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Abstract

The problem of the presence and absence of arbitrage conditions on the three types of (B, S )— market is considered
in this paper. In the first case when (B, S )— market is defined by the fractional stock, the absence of martingale
measure is proved. For two others models of (B, S )— market which is defined by modified fractional stock in the

second case and by “homogeneous” kernel in the third case, the absence of arbitrage is proved.
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1. Introduction.
The probability space (@,F,P) with filtration (F,,t>0) is considered. Throughout this paper we
will denote this composition by (Q2,F,(F, )sy.P) .

Further in this paper we investigate the presence and absence of arbitrage conditions on the
(B, S )—market with random stock price process (S,,(F, )y.P):

S, =exp(X,) = exp {J v(syds+ f “es) dBSH} N
0

0

and bond price process (B,,(F,)sy.P): B,=e",r>0,t>0; where v and p are non-random,
measurable  functions, B” is a fractional Brownian motion with  Hurst
parameter H € (1/2,1).

Definition 1. The share that is defined by (1) with bounded function u is called fractional.

2. Absence of martingale measure in the fractional share case.
Definition 2. The random process (Z,,(F,) ,,P) is called semimartingale if it can be presented
by the following

Z,=M,+4, 2)
where M is a locally square integrable martingale, A is a process with bounded variation.

Further we will denote by [Z], the quadratic variation of process Z,. Note that for this
process holds the following

[Z]tZOQ{A:A”

b
M=0
where 4= A4¢ is a continuous process.

As it is known ([5]), (B,S)—market is an arbitrage-free market if there exists a martingale

* S, . * . . .
measure P such that —~ is a P -martingale, and the absence of equivalent martingale measure
t

is not sufficient condition of presence of arbitrage on the (B,S)—market. The following lemma

. . . S
shows the relation between existence of martingale measure and path property of process B% .
t

Lemma 1. If a martingale measure P* there exists then process X, is a semimartingale.

Proof. It is known ([5]), that process U, .= % =exp(X, —rt) isa P -martingale if and only if

dr’

U, -M, is P—martingale, where M, =exp{Y, —%< Y>,}, Y, == Therefore

F

Z,=U,-M, = exp{Y, —%< Y >, —rt} is P —martingale. Using formula Ito we have:



t t
X, +7Y, —l<Y>, -rt=InZ,=lnZz, +J‘LdZY —lj‘%d<2>q;
2 v Zs 24 Z ‘

S

t t
taking into consideration that J'ZLdZS is a local martingale and J'de <Z >, 1s a process with
0“s 0“5

bounded variation we obtain that process X, +7, —E<Y >, —rt 1s semimartingale, hence it
follows that X, is semimartingale.
[

Corollary 1 If process X, is not a semimartingale, then there doesn’t exist equivalent martingale
measure for process U, .

Before investigating process X, that is defined by fractional integral J.u( s )dB!" we remind the
0
definition of fractional integral ([3]).

For H >% let I' denote the integral operator

T f(t)=HQH - 1)j f)|s—e["ds,
0
and the inner product defined as follows
<[> g>p=<f,Tg>=HQH -V [f(s)g)s—t[" " dsdt,
00

where <o > denotes the usual inner product of L, ([0,]).

Denote by L, the space of equivalence classes of measurable functions f such that
<f,f>r <o.Now, it is easy to check that the association B/ —1p,,) can be extended to an
isometry between the Gaussian space generated by random variables B/ ,t>0}, as the smallest

closed linear subspace of L,(Q, F, P) containing them, and the function space L. For f e L}, the

integral J- f(s)dB can now be defined as the image of f in this isometry.
0

Theorem 1. Let p is bounded, measurable function on the real axis. Then process
t
R, =jp(s)dBf is not a semimartingale.
0
Proof. Obvious R, is not a continuous process with bounded variation. Therefore from
Definition 2 follows that it is enough to prove the vanishing of quadratic variation [R], for our

theorem.

Let c:= sup |u(s)|<o. Vn21 A={0=1, <1, <---<1t, =t} is finite partition of segment [0,], >0

s€(—00,+0)

with partition diameter |A|. Then



2
n—1 n— T+ nel treer s
E ;(R . —R,)*-0 ng l]ly(s)stH gczH(zH—ng j j |s—¢["" dsdt=

= = 4 =0 4 g

n— l n—

:cszl kj(| ten —t [ =t 1 |2H_l)dt:czzl| e~ " <
k=0 7 k=0
<" oty | = o AT S0, 40
k=0

[]

Corollary 2. From Lemma 1 and Theorem 1 follows that there doesn’t exist equivalent
martingale measure in the fractional share case.

Further we will show that for fractional share (1) with v (¢) =7 the self-financing portfolio 7 (¢)
that represents the amount invested in the stock and allows arbitrage opportunity on the (B,5)—
market can be constructed.

The discounted capital gains process associated with the portfolio 7 (¢) is defined to be

G, = [ (s)(B,) " [u(s)dB" +(v(s)~r)ds]= [ x(s)(B,) " u(s)dB!" . 3)
0 0
The economic justification of (3) is that the capital gain from holding the stock between time
s and s+ds 1S

(#Shares owned)(Price increase in stock) — (potential gain from bond), or

%dss _ %st : (4)

N N

(B, )" is the discounting factor and integration from 0 to ¢ yields the discounted capital gain
3).

Definition 3. The portfolio r is called an arbitrage opportunity if its discounted gains process
satisfies the following three conditions:

1) P{G,=0}=0;
2) PG, 20}=1;
3) P{G,>0}>0.

t
Theorem 2. The portfolio r(t)= 2S,[exp{jy(s)stHJ— 1} is an arbitrage opportunity.
0

t
Proof. In the first order it should be noted that S, = exp{rt+ _[ u(s)dBY ] satisfies the following
0

equation

ds,=S,(rdt+u(t)dB" ),

t t
which is the same as S, =1+r I S, du+ J-Su u(u)dB! | in particularly under » =0 we have
0 0



exp{j,u(u)dBf}—l =J.y(u)exp{jy(s)d35}d37. 5)
0 0 0

Now, using (5) we calculate G, :

G, =J.7r(s)(Bs)_1/1(s)dBf =I26xp[jr,u(u)dBuH +rsJexp(—rs)(expﬁy(u)dBfJ—IJ/J(S) dB!" =
0 0 0 0

- ZJ‘y(s)exp(2j.y(u)dBf}stH —2jy(s)exp[jy(u)dijdBf :(exp[‘Py(s)stH]—]J—
0 0 0 0 0

—2[exp(.[y(s)dBflJ—I}=[exp(jy(s)dBfJ—lJ .

Hence, it is easy to check that G, satisfies conditions 1) — 3) of Definition 3.

[l

3. Absence of arbitrage in the modified fractional model.
Let modify share (1) in such a way that the process X, will be a semimartingale.
Let

t t

X, ;=jK(t,s)a(s)ds+jK(z,s)b(s)dBf, (6)
0 0
0, s>t

where aand bnon-random, measurable functions, K(z,s)=4 1 _, is a

1
= - -H
s (t—s)* ,0<s<t

kernel defined in [3].

We will search a1 b such that X, will be a semimartingale, and in particularly it will be
presented by the following formula

1

X, = [a(s)ds+ [ p(s)aw,, (W, =B?) (7)
0 0

Definition 4. The function f is absolutely continuous on the segment [c,d|c (-, ®) if

dpeL, ([c.d)): f(x)zf(c)+j.(p(t)dt, x e[c.d]. Notation: f e AC([e.d]) [1].

Theorem 3. The following statements hold:

1
S -H
1) Let VB>0 s? a(s)eAC((0,B)) then there exists a derivative

d ! i—H i—H
EIU_”)Z u?  a(u)du, t>0 (8)
0



t 1

1 t
and integral I(t —u)? Hu2 " a(u)du can be presented by Ia(u)du , Where
0

0
1

d ¢ Ty Iop
a(t)z—j(t—u)2 u? a(u)du, t>0.
dty

2) Let Vte(-o,0) b(t)=c=const,

1, ZfJIYCi—f{)
then under B(u)=c,cu’ , c, = 2

7 , the following equality holds
T(H+)I(2=2H)

1

t LT t
j(t—s)T 52 b(s)dszI,B(s)dWs, >0 (9)
0 0

1

Proof. 1)Let VB>0 SE_Ha(S)EAC([O,B]).

This is necessary and sufficient condition of existence of Abel equation solution ([4]):
3 -

t I(=-=H)s? a(s) t

3 2 - ds=ja(s)ds,t>0 (10)

r(5=H)o (t—-s) 2 0

1

1

A ifH H
and this solution is equal a(t)=%-|.(t—u)2 u’>  a(u)du, t>0.
0

2) In this point of our proof we will find conditions for g i b such that the following equality
holds

Lo, t gl
jsz b(s)dB" =j(t—s) 2B(s)dW., t>0 (11)
0 0
Let @(t ):=1;, t>0. We apply simultaneously to both sides of (11) the following
2 bt
transformation:

1

s " t s H—i
4):= @'(S)[qu_ b(u)dstde@'(s)[I(s—u) Zﬁ(u)qustzfAz'
0 0 0

S C—y

Hence
Lol t yo ! t
A,:qb(z)juz b(u)dB" —B" =qb(z)j(:—u) 2 Blu)dw, —jz(t, w)dw,
0 0 0

where the kernel

1 t

1 "
z(t,u)z(H—é)cH u’ jv _E(V—u)

u

3
2

dv

was defined in [3].



t H—l t s H—z
A =0[ -0 paaw, ~ur-Hew[c-u" * puaw, d-
0 0 0

t oL t t g3
o[-0 puyan, ~t - pwl-u"  ewdsaw,
0 0 u

t t H*i
And therefore: (H—é)J.ﬂ(u)J‘(s—u) 2@(s)ds =z(t,u),
0 u

1 1
1e. f(u)=c, b(t)u’ =cycu’? , u>0.
[]

t
Remark. It turns out that the derivative of I(¢):= j K(t, s)c(s)ds can not be defined
0

everywhere on the segment [0, ) for some functions ceC([0,»]) that ¢'¢C([0,]), i.e. the
condition (8) is essential. We show this in the following lemma.

s+(t,~t,)" —t,, sel0,t)
Lemma 2. Let c(s)={(t,—s)"", selt, t,] . where

—(s—t,)"", s>t

t,>t,>0, re i—H, 1|,He i,l .
2 2

Then the derivative of function I(t) doesn’t exist in t=t,.

Proof. Note that
I(t)zj‘(t —s)é_H g o(s)ds =72 j(z —u)é_H " c(tu)du=:1"11 (1),
0 0
Now let's calculate the derivative of function 7,(¢) in t=¢,.
]1(t0+h)—11(t0):.|1'(]_u)211 ué—H L Cltgurhu)=c(tyu) -
h ) hu

Under 7—0 for 19.'2;—16 (0, 1) we have:
0
_ 0 TP I [T
I{irrz 11(t0+h]: L) ='[(]—u)2 u? a’u—(I—lf)t(,_rj(l—tt)2 u?  du, where the first
0 4

. 5 3 .. .
term is equal B, ( E_H 5 —H ), and the second term is infinite, because

! Ly 3m E —u)?
j(z—u)z u?  du|>62 (11”) —w.
0 —H-r
2 4
Hence, lim Lty +h)=1i(%) =—o0, []
h—0 h



4. Absence of arbitrage in model with “homogeneous” kernel.

Let's consider the case when X, is presented by the following formula
X,=Vh"(t).'zjh(t—s)c(s)qu, >0 (12)
0

According to the special look of kernel # it should be called a homogeneous. Under ¢ =1 the

process ¥V, (t) was considered in [2].

In the next theorem the semimartingale condition of 7, (7) was formulated. This is sufficient
condition of absence of arbitrage on the (B, S)-market according the paragraph 2.

Theorem 4. 1) Let the following condition holds

I(h'(t—u)c(u))zdu<oo, >0 (13)
0

Then V, (t)is a semimartingale.

2)If V, (t) is a semimartingale and ¢ —nondecreasing function, then condition (13) holds.

Proof. 1) Note that A(t)=h(0 )+Ih’( u)du, hence, using stochastic Fubini theorem ([6]) we
0

obtain
t [ 1=

VE(t) :J.h(t—s)c(s)dezh(O)J.c(s)dWer j[ gh'(u)dujc(s)de :h(()).[c(s)dW\,Jr
0 0 0 0

0

+j‘j‘h'(v—s)c(s)dvdWS = h(O)jc(s)dWs + jjh'(v—s)c(s) dw. dv =h(0)jc(s)dWs + th‘? (v)dv,
0

0 s 0 00 0

1.e. ¥V, (t) is a semimartingale.

2) Let 7, (t) be a semimartingale. Then, according to the Definition 2, it can be presented by the
following

Vi(t)=M,+A,,where M isa locally square integrable martingale, 4 is a process with
integrable variation, and the following inequalities :
1

| h(t—u)=h(s—u))’c*(u)du -
I e

0

VO<s<t  E(Vard)zE ‘E(V,f(t)—Vh"(s) FS)
s,t

o~

0

=L-[j(h(t—s—u)—h(u))zcz(s—u)duj , L >0.

Therefore the semimartingale property of process 7, (¢) can be written by the following way:



i

~ 2
X(t):=sup Z{I(h(t i+1_ti+u)_h(u))2 c?(ti—u)du} S%E(I[/(%Aj <o, where A,-the set of

AeA; , 0

finite partitions of segment [0, ]. Now, for uniformly partition A,,n>1 of [0, ] with

.. . t . .
partition diameter |/1 n| =—, using monotoneness of ¢, we obtain:
n

voe(0,1)

1

n—=1{ t E

Z(t)ZZ(J‘(h(tw—ti+u)—h(u))2c2(ti—u)duJ >
i=0\ o

+u)—h(u))’c? (H—u)duj .

t

| ! \
> 2, (I(h(m—t,»+u)—h(u))2c2(t,»—u)duj {f;—ﬂ“(/a(lh

0<i<n-I\ ¢
it;>0

Hence

2 0
] S (0-u)du = j(h'(u)c(a—u))zdu =

6
=j(h'(9—u)c(u))2du.
0
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