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Abstract 

The problem of the presence and absence of arbitrage conditions on the three types of ( – market is considered 
in this paper. In the first case when ( – market is defined by the fractional stock, the absence of martingale 
measure is proved. For two others models of ( – market which is defined by modified fractional stock in the 
second case and by “homogeneous” kernel in the third case, the absence of arbitrage is proved.  
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1. Introduction. 
The probability space )P,F,(Ω  with filtration  is considered. Throughout this paper we 
will denote this composition by (

)0t,F( t ≥

)P,)F(,F, 0tt ≥Ω . 

Further in this paper we investigate the presence and absence of arbitrage conditions on the 
–market with random stock price process :   )S,B( )P,)F(,S( 0ttt ≥













+== ∫∫
t

0

H
s

t

0
tt dB)s(ds)s(exp:)Xexp(S µν  (1) 

and bond price process ( : ; where )P,)F(,B 0ttt ≥ 0t,0r,eB tr
t ≥≥= ν  and µ  are non-random, 

measurable functions,  is a fractional Brownian motion with Hurst 
parameter

H
sB

( )1,21H ∈ . 

Definition 1. The share that is defined by (1) with bounded function µ  is called fractional. 

 
2. Absence of martingale measure in the fractional share case. 
Definition 2. The random process (  is called semimartingale if it can be presented 
by the following  

)P,)F(,Z 0ttt ≥

ttt AMZ +=  (2) 

where M  is a  locally square integrable martingale, A  is a process with bounded variation. 

Further we will denote by [ ]  the quadratic variation of process . Note that for this 
process holds the following  

tZ tZ

[ ]




=
=

⇔=
0M
AA0Z

c

t , 

where cAA =  is a continuous process. 

As it is known ([5]), ( –market is an arbitrage-free market if there exists a martingale 

measure 

)S,B

*P  such that 
t

t

B
S   is a *P -martingale, and the absence of equivalent martingale measure 

is not sufficient condition of presence of arbitrage on the ( –market. The following lemma 

shows the relation between existence of martingale measure and path property of process 

)S,B

t

t

B
S . 

Lemma 1.  If a martingale measure *P  there exists then process  is a semimartingale. tX

Proof.  It is known ([5]), that process )rtXexp(
B
S

: t
t

t
t −==U  is a *P -martingale if and only if 

 is tt MU ⋅ P –martingale, where 






 ><− tt YYexp

2
1

=tM , 
t

t dP
dP

=
F

*

Y . Therefore  



−rt



 ><−=⋅ YYexp tt 2

1
=U:Z tt M t  is P  – martingale. Using formula Ito we have: 
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∫ ∫ ><−+==−><−+
t t

s
s

s
s

tttt Zd
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ZlnZlnrtYYX
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20
1
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11

2
1 ; 

taking into consideration that ∫
t

s
s

dZ
Z0

1  is a local martingale and ∫ ><
t

s
s

Zd
Z0

2
1  is a process with 

bounded variation we obtain that process rtYYX ttt −><−+
2
1   is semimartingale, hence it 

follows that  is semimartingale. tX

� 

Corollary 1  If process is not a semimartingale, then there doesn’t exist equivalent martingale 
measure for process U . 

tX

t

Before investigating process  that is defined by fractional integral we remind the 

definition of fractional integral ([3]). 

tX ∫µ
t

H
sdB)s(

0

For 
2
1

>H  let denote the integral operator Γ

∫
∞

−−−=Γ
0

22)()12(:)( dstssfHHtf H , 

and the inner product defined as follows 

∫ ∫
∞ ∞

−
Γ −−>=Γ=<><

0 0

22)()()12(,:, dsdttstgsfHHgfgf H , 

where denotes the usual inner product of >< [ ]( )∞,L 02 . 

Denote by  the space of equivalence classes of measurable functions  such that 
. Now, it is easy to check that the association  can be extended to an 

isometry between the Gaussian space generated by random variables { , as the smallest 
closed linear subspace of  containing them, and the function space . For , the 

integral  can now be defined as the image of  in this isometry. 

Γ
2L

∞

dB)s

f
<>< Γf,f

∫
∞

0

(f

[ )t,
H
tB 01

B H
t }t, 0≥

Γ
2L( P,F,L Ω2 ) Γ∈ 2Lf

H
s f

Theorem 1. Let µ  is bounded, measurable function on the real axis. Then process 

 is not a semimartingale. ∫ µ=
t

H
st dB)s(R

0

Proof.  Obvious  is not a continuous process with bounded variation. Therefore from tR

Definition 2 follows that it is enough to prove the vanishing of quadratic variation [ ] tR  for our 
theorem. 

Let c . ∀  ∞<µ=
+∞−∞∈

|)s(|sup:
);(s

1≥n { }tttt n =<<<==λ 100  is finite partition of segment [ ]t,0 ,  

with partition diameter  | . Then 

0>t

|λ
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Corollary 2.  From Lemma 1 and Theorem 1 follows that there doesn’t exist equivalent 
martingale measure in the fractional share case. 

Further we will show that for fractional share (1) with rt ≡)(ν  the self-financing portfolio )(tπ  
that represents the amount invested in the stock and allows arbitrage opportunity on the ( –
market can be constructed. 

)S,B

The discounted capital gains process associated with the portfolio )(tπ  is defined to be  

∫∫ −− =−+=
t

H
ss

t
H
sst dBsBsdsrsdBsBsG

0

1

0

1 )()()(]))(()([)()(: µπνµπ . (3) 

The economic justification of (3) is that the capital gain from holding the stock between time 
s and  is dss +

(#Shares owned)(Price increase in stock) – (potential gain from bond), or 

s
s

s
s

dB
B

)s(dS
S

)s( ππ
− ; (4) 

1
s )B( −  is the discounting factor and integration from 0  to t  yields the discounted capital gain 

(3). 

Definition 3.  The portfolio π is called an arbitrage opportunity if its discounted gains process 
satisfies the following three conditions: 

1)  0}0{ 0 ==GP ;

2) ; 1}0{ 1 =≥GP

3)  .0}0{ 1 >>GP

Theorem 2.  The portfolio is an arbitrage opportunity. 













−













= ∫ 1dB)s(expS2)t(

t

0

H
st µπ

Proof.   In the first order it should be noted that  satisfies the following 

equation  














+= ∫

t

0

H
st dB)s(rtexpS µ

 , )dB)t(dtr(SdS H
ttt µ+=

 which is the same as ,  in particularly under r  we have dB)u(SduSr1S
t

0

H
uu

t

0
ut ∫∫ ++= µ 0=
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.dBdB)s(exp)u(1dB)u(exp H
u

t

0

u

0

H
s

t

0

H
u ∫ ∫∫ 











=−












µµµ  (5) 

Now, using (5) we calculate G : t

∫ ∫∫∫ =













−










−










+== −

t

0

H
s

s

0

H
u

s

0

H
u

t

0

H
s

1
st dB)s(1dB)u(exp)srexp(srdB)u(exp2dB)s()B()s(G µµµµπ

.1dB)s(exp1dB)s(exp2

1dB)s(2expdBdB)u(exp)s(2dBdB)u(2exp)s(2

2t

0

H
s

t

0

H
s

t

0

H
s

t

0

H
s

s

0

H
u

H
s

t

0

s

0

H
u














−










=













−










−

−













−










=










−










=

∫∫

∫∫ ∫∫ ∫

µµ

µµµµµ

 

Hence, it is easy to check that G  satisfies conditions 1) – 3) of t Definition 3. 

� 

 

3. Absence of arbitrage in the modified fractional model. 
Let modify share (1) in such a way that the process  will be a semimartingale. tX

Let  

, (6) dB)s(b)s,t(Kds)s(a)s,t(K:X H
s

t

0

t

0
t ∫∫ +=

where and non-random, measurable functions, a b






<<−

>
=

−−
tssts

ts
stK

HH
0,)(

,,0
),(

2
1

2
1 is a 

kernel defined in [3]. 

We will search і  such that  will be a semimartingale, and in particularly it will be 
presented by the following formula 

a b tX

)BW(,dW)s(ds)s(:X 2
1

sss

t

0

t

0
t =+= ∫∫ βα  (7) 

Definition 4.  The function  is absolutely continuous on the segment f [ ] ( )∞∞−⊂ ,d,c  if 

. Notation: [ ]( ) [∫ ∈+=∈∃
x

0
1 d,cx,dt))c(f)x(f:d,cLϕ ]t(ϕ [ ]( )d,cACf ∈  [1]. 

Theorem 3.  The following statements hold: 

1) Let [( B,0AC)s(as0B
H

2
1

∈>
− ])∀  then there exists a derivative 

∫ >−
−−

t

0

H
2
1H

2
1

0t,du)u(au)ut(
dt
d  (8) 

 5



and integral ∫
−−

−
t

0

H
2
1H

2
1

du)u(au)ut(  can be presented by , where ∫
t

0

du)u(α

∫ >−=
−−

t

0

H
2
1H

2
1

0t,du)u(au)ut(
dt
d)t(α . 

2) Let  ∀ ,  ( ) constc)t(b,t ≡=∞∞−∈

then under 
H

2
1

H ucc)u(
−

=β , 
)H22()

2
1H(

)H
2
3(H2

cH
−+

−
=

ΓΓ

Γ
, the following equality holds 

∫ ∫ >=−
−−

t

0

t

0
s

H
s

H
2
1H

2
1

0t,dW)s(dB)s(bs)st( β  (9) 

Proof.   1) Let [ ]( )B,0AC)s(as0B
H

2
1

∈>∀
−

. 

This is necessary and sufficient condition of existence of Abel equation solution ([4]): 

0t,ds)s(ds
)st(

)s(as)H
2
3(

)H
2
3(

1 t

0

t

0 2
1H

H
2
1

>=

−

−

−
∫∫ −

−

α
Γ

Γ
 (10) 

and this solution is equal  ∫ >−=
−−

t

0

H
2
1H

2
1

0t,du)u(au)ut(
dt
d)t(α . 

2) In this point of our proof we will find conditions for β  і  such that the following equality 
holds  

b

0t,dW)s()st(dB)s(bs
t

0
s

2
1H

t

0

H
s

H
2
1

>−= ∫∫
−−

β  (11) 

Let .0t,
)t(bt

1:)t(
H

2
1 >=
−

Φ  We apply simultaneously to both sides of (11) the following 

transformation: 

. A:dsdW)u()us()s(dsdB)u(bu)s(:A 2

t

0

s

0
u

2
1H

t

0

s

0

H
u

H
2
1

1 =









−′=










′= ∫ ∫∫ ∫

−−
βΦΦ

Hence  

∫∫∫ −−=−=
−−

t

0
u

t

0
u

2
1HH

t

t

0

H
u

H
2
1

1 dW)u,t(zdW)u()ut()t(BdB)u(bu)t(A βΦΦ , 

 where the kernel 

∫
−−−

−−=
t

u

2
3H

2
1HH

2
1

H dv)uv(vuc)
2
1H()u,t(z  

was defined in [3]. 
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∫ ∫∫
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=−Φ−−−Φ=

−−

−−

t t

u
u

Ht

u

H

t t s

u

H

u

H

dWdssusuHdWuutt

dsdWuussHdWuuttA

0

2
3

0

2
1

0 0 0

2
3

2
1

2

)()()()
2
1()()()(

)()()()
2
1()()()(

ββ

ββ

 

And therefore: ∫ ∫ =−−
−

t

0

t

u

2
3H

)u,t(zds)s()us()u()
2
1H( Φβ ,  

i.e. 0u,uccu)t(bc)u(
H

2
1

H

H
2
1

H >==
−−

β . 

� 

Remark.  It turns out that the derivative of  can not be defined 

everywhere on the segment [
∫=
t

dsscstKtI
0

)(),(:)(

)∞,0  for some functions [ ]( )∞∈ ,0Cc  that [( ])∞∉′ ,0Cc , i.e. the 
condition (8) is essential. We show this in the following lemma. 

Lemma 2.  Let 
[ )
[










>−−

∈−

∈−−+

=
−

−

−

0
r1

0

01
r1

0

11
r1

10

ts,)ts(

t,ts,)st(

t,0s,t)tt(s

)s(c ]     ,  where  







∈


− 1,

2
1H,1,H

2
3



∈>> r,0tt 10 . 

Then the derivative of function  doesn’t exist in )t(I 0tt= . 

Proof.  Note that  

).t(It:du)ut(cu)u1(tds)s(cs)st()t(I 1
H22

1

0

H
2
1H

2
1

H22
t

0

H
2
1H

2
1

−−−−−−
=−=−= ∫∫  

Now let's calculate the derivative of function  in t)t(I1 0t= . 

.du
uh

)ut(c)uhut(cuu)u1(
h

)t(I)ht(I 1

0

00H
2
1H

2
1

0101 ∫
−+

−=
−+ −−

 

Under h  for 0→ ( 1,0
t
t:
0

1 ∈=θ )  we have:  

∫∫
−−−−−−

→
−−−−=

−+ 1
H

2
3rH

2
1

r
0

0

H
2
3H

2
1

0101
0h

duu)u1(t)r1(duu)u1(
h

)t(I)ht(Ilim
θ

θ

, where the first 

term  is equal )H
2
3,H

2
5(B −−θ , and the second term is infinite, because 

∞=
















−−

−
−≥−

−−
−−−−

∫

1

rH
2
3

H
2
31

H
2
3rH

2
1

rH
2
1

)u1(duu)u1(

θ

θ

θ . 

Hence, . � 
h

)t(I)ht(Ilim 0101
0h

∞−=
−+

→
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4. Absence of arbitrage in model with “homogeneous” kernel. 
Let's consider the case when  is presented by the following formula  tX

∫ >−==
t

0
s

c
ht 0t,dW)s(c)st(h:)t(VX  (12) 

According to the special look of kernel  it should be called a homogeneous. Under ch 1≡  the 
process V  was considered in [2]. )t(c

h

In the next theorem the semimartingale condition of V  was formulated. This is sufficient 
condition of absence of arbitrage on the -market according the paragraph 2. 

)t(c
h

)S,B(

Theorem  4.   1) Let the following condition holds  

0t,du))u(c)ut(h(
t

0

2 ≥∞<−′∫  (13) 

Then  V is a semimartingale. )t(c
h

2) If V  is a semimartingale and )t(c
h −c nondecreasing function, then condition (13) holds. 

Proof.   1) Note that h , hence, using stochastic Fubini theorem ([6]) we 

obtain 

i.e. V  is a semimartingale. 

∫ ′+=
t

0

du)u(h)0(h)t(

∫ ∫∫

∫ ∫

+=

+=

t

0

v

0

t

0
ss

t

0

t

0
ss

dW)s(c)0(h

dW)s(c)0(hdW

∫∫∫ ∫

∫∫ ∫

′

−

+=−′−′+

+=









′−=

t

0

c
h

t

0
ss

t

0

t

s

t

0
s

t

0
s

st

0

c
h

,dv)v(VdW)s(c)0(hdvdW)s(c)sv(hdWdv)s(c)sv(h

dW)s(c)0(hdW)s(cdu)u(h)s(c)st(h)t(V

)t(c
h

2) Let V  be a semimartingale. Then, according to the )t(c
h Definition 2, it can be presented by the 

following 

tt
c

h AM)t(V += , where  M  is a  locally square integrable martingale, A  is a process with 
integrable variation, and the following inequalities  :  

[ ]
( ) ( )

( ) .0L,du)us(c)u(h)ust(hL

du)u(c)us(h)ut(hLF)s(V)t(VEE)AVar(Ets0

2
1

22
s

0

2
1

22
s

0
s

c
h

c
ht,s

>









−−−−⋅=

=









−−−⋅≥−≥<<∀

∫

∫
   

Therefore the semimartingale property of process V  can be written by the following way: )t(c
h
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( )
[ ]

∞<




≤














−−+−= ∑ ∫ +

∈
AVarE

L
1du)ut(c)u(h)utt(hsup:)t(

t,0

2
1

t

0
i

22
i1i

i

t λΛλ
Σ , where −tΛ the set of 

finite partitions of segment [ . Now, for uniformly partition ]t,0 n 1n, ≥λ  of [ ]t,0  with 

partition diameter 
n
t

n =λ c, using monotoneness of , we obtain: 

( )

( )

( ) ( ) .du)u(c)u(h)u(htdu)ut(c)u(h)utt(h

du)ut(c)u(h)utt(h)t(

t,0

2
1

0

22
n

n
t:i

1ni0

2
1

t

0
i

22
i1i

1n

0i

2
1

t

0
i

22
i1i

i

i

i











−−+











 −
≥














−−+−≥

≥













−−+−≥

∈∀

∫∑ ∫

∑ ∫

>
−≤≤

+

−

=
+

θ

θ

θλ
λ
θ

Σ

θ

 

Hence  

.du))u(c)u(h(

du))u(c)u(h(du)u(c
)u(h)u(h

lim

0

2

0

22
2

0 n

n

0n

∫

∫∫

−′=

=−′=−








 −+
>∞

→

θ

θθ

λ

θ

θθ
λ

λ
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