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Abstract

In this paper we consider a risk model having two disjoint classes of insurance business.
Correlation may exist among the two claim number processes. Claim occurrences of
both classes relate to Poisson and Erlang processes. We derive general solutions to
the ultimate survival (ruin) probabilities for some risk processes generated from the
assumed model when the claim sizes are exponentially distributed. In particular we
study the correlated case in which both classes of claims occur as a mixture of Poisson
and Erlang processes. We also examine the asymptotic property of the ruin probability
for this special risk process with general claim size distributions.
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1. Introduction

Various models for correlated aggregate claims have been proposed recently due to
their potential usefulness in insurance industry. In this paper we consider a risk model
involving two disjoint classes of insurance business. Let Xi be claim size random
variables for the first class with common distribution function FX and Yi be those for
the second class with common distribution function FY . Their means are denoted by
µX and µY . It is assumed that all Xi and Yi are independent. Then the aggregate

1



claim size process generated from the two classes of business is given by

U(t) =
N1(t)∑

i=1

Xi +
N2(t)∑

i=1

Yi, (1.1)

where Ni(t) is the claim number process for class i, i = 1, 2. Claim sizes are assumed
to be independent of claim numbers. The two claim number processes are correlated
in the way that

N1(t) = K1(t) + K2(t), and N2(t) = K2(t) + K3(t), (1.2)

with K1(t), K2(t), and K3(t) being three independent renewal processes. As usual, we
define the surplus process

S(t) = u + ct− U(t), (1.3)

where u is the amount of initial surplus and c is the rate of premium. The ultimate
survival probability is

Φ(u) = P(S(t) ≥ 0; for all t ≥ 0). (1.4)

Surplus process (1.3) is sometimes referred to as the common shock model in the
literature. Many authors studied various aspect of the common shock model in recent
years. For instance, Ambagaspitiya (1998,1999) considered a general method of con-
structing a vector of p (p ≥ 2) dependent claim numbers from a vector of independent
random variables, and derived formulas to compute the correlated aggregate claims
distribution for the corresponding common shock model with p dependent classes of
business; and Cossette and Marceau (2000) used a discrete-time approach to study
how the common shock affects the finite-time ruin probabilities and the adjustment
coefficient. In addition to the common shock model, there exist other kinds of cor-
related aggregate claims model in the literature. For example, Yuen and Guo (2001)
studied the finite-time ruin probabilities for the compound binomial model with time-
correlated claims; and Yuen and Wang (2001) considered a new risk model in which
correlation comes from the thinning of Poisson claim number processes, and discussed
the impact of the dependence structure on ruin probability.

This paper is to examine the ultimate survival (ruin) probability for the risk process
(1.3). In Section 2 we briefly discuss the case that K1, K2, and K3, are three indepen-
dent Poisson processes. Dickson (1998) and Dickson and Hipp (1998) considered the
probability of ruin when claims occur as an Erlang process. Their work motivates us
to consider one of the three renewal processes as an Erlang process. We first study the
case that K1 is Poisson, K2 ≡ 0, and K3 is Erlang. From (1.2) it is easily seen that
the two claim number processes are independent in this case. Under this independence
assumption, Section 3 is devoted to deriving the ultimate survival (ruin) probability
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when claim sizes follow exponential distributions. We then investigate the correlated
case in which K2 is assumed to be Erlang. Given that K1 and K3 are Poisson, we ob-
tain the required probabilities for exponential claim sizes in Section 4. When dealing
with general claim size distributions, Section 5 presents an asymptotic result for the
probability of ruin.

2. Three Poisson Processes

Let K1(t), K2(t), and K3(t) be three independent Poisson processes with parameters
λ1, λ2, and λ3 respectively. Then the moment generating function of (1.1) has the form

MU(s) = exp

{
λt

(
λ1

λ
MX(s) +

λ2

λ
MX(s)MY (s) +

λ3

λ
MY (s)− 1

)}
, (2.1)

where λ = λ1+λ2+λ3. It is easily seen that λ−1(λ1MX(s)+λ2MX(s)MY (s)+λ3MY (s))
is the moment generating function of the random variable

Z = XI(ξ = 0) + (X + Y )I(ξ = 1) + Y I(ξ = 2),

where X, Y , and ξ are independent. The probability function of ξ is given by

P(ξ = 0) =
λ1

λ
, P(ξ = 1) =

λ2

λ
, and P(ξ = 2) =

λ3

λ
.

This shows that U(t) is a compound Poisson process with parameter λ and the corre-
sponding claim sizes follow the distribution of Z. Therefore the ruin probability can
be calculated using the classical method. Such a result can be extended to a p-variate
(p > 2) claim number process whose component is a linear combination of independent
Poisson processes. The key step is to write the moment generating function of the
aggregate claim size process in the form of (2.1).

Another interesting problem is to consider the two classes of business separately. Let
the surplus process for class i, i = 1, 2 be

Si(t) = ui + cit−
Ni(t)∑

j=1

Xj,

where ui and ci are the initial surpluses and premium rates. Define the infinite time
joint survival probability

φ(u1, u2) = P(S1(t) ≥ 0, S2(t) ≥ 0; for all t ≥ 0).

In a small time interval (0, ∆], there are five possible cases: no claim, one claim from
class 1 and no claim from class 2, no claim from class 1 and one claim from class 2,
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two claims and one from each class, more than two claims. It follows that

φ(u1, u2) = (1− λ1∆− λ2∆− λ3∆ + o(∆))φ(u1 + c1∆, u2 + c2∆)

+ (λ1∆ + o(∆))
∫ u1+c1∆

0
φ(u1 + c1∆− x, u2 + c2∆)dFX(x)

+ (λ3∆ + o(∆))
∫ u2+c2∆

0
φ(u1 + c1∆, u2 + c2∆− y)dFY (y)

+ (λ2∆ + o(∆))
∫ u1+c1∆

0

∫ u2+c2∆

0
φ(u1 + c1∆− x, u2 + c2∆− y)dFY (y)dFX(x)

+ o(∆).

As ∆ tends 0, we get

c1
∂

∂u1

φ(u1, u2) + c2
∂

∂u2

φ(u1, u2)

= (λ1 + λ2 + λ3)φ(u1, u2) − λ1

∫ u1

0
φ(u1 − x, u2)dFX(x)

− λ3

∫ u2

0
φ(u1, u2 − y)dFY (y) − λ2

∫ u1

0

∫ u2

0
φ(u1 − x, u2 − y)dFX(x)dFY (y).

It is rather difficult to solve this two dimensional integro-differential equation. If we
assume that S1(t) and S2(t) are two independent compound Poisson processes, that is,
λ2 = 0, and that X and Y are exponentially distributed, then one can show that

φ(u1, u2) =

(
1− 1

ρ1 + 1
exp

{ −ρ1u1

µX(1 + ρ1)

}) (
1− 1

ρ2 + 1
exp

{ −ρ2u2

µY (1 + ρ2)

})
,

where ρ1 = c1(λ1µX)−1 − 1 and ρ2 = c2(λ3µY )−1 − 1.

3. Independent Poisson-Erlang Case

As shown in Section 2, the classical risk theory (see for example Gerber (1979) and
Grandell (1991)) still holds for the process (1.3) with correlated aggregate claims. It
is essentially due to the Poisson property of K1(t), K2(t), and K3(t). The derivation
of (1.4) will become very complicated if the Poisson assumption is violated. Here we
discuss the case that K1 is a Poisson process with parameter λ1, K2 ≡ 0, and K3 is an
Erlang(2) process with parameter λ3. For a single class of business, Dickson (1998) and
Dickson and Hipp (1998) considered the survival (ruin) probability for a risk process
in which claim interarrival times having an Erlang(2) distribution. Actually Erlang
distribution is one of the most commonly used distributions in queueing theory which
is closely related to risk theory; see for example, Asmussen (1987, 1989) and Takács
(1962).

Let V1, V2, · · · be the times between claims for the first class of business. They are
independent and exponentially distributed with mean λ−1

1 . For the second class of

4



business, the times between claims form a sequence of independent and identically dis-
tributed random variables, L1, L2, · · ·, following an Erlang(2,λ3) distribution. Equiv-
alently we write L1 = L11 + L12, L2 = L21 + L22, · · ·, where L11, L12, L21, L22, · · · are
independent exponential random variables with mean λ−1

3 . Since λ1µX and 2−1λ3µY

are the expected aggregate claims associated with N1 and N2 respectively over a unit
time interval, the positive relative security loading condition implies that

c > λ1µX +
λ3µY

2
. (3.1)

With other things being the same, we consider a slight change in the distribution
of L1. Instead of being a sum of L11 and L12, L1 is equal to L12. We denote the
corresponding survival probability by Φ1(u) which is very useful in the derivation of
Φ(u).

Let W be the minimum of V1 and L11. If W = L11 = t, then no claim occurs in (0, t].
On the other hand, if W = V1 = t, there is a claim at time t and no claim before t.
Hence, we have

Φ(u) =
∫ ∞

0
P (W = t,W = L11)Φ1(u + ct)dt

+
∫ ∞

0
P (W = t,W = V1)

∫ u+ct

0
Φ(u + ct− x)dFX(x)dt. (3.2)

Note that

P(W = V1) = P(V1 < L11) =
λ1

λ1 + λ3

,

P(W = L11) = P(V1 > L11) =
λ3

λ1 + λ3

,

P(W > t|W = V1) = P(W > t|W = L11) = exp{−(λ1 + λ3)t}.
It is obvious that the two conditional distributions are exponential with parameter
λ1 + λ3. Using these probabilities, (3.2) can be rewritten as

Φ(u) =
λ3

λ1 + λ3

∫ ∞

0
(λ1 + λ3) exp{−(λ1 + λ3)t}Φ1(u + ct)dt

+
λ1

λ1 + λ3

∫ ∞

0
(λ1 + λ3) exp{−(λ1 + λ3)t}

∫ u+ct

0
Φ(u + ct− x)dFX(x)dt.

By similar arguments, we obtain

Φ1(u) =
λ3

λ1 + λ3

∫ ∞

0
(λ1 + λ3) exp{−(λ1 + λ3)t}

∫ u+ct

0
Φ(u + ct− x)dFY (x)dt

+
λ1

λ1 + λ3

∫ ∞

0
(λ1 + λ3) exp{−(λ1 + λ3)t}

∫ u+ct

0
Φ1(u + ct− x)dFX(x)dt.

5



Putting s = u + ct yields

cΦ(u) = λ3

∫ ∞

u
Φ1(s) exp

{−(λ1 + λ3)(s− u)

c

}
ds

+ λ1

∫ ∞

u
exp

{−(λ1 + λ3)(s− u)

c

} ∫ s

0
Φ(s− x)dFX(x)ds,

cΦ1(u) = λ3

∫ ∞

u
exp

{−(λ1 + λ3)(s− u)

c

} ∫ s

0
Φ(s− x)dFY (x)ds

+ λ1

∫ ∞

u
exp

{−(λ1 + λ3)(s− u)

c

} ∫ s

0
Φ1(s− x)dFX(x)ds.

Differentiating with respect to u, we get the following integro-differential equations

cΦ(1)(u) = −λ3Φ1(u)− λ1

∫ u

0
Φ(u− x)dFX(x) + (λ1 + λ3)Φ(u), (3.3)

cΦ
(1)
1 (u) = −λ3

∫ u

0
Φ(u− x)dFY (x)− λ1

∫ u

0
Φ1(u− x)dFX(x)

+ (λ1 + λ3)Φ1(u). (3.4)

Assume that X and Y are exponentially distributed. Then differentiating (3.3) and
(3.4) with respect to u once again yields

cΦ(2)(u) = −λ3Φ
(1)
1 (u)− λ1

µX

Φ(u) +
λ1

µ2
X

∫ u

0
Φ(x) exp

{−(u− x)

µX

}
dx

+ (λ1 + λ3)Φ
(1)(u)

= − λ3Φ
(1)
1 (u)− λ1

µX

Φ(u) +
1

µX

(
(λ1 + λ3)Φ(u)− λ3Φ1(u)− cΦ(1)(u)

)

+ (λ1 + λ3)Φ
(1)(u)

= (λ1 + λ3 − c

µX

)Φ(1)(u) +
λ3

µX

Φ(u)− λ3Φ
(1)
1 (u)− λ3

µX

Φ1(u), (3.5)

cΦ
(2)
1 (u) = (λ1 + λ3)Φ

(1)
1 (u)− λ3

µY

Φ(u)− λ1

µX

Φ1(u)

+
1

µY

(
λ3

∫ u

0
Φ(x)

1

µY

exp
{−(u− x)

µY

}
dx

)

+
1

µX

(
λ1

∫ u

0
Φ1(x)

1

µX

exp
{−(u− x)

µX

}
dx

)

= (λ1 + λ3 − c

µY

)Φ
(1)
1 (u)− λ3

µY

Φ(u)− (
λ1

µX

− λ1 + λ3

µY

)Φ1(u)

+(
1

µX

− 1

µY

)λ1

∫ u

0
Φ1(x)

1

µX

exp
{−(u− x)

µX

}
dx. (3.6)
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Example 3.1. If µX = µY = µ, then (3.5) and (3.6) become

cΦ(2)(u) = (λ1 + λ3 − c

µ
)Φ(1)(u) +

λ3

µ
Φ(u)− λ3Φ

(1)
1 (u)− λ3

µ
Φ1(u), (3.7)

cΦ
(2)
1 (u) = (λ1 + λ3 − c

µ
)Φ

(1)
1 (u)− λ3

µ
Φ(u) +

λ3

µ
Φ1(u), (3.8)

with boundary conditions




cΦ(1)(0) = −λ3Φ1(0) + (λ1 + λ3)Φ(0),

cΦ
(1)
1 (0) = (λ1 + λ3)Φ1(0),

Φ(∞) = 1,
Φ1(∞) = 1,

(3.9)

implied by (3.3), (3.4), and the fact that the survival probabilities are 1 if the company
has an infinite initial surplus.

From (3.8) we have

Φ(u) = Φ1(u) +
µ

λ3

(λ1 + λ3 − c

µ
)Φ

(1)
1 (u)− cµ

λ3

Φ
(2)
1 (u). (3.10)

Then substituting (3.10) into (3.7) gives

c2µ

λ3

Φ
(4)
1 (u) − 2cµ

λ3

(λ1 + λ3 − c

µ
)Φ

(3)
1 (u)

−
(

2c− µ

λ3

(λ1 + λ3 − c

µ
)2

)
Φ

(2)
1 (u) + (2λ1 + λ3 − 2c

µ
)Φ

(1)
1 (u) = 0.

which has the general solution

Φ1(u) = C1 + C2 exp{k1u}+ C3 exp{k2u}, (3.11)

where k1 and k2 are the two negative roots of the characteristic equation

c2µ

λ3

z3 − 2cµ

λ3

(λ1 + λ3 − c

µ
)z2 −

(
2c− µ

λ3

(λ1 + λ3 − c

µ
)2

)
z + (2λ1 + λ3 − 2c

µ
) = 0.

This equation has two negative solutions and one positive solution. Since c > (λ1 +
2−1λ3)µ from condition (3.1), the left-hand side of the equation takes a negative value
at z = 0. Thus a positive root exists. As for the existence of two negative roots, we
only need to show that the left-hand side takes a positive value for some negative value
of z. From (3.1) c can be written as (1+ρ)(λ1 +λ3/2)µ where ρ is the relative security
loading. Let a = λ3(2λ1 + λ3)

−1 and y = (1 + ρ)µz. Then the above characteristic
equation is equivalent to

h(y) = y3 − 2(a− ρ)y2 +
(
(a− ρ)2 − 4a(1 + ρ)

)
y − 4aρ(1 + ρ) = 0.
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It is evident that 0 < a < 1 and ρ > 0. The points of local maximum or minimum of
h(y) are the roots of equation 3y2 − 4(a− ρ)y + (a− ρ)2 − 4a(1 + ρ) = 0. One of the
roots

y0 =
1

3

(
2(a− ρ)−

(
(a− ρ)2 + 12a(1 + ρ)

) 1
2

)

is obviously less than zero. One can easily show that h(y0) > 0.

Using (3.10) and (3.11), we obtain

Φ(u) = C1 + C2l(k1) exp{k1u}+ C3l(k2) exp{k2u}, (3.12)

where

l(k) = 1 + (λ1 + λ3 − c

µ
)
µk

λ3

− cµk2

λ3

.

Boundary conditions (3.9) imply that C1 = 1 and that C2 and C3 are the solutions of

λ1 = (ck1l(k1) + λ3 − (λ1 + λ3)l(k1)) C2 + (ck2l(k2) + λ3 − (λ1 + λ3)l(k2)) C3,

λ1 + λ3 = (ck1 − λ1 − λ3) C2 + (ck2 − λ1 − λ3) C3.

As an illustration, let λ1 = 1, λ3 = 2, µ = 1, and c = 2.1. Then k1 = −0.915174,
k2 = −0.05426, C2 = 0.00184602, C3 = −0.966323. Hence

Φ(u) = 1− 0.000537651 exp{−0.915174u} − 0.939741 exp{−0.05426u},
Φ1(u) = 1 + 0.00184602 exp{−0.915174u} − 0.966323 exp{−0.05426u}.

Example 3.2. Suppose that µX 6= µY . We differentiate (3.6) again to get

cΦ
(3)
1 (u) = (λ1 + λ3 − c

µX

− c

µY

)Φ
(2)
1 (u) + (

λ1 + λ3

µY

+
λ3

µX

− c

µXµY

)Φ
(1)
1 (u)

+
λ3

µXµY

Φ1(u)− λ3

µY

Φ(1)(u)− λ3

µXµY

Φ(u). (3.13)

This together with (3.5) form a system of linear differential equations with boundary
conditions





cΦ(1)(0) = −λ3Φ1(0) + (λ1 + λ3)Φ(0),

cΦ
(1)
1 (0) = (λ1 + λ3)Φ1(0),

cΦ
(2)
1 (0) = (λ1 + λ3 − c

µY
)Φ

(1)
1 (0) + (λ1+λ3

µY
− λ1

µX
)Φ1(0)− λ3

µY
Φ(0),

Φ(∞) = 1,
Φ1(∞) = 1.

The characteristic equation for this differential system is thus

z4 + b3z
3 + b2z

2 + b1z + b0 = 0,
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where

b3 =
2

µX

+
1

µY

− 2(λ1 + λ3)

c
,

b2 =
(λ1 + λ3)

2

c2
+

1

µ2
X

+
2

µXµY

− 2(λ1 + λ3)

cµY

− 2(λ1 + 2λ3)

cµX

,

b1 =
2λ3(λ1 + λ3)

c2µX

+
λ2

1 + 2λ1λ3

c2µY

+
1

µ2
XµY

− 2λ3

cµ2
X

− 2(λ1 + 2λ3)

cµXµY

,

b0 =
2λ1λ3

c2µXµY

+
λ2

3

c2µ2
X

− 2λ3

cµ2
XµY

,

from which Φ(u) and Φ1(u) can be solved.

4. Dependent Poisson-Erlang Case

This section turns to the correlated case with K1(t) and K3(t) being Poisson and K2(t)
being Erlang(2). As before the parameters associated with Ki are denoted by λi. From
(1.1) and (1.2), it is easy to see that the surplus process (1.3) is distributed the same
way as

S ′(t) = u + ct−
K13(t)∑

i=1

X ′
i −

K2(t)∑

i=1

Y ′
i ,

where K13(t) = K1(t) + K3(t). Also we have

X ′
i = XiI(ηi = 0) + YiI(ηi = 1) and Y ′

i = Xi + Yi,

where {ηi, i = 1, 2, · · ·} are binary random variables having probability function

P(ηi = 0) =
λ1

λ1 + λ3

, and P(ηi = 1) =
λ3

λ1 + λ3

.

Note that {X ′
i, i = 1, 2, · · ·}, {Y ′

i , i = 1, 2, · · ·} and {ηi, i = 1, 2, · · ·} are independent
random variables. Denote the distribution functions of X ′

i and Y ′
i by FX′ and FY ′ ,

where

FX′(x) =
λ1

λ1 + λ3

FX(x) +
λ3

λ1 + λ3

FY (x) and FY ′(x) = FX ∗ FY (x).

Thus, in this setup, the risk process with two correlated classes of business can be
converted back to a risk process with two independent claim number processes.

Suppose that FX(x) and FY (x) are exponentially distributed with the same mean µ.
Then FX′(x) is an exponential distribution with mean µ and FY ′(x) follows an Erlang
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distribution with mean 2µ. Parallel to (3.3) and (3.5), we obtain

cΦ(1)(u) = −λ2Φ1(u)− (λ1 + λ3)
∫ u

0
Φ(u− x)

1

µ
exp

{−x

µ

}
dx + λΦ(u),

cΦ(2)(u) = (λ− c

µ
)Φ(1)(u) +

λ2

µ
Φ(u)− λ2Φ

(1)
1 (u)− λ2

µ
Φ1(u), (4.1)

where λ = λ1 + λ2 + λ3. Similarly, in accordance with (3.4), (3.6), and (3.13), we have

cΦ
(1)
1 (u) = −

∫ u

0
Φ(u− x)

(
λ2x

µ2
+

λ1 + λ3

µ

)
exp

{−x

µ

}
dx + λΦ1(u),

cΦ
(2)
1 (u) = (λ− c

µ
)Φ

(1)
1 (u) +

λ2

µ
Φ1(u)− λ2

µ2

∫ u

0
Φ(x) exp

{−(u− x)

µ

}
dx,

cΦ
(3)
1 (u) = (λ− c

µ
)Φ

(2)
1 (u) +

λ2

µ
Φ

(1)
1 (u) +

λ2

µ3

∫ u

0
Φ(x) exp

{−(u− x)

µ

}
dx− λ2

µ2
Φ(u)

= (λ− 2c

µ
)Φ

(2)
1 (u) + (

λ + λ2

µ
− c

µ2
)Φ

(1)
1 (u) +

λ2

µ2
(Φ1(u)− Φ(u)). (4.2)

Hence (4.1) and (4.2) form a linear differential system with boundary conditions




cΦ(1)(0) = −λ2Φ1(0) + λΦ(0),

cΦ
(1)
1 (0) = λΦ1(0),

cΦ
(2)
1 (0) = (λ− c

µ
)Φ

(1)
1 (0) + λ2

µ
Φ1(0),

Φ(∞) = 1,
Φ1(∞) = 1.

(4.3)

Equations (4.1) and (4.2) yield

c2µ2Φ
(5)
1 (u) + cµ(3c− 2λµ)Φ

(4)
1 (u) +

(
(λµ− c)(λµ− 3c)− 2cµλ2

)
Φ

(3)
1 (u)

+
(
(λµ− c)(λ + λ2 − c

µ
)− 2cλ2

)
Φ

(2)
1 (u) + 2(λ− c

µ
)Φ

(1)
1 (u) = 0. (4.4)

Its characteristic equation

c2µ2z5 + cµ(3c− 2λµ)z4 +
(
(λµ− c)(λµ− 3c)− 2cµλ2

)
z3

+
(
(λµ− c)(λ + λ2 − c

µ
)− 2cλ2

)
z2 + 2(λ− c

µ
)z = 0

has five roots, namely, z1 = 0, z2 = −µ−1, z3 = (cµ)−1(λµ− c),

z4 =
1

2cµ

(
(λµ− c− (8cµλ2 + (c− λµ)2)

1
2

)
,

z5 =
1

2cµ

(
(λµ− c + (8cµλ2 + (c− λµ)2)

1
2

)
.
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The positive relative security loading condition, c > λµ, implies that only z5 is positive.
Therefore the general solution of (4.4) is

Φ1(u) = C1 + C2 exp{z2}+ C3 exp{z3u}+ C4 exp{z4u}. (4.5)

Using (4.1) and (4.5), we get

Φ(u) = C1 + C2q(x2) exp{z2u}+ C3q(z3) exp{z3u}+ C4q(z4) exp{z4u},
where

q(z) = 1 +
µ

λ2

(λ + λ2 − c

µ
)z +

µ2

λ2

(λ− 2c

µ
)z2 − cµ2

λ2

z3.

From the boundary conditions (4.3), we immediately get C1 = 1 and the remaining
coefficients can be computed by the following equations

λ = (cz2 − λ)C2 + (cz3 − λ)C3 + (cz4 − λ)C4,

λ2

µ
= (cz2

2 − λ− λ2 − c

µ
)C2 + (cz2

3 − λ− λ2 − c

µ
)C3 + (cz2

4 − λ− λ2 − c

µ
)C4,

λ1 + λ3 = (cz2 − λ + λ2)q(z2)C2 + (cz3 − λ + λ2)q(z3)C3 + (cz4 − λ + λ2)q(z4)C4.

Example 4.1. Let λ1 +λ3 = 3, λ2 = 1, µ = 1, c = 6, and the relative security loading,
ρ = 0.5, then the survival probabilities are

Φ(u) = 1− 0.0196911 exp{−0.767592u} − 0.596063 exp{−0.333333u},
Φ1(u) = 1 + 0.0635439 exp{−u}+ 0.0847262 exp{−0.767592u}

− 0.894093 exp{−0.333333u}.

5. Asymptotic Result For General Claim Sizes

In the previous section we have shown how to get the survival (ruin) probabilities
for the dependent Poisson-Erlang case when X and Y are exponential. Here we are
interested in studying the asymptotic behaviour of the ruin probability when dealing
with general claim size distributions. The notations used in Section 4 are still valid in
the present situation. Furthermore the means of X ′ and Y ′ are denoted by µX′ and
µY ′ .

Integrating (3.3) both sides from 0 to u, we have

Φ(u) = Φ(0)− λ2

c

∫ u

0
Φ1(s)ds+

λ

c

∫ u

0
Φ(s)ds+

λ1 + λ3

c

∫ u

0

∫ s

0
Φ(s−x)d(1−FX′(x))ds.

Since integration by parts yields
∫ u

0

∫ s

0
Φ(s− x)d(1− FX′(x))ds =

∫ u

0
Φ(u− x)(1− FX′(x))dx−

∫ u

0
Φ(x)dx,

11



Φ(u) can be rewritten as

Φ(u) = Φ(0) +
λ2

c

∫ u

0
(Φ(x)− Φ1(x))dx +

λ1 + λ3

c

∫ u

0
Φ(u− x)(1− FX′(x))dx. (5.1)

By the monotone convergence theorem, it follows from (5.1), as u →∞, that

Φ(∞) = Φ(0) +
λ2

c

∫ ∞

0
(Φ(x)− Φ1(x))dx +

(λ1 + λ3)µX′

c
Φ(∞).

Denote the ruin probabilities by Ψ(u) = 1−Φ(u) and Ψ1(u) = 1−Φ1(u). Noting that
Φ(∞) = 1, we obtain

Ψ(0) =
(λ1 + λ3)µX′

c
+

λ2

c

∫ ∞

0
(Ψ1(x)−Ψ(x))dx. (5.2)

Using (5.1) and (5.2), the ruin probability takes the form

Ψ(u) =
λ1 + λ3

c

(∫ ∞

u
(1− FX′(x))dx +

∫ u

0
Ψ(u− x)(1− FX′(x))dx

)

+
λ2

c

∫ ∞

u
(Ψ1(x)−Ψ(x))dx. (5.3)

Parallel to (5.2) and (5.3), one can use (3.4) to derive

Ψ1(0) =
(λ1 + λ3)µX′

c
+

λ2

c

(
µY ′ −

∫ ∞

0
(Ψ1(x)−Ψ(x))dx

)
, (5.4)

and

Ψ1(u) =
λ1 + λ3

c

(∫ ∞

u
(1− FX′(x))dx +

∫ u

0
Ψ1(u− x)(1− FX′(x))dx

)

+
λ2

c

( ∫ ∞

u
(1− FY ′(x))dx +

∫ u

0
Ψ(u− x)(1− FY ′(x))dx

−
∫ ∞

u
(Ψ1(x)−Ψ(x))dx

)
. (5.5)

From (5.2) and (5.4), it is easy to see that

Ψ(0) + Ψ1(0) =
λ2µY ′ + 2(λ1 + λ3)µX′

c
.

Combining (5.3) and (5.5), we get
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1

2
(Ψ(u) + Ψ1(u))

=
1

2

( ∫ ∞

u

(
2(λ1 + λ3)

c
(1− FX′(x)) +

λ2

c
(1− FY ′(x))

)
dx

+
∫ u

0

(
λ1 + λ3

c
(1− FX′(x)) +

λ2

c
(1− FY ′(x))

)
Ψ(u− x)dx

+
∫ u

0

λ1 + λ3

c
(1− FX′(x))Ψ1(u− x)dx

)

≤ 1

2

∫ ∞

u

(
2(λ1 + λ3)

c
(1− FX′(x)) +

λ2

c
(1− FY ′(x))

)
dx

+
1

4

∫ u

0

(
2(λ1 + λ3)

c
(1− FX′(x)) +

λ2

c
(1− FY ′(x))

)(
Ψ(u− x) + Ψ1(u− x)

)
dx.

By the net profit condition,

1

2

∫ ∞

0

(
2(λ1 + λ3)

c
(1− FX′(x)) +

λ2

c
(1− FY ′(x))

)
dx < 1.

Hence we can obtain an upper bound for Ψ(u)+Ψ1(u) by the renewal theorem. Define

h1(r) =
∫ ∞

0
exp{rx}dFX′(x)− 1, and h2(r) =

∫ ∞

0
exp{rx}dFY ′(x)− 1.

Assume that there exist r1 > 0 and r2 > 0 such that h1(r) ↑ ∞ when r ↑ r1 and
h2(r) ↑ ∞ when r ↑ r2. Then there exists a R > 0 such that

1

2

∫ ∞

0
exp{Rx}

(
2(λ1 + λ3)

c
(1− FX′(x)) +

λ2

c
(1− FY ′(x))

)
dx = 1.

In other words, R is the positive solution of the equation

1

2
(2(λ1 + λ3)h1(r) + λ2h2(r)) = cr.

where ρ is again the relative security loading. Therefore we have the following renewal
type of inequality

1

2
exp{Rx}(Ψ(u) + Ψ1(u))

≤ 1

2
exp{Ru}

∫ ∞

u

(
2(λ1 + λ3)

c
(1− FX′(x)) +

λ2

c
(1− FY ′(x))

)
dx

+
1

4

∫ u

0
exp{Rx}

(
2(λ1 + λ3)

c
(1− FX′(x)) +

λ2

c
(1− FY ′(x))

)
·

exp{R(u− x)} (Ψ(u− x) + Ψ1(u− x)) dx. (5.6)
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Denote

H(x) =
1

2

(
2(λ1 + λ3)

c
(1− FX′(x)) +

λ2

c
(1− FY ′(x))

)
.

It can be shown by direct integration that

ρ

1 + ρ

c

(λ1 + λ3)h
(1)
1 (R) + 2−1λ2h

(1)
2 (R)− c

=

∫∞
0 exp{Ru} ∫∞

u H(x)dxdu∫∞
0 x exp{Rx}H(x)

where h
(1)
1 and h

(1)
2 are the first derivatives of h1 and h2. Then an application of the

renewal theorem to (5.6) gives

lim
u→∞ exp{Ru}

(
Ψ(u) + Ψ1(u)

2

)
≤ ρ

1 + ρ

c

(λ1 + λ3)h
(1)
1 (R) + 2−1λ2h

(1)
2 (R)− c

.

Furthermore it is clear that Ψ(u) ≤ Ψ1(u).
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