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ABSTRACT 

 
We employ the Cox process (or a doubly stochastic Poisson process) to model the claim 
arrival process for common events.  The shot noise process is used for the claim intensity 
function within the Cox process.  The Cox process with shot noise intensity is examined by 
piecewise deterministic Markov processes theory.  Since the claim intensity is not observable 
we employ state estimation on the basis of the number of claims i.e. we obtain the Kalman-
Bucy filter.  In order to use the Kalman-Bucy filter, the claim arrival process (i.e. the Cox 
process) and the claim intensity (i.e. the shot noise process) should be transformed and 
approximated to two-dimensional Gaussian process.  Based on this filter, we derive reserving 
formulae at any time for common events with and without stop-loss reinsurance contract.  We 
also examine the effect on reserves caused by change in the values of the security loading and 
the retention limit. 
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1.  INTRODUCTION 
 
Let ℵi  be the claim amount, which are assumed to be independent and identically distributed 
with distribution function H u u( ) ( ) > 0 .  The total loss up to time t, tC  is 
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                                                         (1.1) 

where N t  is the number of claims up to time t.  The risk premium (or net premium) at present 
time 0, assuming that interest rates to be constant, is 

( )tE C                                                             (1.2) 
and the gross premium (or risk-loaded premium) at time 0 is 

(1 ) ( )tE Cθ+                                                        (1.3) 
where  ( 0)θ >  is the relative security loading. 
 
The total loss excess over b, which is a retention limit, up to time t is 

( )tC b
+

−                                                          (1.4) 

where ( ) ( ),  0t tC b Max C b
+

− = − .  The stop-loss reinsurance premium at present time 0, 
assuming that interest rates to be constant, is 



( ){ }+− bCE t                                                        (1.5) 
and the gross reinsurance premium (or risk-loaded premium) at time 0 is 

( ){ }(1 ) tE C bξ
+

+ −                                                 (1.6) 

where  ( 0)ξ >  is the relative security loading for reinsurance contract. 
 
In insurance modelling, the Poisson process has been used as a claim arrival process.  
Extensive discussion of the Poisson process, from both applied and theoretical viewpoints, 
can be found in Cramér (1930), Cox & Lewis (1966), Bühlmann (1970), Cinlar (1975), and 
Medhi (1982).  However, there has been a significant volume of literature that questions the 
appropriateness of the Poisson process in insurance modelling (Seal, 1983 and Beard et al., 
1984) and more specifically for rainfall modelling (Smith, 1980 and Cox & Isham, 1986). 
 
For some events such as catastrophes, the assumption that resulting claims occur in terms of 
the Poisson process is inadequate as it has deterministic intensity.  Therefore an alternative 
point process needs to be used to generate the claim arrival process.  We will employ a 
doubly stochastic Poisson process, or the Cox process (Cox, 1955, Bartlett, 1963, Serfozo, 
1972, Grandell, 1976, 1991, Bremaud, 1981 and Lando, 1994).  
 
The shot noise process can be used as the parameter of doubly stochastic Poisson process to 
measure the number of claims (Cox & Isham, 1980,1986 and Klüppelberg & Mikosch, 1995).  
As time passes, the shot noise process decreases as more and more claims are settled.  This 
decrease continues until another event occurs which will result in a positive jump in the shot 
noise process.  The shot noise process is particularly useful in the claim arrival process as it 
measures the frequency, magnitude and time period needed to determine the effect of the 
common events.  Therefore we will use it as a claim intensity function to generate doubly 
stochastic Poisson process.  We will adopt the shot noise process used by Cox & Isham 
(1980): 
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λ0  initial value of λ  
yi  jump size of primary event i (i.e. magnitude of contribution of primary event i to 

intensity) where E yi( ) < ∞  
si  time at which primary event i occurs where s ti < < ∞ 
δ  exponential decay which never reaches zero 
ρ  the rate of primary event arrival. 
 
The piecewise deterministic Markov processes theory developed by Davis (1984) is a 
powerful mathematical tool for examining non-diffusion models.  We present definitions and 
important properties of the Cox and shot noise processes with the aid of piecewise 
deterministic processes theory (Dassios, 1987 and Dassios & Embrechts, 1989).  This theory 
is used to calculate the mean of the number of claims and the mean of the claim intensity.  
These are important factors in the reserving and pricing of any insurance products. 
  
Since the claim intensity is unobservable, the state estimation is employed to derive the 
distribution of the claim intensity.  One of the methods used is the Kalman-Bucy filter.  
Based on this filter, we derive reserving formulae at any time.   
 
 
2.  DOUBLY STOCHASTIC POISSON PROCESS AND SHOT NOISE PROCESS 
 
Under doubly stochastic Poisson process, or the Cox process, the claim intensity function is 
assumed to be stochastic.  The Cox process is more appropriately used as a claim arrival 
process as some events should be based on a specific stochastic process.  
 
The doubly stochastic Poisson process provides flexibility by letting the intensity not only 
depend on time but also allowing it to be a stochastic process.  Therefore the doubly 
stochastic Poisson process can be viewed as a two step randomisation procedure.  A process 
λ t  is used to generate another process N t  by acting as its intensity.  That is, N t  is a Poisson 
process conditional on λ t  which itself is a stochastic process (if λ t  is deterministic then N t  is 
a Poisson process).   
 
Many alternative definitions of a doubly stochastic Poisson process can be given.  We will 
offer the one adopted by Bremaud (1981). 
 
Definition  2.1  Let ( , , )Ω F P  be a probability space with information structure F.  The 
information structure F is the filtration, i.e. [ ]{ }, 0,tF t T= ℑ ∈ .  F consists of σ-algebra's tℑ  

on Ω , for any point t in the time interval [0, T], representing the information available at 
time t.  Let N t  be a point process adapted to a history N

t tℑ ⊃ ℑ , where N
tℑ  is the σ-algebra 

generated by the process { };  0tN N t= ≥  up to time t.  Let tλ  be a non- negative process and 

suppose that tλ  is tℑ -measurable, t ≥ 0 and that 
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then N t  is called a tℑ -doubly stochastic Poisson process with intensity tλ .   
• 

 
Equation (2.1) gives us 
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Now let us look at the shot noise process described in the previous section.  The shot noise 
process can never reach 0, where the decay is exponential δ  which is a constant.  The 
frequency of jump arrivals follows a Poisson distribution with ρ  and we will have generally 
distributed jump sizes with distribution function )(yG  )0( >y .  If the jump size distribution 

is exponential, its density is yeyg αα −=)( , 0>y , 0>α . 
 
If tλ  is a Markov process, the generator of the process ( tλ , t) acting on a function f t( , )λ  
belonging to its domain is given by 
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It is sufficient that f t( , )λ  is differentiable w.r.t. λ , t for all λ , t and that 
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Let us derive the mean and variance of λ t  assuming that λ0  is given. 
 
Theorem  2.2  Let λ t  be a shot noise process.  Assuming that we know λ0 , 
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Proof 
Set f ( )λ λ=  in (2.3), then 
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Differentiate w.r.t  t  
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Solving the differential equation 
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• 
 
Lemma  2.3  Let λ t  be as defined.  Assuming that we know λ0 , 
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Proof 
Set f ( )λ λ= 2  in (2.3) then 
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Solving the differential equation 
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• 
 
Corollary  2.4  Let λ t  be as defined.  Assuming that we know λ0 , 
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Therefore (2.6) follows immediately from (2.5) and (2.4). 
• 

 
Similarly, the asymptotic (stationary) mean and variance can be obtained from theorem 2.2 
and corollary 2.4. 
 
Corollary  2.5  Let N t , λ t  be as defined.  Furthermore if λ t  is stationary, that is λ0  has the 
stationary distribution, then 
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Proof 
Let t → ∞  in (2.4) and the corollary follows immediately. 

• 
 
Corollary  2.6  Let λ t  be as defined.  If λ t  is stationary then 
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Proof 
Let t → ∞  in (2.6) and the corollary follows immediately. 

• 
 
It will be of interest to examine to derive reserving formulae for common events based on the 
asymptotic (stationary) distribution of the claim intensity (Dassios, 1987, Dassios & Jang, 
1998a, 1998b and Jang, 1998, 2000). 
 
 
3.  TRANSFORMATIONS AND APPROXIMATIONS 
 
We have obtained E t( )λ  when λ t  is stationary.  Therefore the mean of the number of claims 
in a fixed time interval, E Nt( ) , can be easily found;  

E N tt( ) =
µ ρ
δ
1 .                                                      (3.1) 
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and, when λ t  is stationary, 
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where ∫=
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λ  (the aggregated process). 

 
The shot noise process tλ  has been taken to be unobservable.  However, in practical 
situations, we observe claims and we want to filter the ‘noise’ out and ‘estimate’ the value of 



λ t  at any time.  This is useful for reserving (and pricing) of insurance contract as it helps us 
estimate the distribution of λ0  from past data.  In order to find an estimate of λ t  based on the 
observations { }tsN s ≤≤0;  we assume ρ  is large and start by transforming the processes λ t , 
N t  and Ct  using   
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We start with a proposition used by Ethier & Kurtz (1985).  
 
Proposition  3.1  For n = 1 2, , ,L  let { }ℑt
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Let us now define V
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Lemma  3.2  Let Vt
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in law where Bt
( )1 , Bt

( )2  and Bt
( )3  are three independent standard Brownian motions and 

2

00

2
2 )()( 








−= ∫∫

∞∞

uudHudHuk  (the variance of claim size). 

 
Proof 
The generator of the process Vt

( )ρ  acting on a function f v( ) is given by 
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Hence from proposition 3.1, 
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in law where Bt
( )1 , Bt

( )2  and Bt
( )3  are three independent standard Brownian motions.  Therefore 

(3.7) follows immediately from (3.12), (3.13), (3.14) and (3.15). 
• 

 
Let us now prove the main result of this section. 
 
Theorem  3.3  Let Zt

( )ρ , Wt
( )ρ  and U t

( )ρ  be as defined and ρ → ∞.  Then Zt
( )ρ , Wt

( )ρ  and U t
( )ρ  

converge in law to Z t , Wt  and Ut  where 
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where Bt

( )1 , Bt
( )2 , Bt

( )3  are three independent standard Brownian motions and 
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 (also a standard Brownian motion). 

 
Proof 
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( )ρ  can be written as 
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Therefore by continuous mapping theorem (see Billingsley (1968)) and lemma 3.2, (3.19), 
(3.20) and (3.21) converge to  
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From (3.23) and (3.24), we have  
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Since the sum of two independent standard Brownian motions is also a standard Brownian 
motion this completes the proof of the theorem. 

• 
 
Theorem 3.3 has proved that Z t , Wt  and Ut  are normally distributed.  As a result of this, we 

define λ
~

t , N t

~
 and Ct

~
 as Gaussian approximations of λ t , N t  and Ct ; 
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4.  THE KALMAN-BUCY FILTER AND THE DISTRIBUTION OF tZ  
 
We will derive the conditional distribution of Z t , given { }tsWs ≤≤0; , by the Kalman-Bucy 
filter where 

dZ Z dt dBt t t= − +δ δ2 1( )                                                 (4.1) 
and 

dW Z dt dBt t t= +
2 1

2

2µ
µ

( ) .                                                 (4.2) 

 
Let us begin with a proposition used by Øksendal (1992) (see theorem 6.10 in chapter IV). 
 



Proposition  4.1  The solution ( )tsWZEZ stt ≤≤=
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0;  of the 1-dimensional linear filtering 
problem 

dZ F t Z dt C t dB F t C tt t t= + ∈ℜ( ) ( ) ; ( ), ( )( )1                                       (4.3)  
dW G t Z dt D t dB G t D tt t t= + ∈ℜ( ) ( ) ; ( ), ( )( )2                                      (4.4) 

satisfies the stochastic differential equation 

d Z F t
G t S t

D t
Z dt

G t S t
D t

dW Z E Zt t t

∧ ∧ ∧

= − + ={ ( )
( ) ( )

( )
}

( ) ( )
( )

; ( )
2

2 2 0 0                        (4.5)  

where 


















 −=

∧ 2

)( tt ZZEtS  satisfies the Riccati equation 

( ){ }[ ] )()0(  ),()(
)(
)(

)()(2 0
2

00
22

2

2

ZVarZEZEStCtS
tD
tG

tStF
dt
dS

=−=+−= .         (4.6) 
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Theorem  4.2  Let ( , )Z Wt t  be a two-dimensional normal process satisfying the system of 
equations of (4.1) and (4.2).  Then the estimate of Z t  based on the observed { }tsWs ≤≤0;  is 
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Proof 
Let S a( )0 2= .  Then from (4.6), the Riccati equation has the solution  
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Therefore from (4.5), (4.10) offers the solution for Z t

∧
 of the form 
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We have obtained ( ) tst ZtsWZE
∧

=≤≤0; .  Now let us try to find the distribution of Z t . 
 

Corollary 4.3  Let Z t , Wt , Z t

∧
 and S t( ) be as defined.  Then 

( )






 +−=≤≤

∧
− )(

2
1

exp0; 2 tSZtsWeE ts
Z t γγγ .                                (4.11) 

 
Proof 
From theorem 4.2 and the fact that ( ) )(0; tStsWZVar st =≤≤  and Z t  is normally distributed, 
given W s ts;0 ≤ ≤ , the result follows immediately. 

• 
 
 
5.  RESERVING BASED ON THE KALMAN-BUCY FILTER  
 
Let TR  denote the free reserve (or surplus) of the insurer at time T.  We assume that 
premiums are received continuously at a constant rate  ( 0)κ >  and let tR  denote the reserve 
required on hand at time t.  Then 
  

( ) ( ),    0T t T tR R T t C C t Tκ= + − − − ≤ ≤                                   (5.1) 

where T tC C− =
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T tN N

i
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The surplus TR  must be non-negative if the insurer is able to meet his liabilities.  Therefore it 
is very important that the probability that TR  becomes negative be small (ε  say), i.e. 

 Pr( 0)TR ε< =                                                            (5.2) 
or 

[ ]Pr   ( )T t tC C R T tκ ε− > + − = .                                          (5.3) 
 

Since we have obtained Ct

~

 which is Gaussian approximation of Ct , we will use this 
approximation, then 
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Set 
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( ) (1 ) ( )T tT t E C Cκ θ− = + −  and 5%ε = , then 
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1.645 ( ) ( )T t T ttR Var C C E C Cθ= − − − .                                      (5.5) 
 

Considering the information available (i.e. the observed claims) up to time t, 
~ ~ ~ ~ ~ ~
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   

.               (5.6) 

 
Now let us examine how the above equation would be altered if the direct insurer purchase a 
stop-loss reinsurance contract that covers the total loss excess over b, a retention limit. Let 

h
TR  denote the free reserve of the insurer after purchasing reinsurance contract at time T.  We 

assume that reinsurance premiums are paid continuously at a constant rate  ( 0)hκ >  and let 
h
tR  denote the reserve required on hand at time t.  Then 
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Similar to the equation (5.4), set { }~ ~
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If ξ θ= , the equation (5.8) becomes 
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From (5.6) and (5.8), we can see that mean and variance of 
~ ~

T tC C−  need to be determined to 

obtain the reserve required at any time t.  Therefore set C m t Ut t
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From (5.10), we can also see that mean and variance of U UT t−  need to be determined to 
obtain the above expectation.  
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Proof 
From (3.18) 
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Take expectation in (5.14) then (5.11) follows immediately. 
 

( ) ( ){ } ( ){ }22 0;0;0; tsWUUEtsWUUEtsWUUVar stTstTstT ≤≤−−≤≤−=≤≤− . 
(5.15)     

Therefore (5.12) follows immediately from (5.14) and (5.11). 
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As results of lemma 5.1, we can easily obtain 
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Therefore we can obtain the reserve required on hand at time t by 

1.645tR θ= ∑ − Ω .                                                      (5.18) 
 
Now let us find the stop-loss reinsurance premium at time t based on the observations 
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;0sN s t≤ ≤  to obtain the reserve required on hand at time t after purchasing a stop-loss 

reinsurance contract. 
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Set y
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Θ

 in (5.20) and put 
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 then (5.19) follows immediately. 
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Let us also find the second moment of 
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I I
T tC C−  to obtain the variance of 
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T tC C− . 
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( )2b L+ Φ −                                                                                                                           (5.21) 
 

where 
B

A
− Γ

=
Θ

, 
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2
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2
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− −
=  and Φ( )⋅  is the cumulative normal distribution 

function. 
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where 
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µ ρ
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Set y
υ − Γ

=
Θ

 in (5.22) and put 
B

A
− Γ

=
Θ

, 
K

L
− Γ

=
Θ

 then (5.21) follows immediately. 

• 
 

As the result of corollary 5.3, the variance of 
~ ~

I I
T tC C− , denoted by I∑ , is 
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Therefore the reserve required on hand at time t, h

tR , after purchasing a stop-loss reinsurance 
contract can be obtained by 

1.645h I h
tR θ ξ= ∑ − Ω + Ω                                             (5.23) 

and if ξ θ= , it becomes 

1.645h I I
tR θ= ∑ − Ω                                                 (5.24) 

where 
~ ~ ~

;0I I I
sT tE C C N s t

 
Ω = − ≤ ≤ 

 
. 

 
Now let us illustrate the calculation of reserves using the formulae derived above. 
 
Example 5.1 
 



The numerical values used to simulate the claim arrival process are δ = 0 5. , λ0 200= .   We 
will assume that ρ = 100 i.e. the interarrival time between jumps is exponential with mean 
0.01 and that the jump size follows exponential with mean 1, i.e. y Exponential  ~ ( )1 .  S-
Plus was used to generate random values and to simulate the claim arrival process.   
 

The numerical values used to calculate (4.7) and (5.18) are Z
∧

=0 0, S ( )0 0= , 1 1µ = , 2 2µ = , 

1 1m = , 2 3m = , 1t = , 2T =  and 0, 0.1, 0.2, 0.2129θ = .  By computing (4.7) and (5.18) 

using MAPLE and S-Plus, where Z
∧

=1 0 5579152. , the calculation of the reserves at each 
security loading θ  are shown in Table 5.1. 
                             
                                Table 5.1 

Security loading θ  Reserve tR  at 5%ε =  
0.0 43.903 
0.1 23.282 
0.2   2.661 

      0.2129                     0 
 
Example 5.2 
 
We will now examine the effect on reserves caused by purchasing a stop-loss reinsurance 
contract.  The reserves at the retention limit 0, 270, 280, b = ∞  are shown in Table 5.2 
( 0.1θ ξ= = ) and in Table 5.3 ( 0.1θ =  and 0.2ξ = ). 
 
        Table 5.2                               Table 5.3    

Retention  level  b Reserve h
tR  at 5%ε =   Retention  level  b Reserve h

tR  at 5%ε =  
0                 0  0 20.621 

270   8.874  270   8.889 
280 18.442  280 18.447 
∞  23.282  ∞  23.282 
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