claims, as can be
seenin Fgure 1.



We note the wel-known pettern of the premiums at varying the Age dasses high premiums for
young drivers, then decreasing and then again dightly increasing for old drivers. In each age classthe
premiums show notable fluctuations. Looking, for instance, at the first age class, the fluctuations are
due to the presence in our datafile of very high dlam amountsin some tariff classes having the Mass
levels 6 and 8. For this reason we have high premiums when Mass=6, lower when Mass=7, higher
again when Mass=8 and lower when Mass=9.
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Figure 1. premiums for some tariff classes defined by Sex=1, Chief
town=2, Fuel=2, and ordered by Age, KW Power and Mass.

In order to take account of the large clams, it seems naturd to assume for the clam distribution a
mixture modd: one didribution for “ordinary” clams (with amounts not particularly high) and one
heavy-talled digribution for large dams. Obvioudy, the trimming point R didinguishing ordinary
and large clams, the respective probability distributions and the weights of the mixture have to be
determined, by taking dso account of the risk classification. The pure premium can then be
described by the following modd:

@  E(x,)=E(N,)|P(z £ RE(z|z £R)+P(z, >R)E(Z|Z, >R).

The expected clam amount is a mixture of two components. the one concerning ordinary clams
E(Zi|Zi £ R) and the other onefor large daims E(Zi|Zi >R).

In pricing, mixture models for the claim amount distribution have been gpplied by many authors. For
instance, Buhimann et d. (1982) afford in this way, within the Credibility Theory, both the problem
of choosing the trimming point and the one of evauating the premium; Benabbou, Partrat (1994)
determine, for a given levd of the trimming point, maximum likelihood edimetes of the two
conditiond digtributions and the weights of the mixture, by assuming the independence of the “large-
clam” component from the a-priori tariff characteritics.

In this paper we condder a mixture modd for the clam amount digtribution and andyse some
methodologies for the estimation of the different componentsin (2).

3. AN APPLICATION OF EXTREME VALUE THEORY TO CLAIM ANALYSIS

In order to choose the trimming point and to estimate the probability distribution of the claim amount
exceeding this point we take advantage of some methodologies developed within Extreme Vaue



Theory (EVT). These methodologies, dlow us to obtain an analyticd modd for the distribution of
the clam amount exceeding a threshold u. In this way, for any trimming point R3 u we can

caculate the expected values E(Zi|Zi > R) which appear in (2).

The Pickands, Balkema, de Haan Theorem provides a useful result for the estimation of large clam
distributions. In fact, it shows that that for any x 1 A , the distribution of a random varigble Z

belongs to the maximum domain of attraction of a generdised extreme vaue didtribution iff it exigs a
positive function s (u) such thet
||an up |y (Z)' Gx,s (u)(z)| =0
U® 2 0<z<z,-u
where F, is the didribution function of the conditional excesses Z- uZ>u,
_i1-(1+xz/s )™ xt 0
11-ep(- 2/s)  x=0

G.. (2)

withz2 0if x @ 0and O£ z£ - 2 if x < 0 and 2 isthe right endpaint of the distribution of Z.
X

The distribution G, , (2) is named generdlised Pareto distribution (GPD). It is characterised by two

parameters, the shape x and the scales.

We jud recdl that the class of probability distributions belonging to the maximum domain of
atraction of a generdised extreme vaue distribution is remarkably wide and it includes dmost dl the
digributions that are commonly used to modd the clam amount distribution (see Embrechts et d.
(1997)). From a practical point of view, the quoted theorem suggests that over a sufficiently high
threshold u the conditional excesses of a clam amount digtribution can be approximated by a
generdised Pareto distribution. The parameters x and s can then be estimated, for instance, by the
maximum likelihood method, using al the observations exceeding ul.

Note that if, for z>u, we take F,(z) equd to the approximating distribution G, (2), then

F,(z- u)=G,, (z- u)=G, . (2) whichisathree parameter generalised Pareto distribution.
Given that

F(z)=P{z£2=(0- Pz£W})F, (z- u)+ Pz £u}, z>u,
if we take P{Z £u}=F,(u), where F,(u) is the empirica dstribution function evaluated a u,
then thetall of the distribution of Z is estimated by

(3) ﬁ(z) = (l_ I:n (u))Gx,u,s (Z) + l:n (U) = Gx,ﬁ,§ (2)1 Z>U,
where G, ;¢ (z) isthe distribution function of a three parameter GPD with shape parameter x, and
convenient scale and location parameters S and U (see McNeil (1997)).
We recdl two more results concerning GPD. If a random variable Z has the generdised Pareto
disribution G, .. (2), its expectation is finite iff x <1 and it isgiven by E(Z)=m+s /(1- ).
Moreover, the mean excess function of Z, e(u) = E(Z- u|Z > u), islinear in u and it isgiven by
s +x(u-m
ouy = 3 XU
1-x
withs +x (u- m) >0 and u < z,.
These reaults are useful to anayse the fitted modd with respect to the data and, preliminarily, to
investigate the choice of the threshold u. Indeed thisis a crucid point in the gpplication of the EVT

methodology. At a generd level, we can say that the threshold needs to be sufficiently high in order
to fulfil the gpplicability conditions of the theorem, however it cannot be too high so that an



acceptable number of observations be avallable to estimate the parameters. Graphical andyss are
proposed in literature as tools of investigation when choosing the threshold: e.g. the empirica mean
excess function, the pattern of the parameter estimates as a function of the threshold, the plot of the
estimated quantiles.

In the following, we are gpplying these andyses to our data file containing the claim amounts caused
by the 172,161 risks, in one year. Some very low amounts have been excluded, so that the data file
consss of n=12,662 figures (compared to 12,691 clams). The numerica evauation have been
performed in S-PLUS by means of the Library EVIS (www.math.ethz.ch/~mcnel).

We report in Tablel some datistics that summarise the data characteristics. A remarkable positive
asymmetry is shown.

n 12,662
minimum 53,000
1° quartile 800,000
median 1,802,000
average 3,351,000

3° quartile 2,836,000
maximum 504,000,000

K00 27,000,000
K0 46,390,000
X000 183,475,000

Tablel: summary datistics on the detafile.
9(,3 istheempirica p quantile.

To check whether a heavy tail distribution is suitable to describe our data we can look at the QQ-
plot of the quantiles of the empirical distribution againgt the ones of the exponentid distribution:

| e Lan-k+160 U
i8Z(), Gg.C——— =k =1,...,ny
Iy

where G;fl isthe inverse of the distribution function of the exponentia didtribution with parameter 1
and z, * K 3 z, arethe ordered clam amounts. In Figure 2, the concave departure from the

linear shape shows that the tail of our dataiis heavier than the one of the exponentia distribution.
Another useful graphical toal is the sample mean excess plot:

{(Z(k)!eh(z(k)))| k=1,.n}
where

1 o
elu)=—= z -u),
) Caran(U)k&(u()k )

with Dn(u):{k| k=1K,n,z >u}.
The empirical mean excess function e, (u) is a sample version of the mean excess function e{u). If

the points show an upward trend, thisisasign of heavy tail behaviour (see Embrecths et d. (1997),
Hogg, Klugman (1984)). In particular, if the pattern of the plot is gpproximately a sraight line with
positive dope above a point u, thisis an indication that a GPD with x <1 could be a mode to

describe the datain the area above u and that u can be chosen as threshold.
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Figure 2: QQ-plot againg the exponentid distribution.
(Scale on the x-axis: 1=100,000 ITL)
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Figure 3: Empirica mean excess function.
(Scdeonthe x-axis: 1=100,000 ITL)

Looking a Figure 3, excluding the points at the very high levds of u, which are caculated on few
data and show an erratic pattern, the plot supports the choice of a generdised Pareto with postive
shape parameter in the tail area. However, we cannot clearly single out one threshold levd; in fact,
different values of u between 200 and 400 could be suitable.

Further investigations on the choice of the threshold are necessary and, following some suggestions
in literature (see Embrechts et d. (1997), McNeil (1997)), we estimate the shape parameter x of

the generadised Pareto ditribution for Z - u|Z >u for different values of u.



As a prdiminary andyss, we estimate x by the Hill estimator. If k, the number of the exceedances
above the threshold, is properly chosen also with respect to n, the Hill estimate of the parameter
a=x""'withx <1,is

-1
H)

_am 4 0
=8 =g oa logz) - logzy: .
j=1 [%)

The graphica anadlyss based on the Hill estimator is generdly summarised in the Hill-plot:
{ka"):k=2,..,n}.

Looking a Figure 4, we note that for u > 300 the asymptotic confidence intervals of the estimates

are quite width and the estimates are not stable. When u is between 250 and 300 the estimates are

based on a number of exceedances reasonably high (137 and 102, respectively) and they seem

rather gable a value of u in this interval seems to be a compromise between the bias and the

variance of the estimator.
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Fgure 4: Hill-plot.
(Scae of the threshold on the upper x-axis: 1=100,000 ITL)

We continue the analyss with the maximum likelihood estimates of the shgpe parameter x which are
shown in Fgure 5. Looking for intervas of gtability, such thet the choice of a dightly different
threshold will not produce a completey different fit of the distribution over the threshold, we note
that the pattern fluctuate notably near the thresholds 150 and 200. This might be due to the high
number of vaues dl equa to 150 and 200 in our data file, which could correspond to reserved
clams. Intheinterval between 210 and 250 (k=195 and k=137, respectively) the estimates seem to
be rather stable. For this reason, the central value 230 (k =164) will be congdered in the following.
Another andlysis concerns the comparison of the 0.99 empirical quantile, reported in Table 1, with
those d the probability distributions estimated by (3) for different vaues of u. In Figure 6, the
quantile of the estimated distributions with threshold between 210 and 250 are rather stable and
they are ds0 quite close to the empirical one, while the quantile of the estimated digtribution with
threshold equa to 300 is remarkably lower than the empirica one. From these consderations, the
thresholds 230 and 250 seem convenient.



Now, on the ground of previous andyses, we determine the maximum likdihood estimates of the
parameters X and s of three generaised Pareto distributions with thresholds 230, 250 and for the
sake of comparison aso with the threshold 300.

As an example of the resulting fit, we report in Figure 7 the estimated digtribution function
F,(z- u), where u=230. Smilar fits are obtained with the other two estimated digtributions.
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Figure 5: maximum likelihood estimates of the shape parameter.
(Scae of the threshold on the upper x-axis. 1=100,000 ITL)
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Figure 6: 0.99 quantile estimates.
(Scae of the threshold on the upper x-axis: 1=100,000 ITL)

Table 2 contains the estimates of the shape parameter and some quantiles of the three digtributions.
Note that the estimated 0.99 and 0.995 quantiles are not so different from the empirical ones. On
the contrary, the 0.9999 empirica quantile is considerably higher then the estimated ones. However,
the analyss of this quantile is not particularly Sgnificant because it is based on very few data



From the pricing point of view, it is interesting to compare the expected vaues E,(Z - R),,
R 3 u, a different vdues of R, with the corresponding sample vaues (see McNell (1997), Berlant
et a. (2001)). Here E, (Z - R), denotes the expectation of max{O,Z - R} taken with respect to
the GPD edtimated from the threshold u. We observe in Table 2 that, for the three considered
thresholds u, the expected vaues are higher then the sample ones when R=300 and R=500. The
differences are notably dependent on the threshold u and hence on the related vaue of the shape
parameter. For ingtance, when u=230 we get the higher estimate of x and the most conservative
evaudtion. In the case R=1500, the empirical vaue is higher than the one estimated from the
threshold u=300 which results from the lowest vaue of x .

Since the threshold 230 leads to quite conservetive evauations and threshold 250 gives estimates
closer to the empirica vaues, we decide to go on with the analys's choosing these two levels. The
threshold 300 seems to be unsuitable for the purpose of a prudentid pricing.
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Figure 7: GPD fitted from the threshold 230.

ul k| X 0,99 0995 | 09999 | Eu(Z-300), |Ey(Z-500), | E,(Z-1500),
230(164|0,78004 | 274,7946 | 450,6125 |1506,9663 8,4571 7,2345 5,2460
250(137 | 0,66695 | 267,1415 | 463,9284 |1487,4891 6,3990 5,1513 3,1019
300|102 0,52327 | 234,8622 | 472,6039 |1505,2903 5,3839 4,1565 1,9966
Empirical values 270 463,9 1834,75 4,7957 3,5732 3,0409

Table2: estimated X, percentiles, expected vaues of the excesses, for different threshold u.

4. ESTIMATES OF THE WEIGHTS OF THE MIXTURE

In this paragraph we ded with the problem of estimating, for each tariff class i, the probabilities

P(Z, > R) that adam amount exceeds a chosen trimming point R.
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If we assume that these probabilities do not depend on the tariff characterigtics, a common estimate
for dl the tariff classes could arise e.g. from a baance condition on the portfolio or, dternatively,
from the incidence on al clams of those exceeding the trimming point (the observed frequency of
the exceedances).

On the contrary, we can carefully investigate on the dependence of the probabilities P(Zi > R) on
the tariff characterigtics in order to take properly account of the incidence of large clamsin the tariff
model. This can be done, for instance, by the GLM methodol ogy.

Let Z bethe daim amount of the j-th claim in the portfolio and consider as response variable the
indicator |Z(” > Rl,j =1,2, ... . We can assume for these variables the Binomia distribution and,

after choosing a suitable link function, a sdlection procedure leads to identify the sgnificant teriff
variables. When two or more tariff variables are sdlected, we can take the probabilities estimated by
the GLM technique. When only one factoriad variable is selected, the GLM estimates are just the
observed frequencies in the tariff classes described by this unique tariff variable; hence no smoothing
effect is produced.

Estimating the probabilities P(Z, > R) by the observed frequencies, could not be an advisable

solution, in particular in those classes with very few data. An dternative solution is given by a mode

suggested by the Credibility Theory, which alows to take account of the specific experience of each

tariff class but, on the other sde, produces a smoothing effect due to the whole experience al over

the portfalio.

Let X, =2 >R, with Z!” the daim amount of the j-th diam in tariff dessi, i =1,....s sthe

number of tariff classes.

We take the following hypothesis for the tariff dassi. For the process X, X,,,K assume that:

- the probability distribution of the process depends on arandom parameter Q. ;

- oonditioned to Q, , the random variables X, X., ,K arei.i.d.

For the different classes we assume that

- the processes (Q;, Xy, X;,,K , X, ), with n; the observed number of dams in tariff dassi,
=1,...,S, are independent;

- Q,,...Q, aeidenticaly distributed;

- forany i, the variables Xih| Q, =7 areidenticaly distributed. We denote

m= E[E(Xih| Qi)]1 V= E[Va(xih| Q )] and a = Va[E(Xih| Qi )]
The modd assumptions imply that, in our prior judgement, the probabilities that a dam amount
would exceed the trimming point are the same for dl tariff classes. The observed frequencies of
clam amounts exceeding the trimming point, in the different tariff classes dlow us to update the
prior estimates by taking account of the experience in each class.
Using alinear credibility formula (Buhimann (1967)) the probability estimate p, of P(Z, > R) is

P = (1' a, )m+aiii

where
X, :ié X;; » With x;; the observed vadueof X
n =1
a, =— withk="Y.
n +k a
Setting

11



_ iy 5
X, :ié X, andm=3 n,
N j=1 i=1
we consder the following estimators for the parameters m v, and a, respectively (see eg. Klugman,
Panjer, Willmot (1998)),

_ 18 —
X==—8§nXi,
mi,
aa (x, -X?
V = i=1 j=1
os 1
a (ni _1)
i=1
s wles N
A=8n- 24 2 &4 n(Xi-X)? ~V(s-Dy.
e Mizs g = u

The estimates p, are evaluated by adjusting the estimate of m obtained from data of al the

collective, to reflect the experience on each tariff class.

By means of GLM, we have applied a selection procedure to our data file both for the thresholds
23 and 25 millions. In both cases we have sdected only one tariff variable, Mass and KW Power,
respectively. The probabilities estimated using the above described modd are reported in Table 3.

Mass u=230 m=0.012923 | KW Power u=250 NMF0.010795

i ¢ pi i X P
1 0.007329 0.009802 1 0.004505 0.007184
2 0.005908 0.010044 2 0.011241 0.011195
3 0.014885 0.014354 3 0.007530 0.008485
4 0.014037 0.013598 4 0.014191 0.013239
5 0.014085 0.013673 5 0.027778 0.013841
6 0.009751 0.011378
7 0.008209 0.010192

8 0.023018 0.018441
9 0.011070 0.011946

10 0.018667 0.014521

Table 3: observed frequencies and probability estimates.

5. SOME NUMERICAL APPLICATIONS TO MOTOR INSURANCE PRICING

In this paragraph, we report some numerica gpplications of the proposed approach to the pricing of
motor vehicle insurance. The data are those described in paragraph 2 and dready used in the
previous evauations.

We are interested into gpplying the rating modd (2) in which the amounts of large claims and their
incidence in the tariff classes are taken into account explicitly. We are going to discuss the effects on
these premiums, denoted by P2, of different levels of the threshold and of the trimming point; in
details, the three selected combinations are shown in Table 4. We have assumed that the expected

vauesE(z,|Z, > R) in (2), do not depend on the tariff variables. Even though this hypothesis can
appear quite redtrictive, it can be accepted in force of some analysis developed by means of GLMs.

12



In fact, in our data, the probability distribution of large claims shows a weak dependence on a most
one tariff variable.

Being x, and s , the estimated parameters of the GPD from the threshold u, we have:

s, +X,R-u
Eu(zi|zi>R):—u U( )"'R
1-x,
snceinour cae x, <1.
The results are reported in Table 4.
u R Xy Su EU(Zi |Zi >R)
230 230 0.7800395 | 156.2871 940.52348
250 250 0.6669510 | 211.8857 886.19978
250 500 0.6669510 | 211.8857 | 1636.84007

Table 4: parameter estimates and expected clams over the trimming points R (The
amountsu, Rand Ey(Z, |Z, >R) are expressed in I TL divided by 100,000).

The component “ordinary” claim, E(Zi |Zi £ R) in (2), has been estimated by a GLM with Gamma

digribution function and logarithmic link function. By gpplying a sdection procedure, the tariff
variables Sex, Age and Mass have been selected.
Note that, whereas the Gamma distribution has an upper unlimited support, the response variable

Z, |Zi £ u islimited with vauesin the interva [O, u] . For this reason, one could assign a proper link
function, defined on [0,u] and having valuesin A . However, since the probebility assigned by the
Gamma on the right tall can be consdered negligible, supported by the numericd results, we fed
confident that the Gamma distribution and the logarithmic link function are reasonable assumptions.
As for the weights of the mixture in (2), we have applied the GLM methodology to investigate on
the possible dependence of the incidence of “large’ clams on the tariff characteristics. For this
purpose, as mentioned in paragraph 4, we have assumed a Binomia distribution for the response
variable and the logit link function. The modd sdection is clearly affected by the threshold levd. If it
is fixed at 23 millions, both Mass and Chief town are sdlected at a 4% sgnificance levd. If the
sgnificance levd is dropped to 2%, only Mass is sdlected. Remember that in this case the fitted
values are equd to the observed frequencies so that the credibility modd, described in paragraph 4,
seems to be much more suitable. For this reason, when we consder the threshold 23 millions, we
have three different choices for the weights of the mixture: a two-variable GLM regresson model
(to which we will refer to as“glm”); the observed frequencies (“f”) and the credibility weights (“c”).
If wefix the threshold at 25 millions, only the KW Power is selected and in this case we can take as
weights in the mixture, ether the frequencies or the credibility weights.

When the trimming point is 50 millions, since only few dam amounts exceed this vaue, a Satistical
selection process on the tariff variables would not give significant results. For this reason, one can
assume that the occurrence of one large clam does not depend on the tariff characterigtics. In this
case, we can assign as weight in the mixture, for instance, the observed frequency of clams over 50
millions (we will refer to this case as “congant”). Another possibility is to make, in any case, the
welghts depend on some tariff characteristics;, snce the KW Power is selected when the trimming
point is 25 millions, one can, e.g. decide to assgn the credibility weights varying with the KW
Power class of the vehicle.

We report in Table 5 the total earned premiums evaluated for our portfolio of risks by applying the
above mentioned premium modes. P1 denotes the premiums caculated according to (1) in
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paragraph 2. The total premiums are subdivided into the two components. the one financing

“ordinary” dams and the other financing “large’ daims.

u R Premiummodd | “ordinary” dams | “lage’ dams Tota earned
premiums

P1 42,372,634,500

230 230 P2 gim 31,646,473,878 15,438,929,545 47,085,403,424
230 230 P2 f 31,647,140,256 15,424,495,338 47,071,635,595
230 230 P2c 31,644,823,102 15,541,277,506 47,186,100,608
250 250 P2 f 32,306,771,311 12,140,937,067 44,447,708,378
250 250 P2c 32,307,856,391 12,143,178,477 44,451,034,869
250 500 P2c 35,150,303,036 8,865,352,677 44,015,655,713
250 500 P2 congtant 35,149,588,016 9,002,620,480 44,152,208,496
Totd observed clam amount 42,429,570,073

Table 5: earned premiums.

We can see that the globa effect of different choices of the weights in the mixture modd (2) is
moderate, much more important is the probability digtribution of the conditioned excesses. In fact,
when we st the threshold at 230, as dready remarked in paragraph 3, we get the expected tota
clam amount consderably overestimated, with respect to the total observed clam amount. If the
threshold is 250 the overestimation is more reasonable. Anyway, we have reported the premiums
evauated with the threshold u=230, to enlighten how different etimates of the weights do not
produce, on the whole, substantialy different results.

Looking & the premiums obtained with the threshold u=250, we can appreciate the effect of
different choices of the trimming point R In fact, if R=250 the “large” claim component amounts to
about the 27% of whole premiums, whereas if R=500 the incidence of this component decreases to
about 20%. Note that the evduations in the last two columns refer to policies with unlimited lighility.
However, in practice, we often face policies having limited ligbility. In this case the large dam
component could be considerably reduced.

To illugrate the different effects of the proposed modes on the premium evauations in the different

classes, we report some graphs.
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Figure 8: premiums P1 and P2 c, for some tariff classes defined by Sex=1,
Chief town=2, Fuel=2, and ordered by Age, KW Power and Mass.

1,400,000

——R =50 millions
1,200,000 —

——R =25 millions
1,000,000 AJV\’
800,000 / 7 ﬂj\l
A N A
600,000 i M‘ /\7\["\ FW y
400,000 Y abf"}\, A

v /A

200,000

Figure 9: premiums P2 ¢, trimming points R = 25 millions and R = 50
millions. Tariff classes defined by Sex=1, Chief town=2, Fud=2, and
ordered by Age, KW Power and Mass.

In Figure 8, we note thate the premiums P1 show nmuch more notable fluctuations then P2. As we
would have expected, premiums P2, with credibility weights, show a smoother pattern. Taking the
observed frequencies, indead of the credibility weights, the results are quite Smilar: in some tariff

classes the smoothing effect could be dightly reduced.

As shown in Figure 9, if the trimming point is rased from R=25 millions to R=50 millions, the
premiums show again some fluctuations and this is due to the fact that in the component “ordinary”

clams we have again some high claim amounts. The fluctuations are, generdly, less pronounced than
those of premium PL. If the weights of the mixture are taken congtant (P2 congtant) and R=50
millions, the pattern of the premiumsis very smilar to that one given by P2 c.

The results of the evaduations and the reported graphs show that setting the trimming point equd to
the threshold (in our example 25 millions) fulfils the am of building a tariff in which the smoothing
reduces the impact of large clams conveniently. This suggests that the EVT methodology could be
effectivey gpplied not only to estimate the tall of the loss distribution but also to choose the trimming
point for rate making purposes.

As closing remarks, we would like to point out that the integrated use of sound atistica tools such
as EVT, GLM and Credibility, dlows to take conveniently account of large clams, by considering
both their amounts and the influence of the tariff variables on their occurrence. In this way we can
achieve aprior tariff models that provide careful evauations but at the same time show features of
flexibility which make them appropriate for a practical use.

NOTES:

*  This research work was partialy supported by Regione Autonoma Friuli-Venezia Giulia (research project:
Modelli matematici innovativi per lo studio dei rischi finanziari e assicurativi).
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(1) The datafile has been prepared by Mariella Rossi, who also made some explorative analysis while working
on her Thesisin Actuarial Statistics “Tariffazione R.C.A.: sinistri eccezionali e class tariffarie”, A.A. 1999-
2000
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