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LARGE CLAIMS

¢ Have a strong influence on the estimated tariff:
» dominating effect on the estimation process;
» distortion in the pricing analysis.

¢ How to handle large claims?

» to reduce their impact on the evaluations;
» toinvestigate their dependence on tariff characteristics.

The actuarial approach:

1. select a truncation point or trimming point (i.e. the amount over which a clam should be
considered as alarge claim);

2. top-dice all claims at the truncation point;
3. fit atariff model to top-dliced data;
4. add on loads to premiumsto allow for excess costs over the truncation point.
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Two main problems:

/

s how to seled the trimming pant;

/

* how to cdculate the loading for large daims.

Some oontributions in the aduarial lit erature:

s Some statisticd methods have been developed within the context of Credibility Theory (Gider
(1980, Bihimannet al. (1982);

s Benabbou Partrat (1994): assume amixture model for the claim amount distribution and, given
the trimming pant, determine maximum likelihood estimates of the two condtiond
distributions and the weights of the mixture; the “large-claim” comporent is assumed
independent of the tariff charaaeristics.

In this paper, we gply the statisticd tedhniques developed within the Extreme Value Theory
(Embrednts, et al. (1997, McNell, (1997, ...):
» asapossble gpproad to the trimming pant seledion;

> to estimate the expeded claim amount excealing the trimming pant.

Asaumption: mixture model for the daim amourt distribution.
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A MIXTURE MODEL FOR THE RISK PREMIUM
Let E(X;) betherisk premium for apdicy in tariff classi:
E(X) =E(N,)[[P(z, < RIE(Z |z, <R+ P(Z, > RIE(Z|Z, > R)]

wheree N, isthe daim number

Z, isthe daim amourt
R isthetrimming pant

» The expeaed claim amourt is a mixture of:

&

» E@Z|]z <R (“ordinary” claims)

D)

&

+ EZ|z>R (“large” claims).

Questions:
» could EVT be usefully applied to choose the trimming pant R?
» how could we estimate the daim distributions for “ordinary” and “large” claims?

» how could we estimate the weights of the mixture?
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A NUMERICAL EXAMPLE

172.161 policies observed over one year (data from a motor insurance portfolio of an Italian
Insurance company).

| nformation:

- Sex of theinsured: 1 for female, 2 for male;

- Age of theinsured (grouped into 8 levels);

- Chief town: 1 if the insured livesin achief town, 2 otherwise;
- KW Power of the vehicle (grouped into 5 levels);

- Fuel: 1 for petrol supplied vehicles; 2 for diesel cars,

- Mass of the vehicle (grouped into 10 levels);

- Time exposure;

- Number of claimsincurred,;

- Claim amounts.



E(X,)=E(N,)C[[P(z, < RE(Z,|Z, < R) + P(Z, > R)E(Z,|Z, > R)]

v E(N;) ESTIMATION:

% GLM with Poisson distribution and logarithmic link function

s Selected tariff variables:
Age, Fuel, Chief town, KW Power and Mass.

% Interactions;

Chief town and KW Power,
Age and Chief town.



AN APPLICATION OF EXTREME VALUE THEORY TO CLAIM ANALYSIS

v' Choiceof thetrimming pant R
v E(Zi‘zi >R) estimation

We will obtain amodel for the distribution d the daim amournt excealing athreshold u
0 E(Z|Z >R) can be cdculated O R2 U

Softwares SPLUSandLibrary EVISby A. McNell (www.math.ethz.ch/~mcneil/ software.html)
n=12,662clams

n 12,662
minimum 53,000
1° quartile 800,000

median 1,802,000
average 3,351,000

3° guartile 2,836,000
maximum 504,000,000

X099 27,000,000
X0.995 46,390,000
X0.909 183,475,000

Tablel: summary statistics on the datafile. Xp isthe empirical p quantile.
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H, (2)

_Dexg{—(ﬁf z)_l’f} §#0, 1+&z>0
Let -0

CEXP1- e‘z} ¢=0
a Generalised Extreme Value (GEV) distribution.

Pickands, Balkema, de Haan Theorem

For any ¢ U0, the distribution of a random variable Z belongs to the maximum domain of
attraction of a GEV distribution H iff it exists a positive function 0 (U) such that

lim sup |F,(2)-G;,,(2)|=0

U=2 0<z<zy-u

where: 7z, istheright endpoint of the distribution of Z;

F, isthe distribution function of the conditional excesses Z —U/Z >u;

z=20 if =0

A-Q+&z/a)™ &0
G = Y 1.
eo(2) {-eplzi0) g=0  with 0szs—2 if£<o

Isa Generalised Pareto Distribution (GPD): ¢  isthe shape parameter,
o isthe scale parameter.



From apradicd point of view:

many probability distributions belong to the maximum domain o attradion d a GEV
distribution: e.g. distribution models of the daim amounts (Embredits et al. (1997);

0 Z-uZ>u can be gproximated by a GPD, over asufficiently high threshdd u.

The parameters ¢ and o can then be estimated, for instance, by the maximum likelihoodmethod
using al the observations exceealing u.

F(z2)=P{z<z=0-P{z<u})F,(z-u)+P{Z<u}, z>u
If we take
P{Z <u}=F,(u), the empiricd distribution function
F.(z) equal to the proximating dstribution Geo(z2) 0 F,(z-u)=G;,(z-u)

0 F@)=0-F, )G, (2)+F,U)=G;:(2), z>u, (McNeil (1997)
where:  G¢ 0 (Z) =G, (Z B H) (three-parameter GPD) and
P St % C)) . ) R s
G=ol-FU)y AL £ |
di+olog(t-F,(u)) £=0



«* Areour data heavy-tailed?

1 [N-k+1 _ [
QQ-plot: %(k)’(;mg n+1 %k‘l’"" &

G&i inverse of the exponential distribution function

Zg) 2 ... 2 Z,) ordered claim amounts.
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Figure2: QQ-plot against the exponential distribution.
(Scale on the x-axis: 1=100,000 ITL)
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«»  How can we choose the threshold u?

L et

e(u) = E(Z -uz > U) the mean excess function of Z

sample mean excess plot: { (Z(k)

where

€ ( n[l F ]ZZU empirical mean excess function

[0 Heavy tail behaviour, if the points show an upward trend, (see Embrecths et al. (1997), Hogg,
Klugman (1984)).

0 GPD with ¢ <1 could be a model to describe the data in the area above u, if the pattern of the
plot is approximately a straight line with positive slope above u, (u can be chosen as threshold).

+ —
Infact, if ZD0Gg,,(2) D efu) =~ ffug 2 linear in u,

with 0 +é(U—-)>0 and U<z,
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Mean Excess

Further investigations:

& Estimates of the shape parameter § of the GPD for Z —U[Z >u for different values of u.
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Figure 3: Empirical mean excess function.
(Scale on the x-axis: 1=100,000 ITL)
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Figure 4: Hill-plot.
(Scale of the threshold on the upper x-axis: 1=100,000 ITL)

[1 areasonable choice for u: 250<u <300 (exceedances: 137 and 102)
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>  Maximum likelihood estimates

Threshold
114 120 129 136 148 148 159 171 200 200 219 250 280 375 530

15
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0.5
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Figure 5: maximum likelihood estimates of the shape parameter.
(Scale of the threshold on the upper x-axis: 1=100,000 ITL)

0 stable estimates u 0(200, 250)
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% Quantil es of F (Z) =G 5 (Z):

Threshold
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Figure 6: 0.99 quantile estimates.
(Scde of the threshold onthe upper x-axis: 1=1000001TL)

0 sable etimates of the 0.99 quantile:  u(210,250)
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» Thresholds 230and 250sean convenient.

\/
000

Quantilesand E,(Z-R), =E(max0, Z-R)), R>u,

where £ le(z): Cs 15 (Z)

ul| k| €u 0,99 | 0,995 | 0,9999 E,(Z-300, [E, (Z-500.|E, (Z-1500,
230(164| 0.780 | 274.79 | 450.61 | 1506.97 | 8.4571 7.2345 5.2460
250(137| 0.667 | 267.14 | 463.93 | 1487.49 | 6.3990 5.1513 3.1019
300({102| 0.523 | 234.86 | 472.60 | 1505.29 | 5.3839 4.1565 1.9966
Empirical values| 270 463.9 | 1834.75 | 4.7957 3.5732 3.0409

Table2: estimated &, percentil es, expeded values of the excesses, for diff erent threshold u.

» Thresholdsu = 2301 conservative esaluations;

» Threshddsu = 2500 estimates closer to the enpiricd values.
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Figure 7: GPD fitted from the threshold 230.
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E(X,)=E(N,)L[P(z, < R)E(Z,|Z, < R +P(z, > RE(Z|Z, > R

v E(Z,|Z, >R) ESTIMATION

Let & (€, <1) and 0, the estimated parameters of the GPD from the threshold

[] Eu(zi‘zi>R)=au+£U(R_U)+R

u R &y Oy E(Z,[Z,>R)
230 | 230 0.7800395 | 156.2871 940.52348
250 | 250 0.6669510 | 211.8857 886.19978
250 | 500 0.6669510 | 211.8857 | 1636.84007

Table 4: parameter estimates and expected claims over the trimming points R.
(u,Rand Ey(Z,[Z,>R) areexpressed in ITL divided by 100,000).

> E(Zi‘zi > R) are assumed independent of the tariff variables.
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ESTIMATESOF THE WEIGHT OF THE MIXTURE
v P(Z; > R) estimation
Two approaches:

» independence of the tariff characteristics:
a) abalance condition on the portfolio
b) observed frequency of the exceedances

» dependence on the tariff characteristics: investigated by GLM

AL the claim amount of the j-th claim in the portfolio

‘Z(j) > R‘ the response variablein a GLM

X/

s GLM with Binomial distribution and logit link function:

e« R=230 Sdected tariff variables: Mass and Chief town (p = 4%);
Mass (p = 2%).

« R=250 Selected tariff variable: KW Power.

« R=500 Novariablesare selected at asignificant level.
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E(X,)=E(N,)L[P(z, < R)E(Z,|Z, < R +P(z, > RE(Z|Z, > R

v P(Z, >R) ESTIMATION: R=230
GLM: Mass and Chief town.

> If only one factorial tariff variable is selected the estimated probabilities P(Z; > R) arethe

observed frequencies.

v P(Z, >R) egtimation: = R =250 and R=500
acredihility like approach
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A “CREDIBILITY MODEL” TO ESTIMATE THE WEIGHTSOF THE MIXTURE

L et
N the observed number of clamsin tariff classi, | =1,...,s,

Z"  the daim amourt of thej-th claim in tariff class

Xij — ‘Zi(i) > R‘

Hypathesis on the process Xiys Xiz,- - (tariff classi):

- the probability distribution depends on arandom parameter ©; ;

- condtioned to ©, , therandom variables X1, Xi5,... arei.i.d.

For the diff erent classes we asume that:
- the process (@1, X,y Xiz... Xy, ) are independent:
- ©,,...,0, areidenticdly distributed;

- for any i, the variables Xin|©; =0 areidentically distributed.
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> Prior evaluationof P(Z; > R):

The probabiliti es that a daim amourt would exced the trimming pant are the same in all tariff

clases:
H= E[E(Xih‘ o, )]

» These probabiliti es are updated by taking acount of the observed frequencies in the diff erent

tariff classes:
p=(-a)u+aX linea credibility formula (Buihimann (1967)
where
X :nij Xi',  with %; the observed value of X, a :ﬁ . with k:%
and

V= E[val(Xih\ ©, )] a= var[E(Xih\@i )]
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Estimators (e.g. Klugman, Panjer, Will mot (1998)

- 1
for u: X:EZniX‘

where: X T X; m= Zni

forv: - Z (n 1)

_ 1
A_E‘n E n, H in(% X) —V(s— DE'

fora:
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E(X,)=E(N,)L[P(z, < R)E(Z,|Z, < R +P(z, > RE(Z|Z, > R

v P(Z, >R) ESTIMATION:

e R=230 Sdected tariff variable: Mass
e R=250 Sdected tariff variable: KW Power.
Mass u=230 pu=0.012923 KW u=250 p=0.010795
' Power '
I )_(i Pi [ )_(i Pi
1 0.007329 | 0.009802 1 0.004505| 0.007184
2 0.005908 | 0.010044 2 0.011241| 0.011195
3 0.014885 | 0.014354 3 0.007530| 0.008485
4 0.014037 | 0.013598 4 0.014191| 0.013239
5 0.014085 | 0.013673 5 0.027778| 0.013841
6 0.009751 | 0.011378
7 0.008209 | 0.010192
8 0.023018 | 0.018441
9 0.011070 | 0.011946
10 0.018667 | 0.014521

Table 3: observed frequencies and probability estimates.
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v P(Z; >R) ESTIMATION: R=230
» “gm” : GLM (Massand Chief town)
» “f" . observed frequencies (Mas9
» “c”:credibility (Mas9

v P(Z, >R) ESTIMATION:  R=250
> “f" . observed frequencies (KW Power)
> “c”:credibility (KW Power)

v P(Z; >R) ESTIMATION:  R=500
» “c”:credibility (KW Power)

» “constant” : independent of the tariff charaderistics
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SOME NUMERICAL APPLICATIONSTO MOTOR INSURANCE PRICING
Py E(X)=E(N,)EZ)

v E(Z,) ESTIMATION:

s GLM with Gammadistribution and logarithmic link function

s Selected tariff variables:
Age, Fuel, Chief town and Mass.
(P2) E(X;)=E(N;) [[P(Zi = R)E(Zi‘zi <R+ P(Zi > R)E(Zi‘zi > R)]

v" Choice of the trimming point R
% threshold u =230 and trimming point R =230
% threshold u =250 and trimming point R =230

% threshold u =250 and trimming point R=500
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E(X,)=E(N,)C[[P(z, < RE(Z,|Z, < R) + P(Z, > R)E(Z,|Z, > R)]

v E(Z|Z, <R) ESTIMATION:
s GLM with Gammadistribution and logarithmic link function

s Selected tariff variables:
Sex, Age and Mass.

» upper unlimited support of the Gamma distribution:
[1 assign aproper link function

(1 negligible probability on the right tail.
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u R Premium | “ordinary” “large” Total eaned

model claims claims premiums

P1 42,373

230 | 230 | P2glm 31,646 15,439 47,085
230 | 230 | P2f 31,647 15,424 47,072
230 | 230 | P2c 31,645 15,541 47,186
250 | 250 | P2 f 32,307 12,141 44,448
250 | 250 | P2c 32,308 12,143 44,451
250 | 500 | P2c 35,150 8.865 44,015
250 | 500 | P2 constant 35,149 @,003 44,152
Total observed claim amount 42,430

Table 5: earned premiums/ 1,000,000.

threshold u=230: expeded total claim amourt “considerably overestimated”
threshold u=250: amore “reasonable overestimation”
limited liability shoud be taken into acount

the global effed of different choices of the weightsin the mixture model is moderate
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Figure 8: premiums P1 and P2 c, for some tariff classes defined by Sex=1, Chief town=2, Fuel=2,
and ordered by Age, KW Power and Mass.

> Premiums P1 show much more notable fluctuations then P2.
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Figure 9: premiums P2 c, trimming pants R = 25 milli ons and R = 50 milli ons. Tariff classes
defined by Sex=1, Chief town=2, Fuel=2, and adered by Age, KW Power and Mass

» Premiums P2 with trimming pant R=50 millions dhow again some fluctuations. some high

claim amounts are included in the “ordinary” claim component.
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CONCLUSIONS

» From these evaluations it seems that setting the trimming point equal to the threshold (in our

example 25 millions) fulfils the am of building a tariff in which the smoothing reduces the

impact of large claims conveniently.

» This suggests that the EVT methodology could be effectively applied not only to estimate the

tail of the loss distribution but also to choose the trimming point for rate making purposes.
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