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ABSTRACT

We employ the Cox process (or a doubly stochastic Poisson process) to model the clam
ariva process for common events. The shot noise process is used for the clam intengty
function within the Cox process. The Cox process with shot noise intendty is examined by
piecewise deterministic Markov processes theory. Since the clam intendty is not observable
we employ date estimation on the bass of the number of cams i.e. we obtain the Kaman
Bucy filter. In order to use the KamanBucy filter, the clam arivad process (i.e. the Cox
process) and the clam intendgty (i.e. the shot noise process) should be transformed and
approximated to two-dimensond Gaussan process. Based on this filter, we derive reserving
formulae a any time for common events with and without stop-loss reinsurance contract. We
adso examine the effect on reserves caused by change in the vaues of the security loading and
the retention limit.
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1. INTRODUCTION

Let A be the daim amount, which are assumed to be independent and identically distributed
with digribution function H(u) (u> 0). Thetotd lossup totimet, C, is

&
Ct =a Ai (11)
i=1
where N, is the number of cdlams up to time t. The risk premium (or net premium) at present
time 0, assuming that interest rates to be condant, is

E(C,) (1.2)
and the gross premium (or risk-loaded premium) at time O is
1+q)EC,) (13

where g (>0) isthe relative security loading.

Thetotal loss excess over b, which isaretention limit, up to timet is

(C.- b)’ (1.4)
where (C,- b)" =Max(C,- b, 0). The sop-loss reinsurance premium a present time 0,
assuming that interest rates to be congtant, is



E{(c. - b)'} (15)

and the gross reinsurance premium (or risk-loaded premium) at time O is

(1+x)E{(q- b)+} (L6)

where x (> 0) isthe rdative security loading for reinsurance contract.

In insurance moddling, the Poisson process has been used as a cdam ariva process.
Extendve discusson of the Poisson process, from both gpplied and theoreticd viewpoints,
can be found in Cramér (1930), Cox & Lewis (1966), Bihimann (1970), Cinlar (1975), and
Medhi (1982). However, there has been a dgnificant volume of literature that questions the
gppropriateness of the Poisson process in insurance modelling (Sedl, 1983 and Beard et al.,
1984) and more specificaly for rainfall moddling (Smith, 1980 and Cox & Isham, 1986).

For some events such as catastrophes, the assumption that resulting clams occur in terms of
the Poisson process is inadequate as it has determinidtic intensity. Therefore an dternative
point process needs to be used to generate the clam ariva process. We will employ a
doubly stochastic Poisson process, or the Cox process (Cox, 1955, Bartlett, 1963, Serfozo,
1972, Granddll, 1976, 1991, Bremaud, 1981 and Lando, 1994).

The shot noise process can be used as the parameter of doubly stochastic Poisson process to
measure the number of clams (Cox & Isham, 1980,1986 and Klippeberg & Mikosch, 1995).
As time passes, the shot noise process decreases as more and more clams are settled.  This
decrease continues until another event occurs which will result in a postive jump in the shot
noise process. The shot noise process is particulaly useful in the dam ariva process as it
measures the frequency, magnitude and time period needed to determine the effect of the
common events. Therefore we will use it as a cdam intengty function to generate doubly
stochastic Poisson process. We will adopt the shot noise process used by Cox & Isham
(1980):

| =1 ,eg%+8 ye!"?

ia

where
i primary event



| , initid vdueof |

y, jump Sze of primay event i (i.e. magnitude of contribution of primary event i to
intengity) where E(y,) <¥

time a which primary event i occurswhere s, <t <¥

exponentia decay which never reaches zero

the rate of primary event arrival.

= QO (n

The piecewise deterministic Markov processes theory developed by Davis (1984) is a
powerful mathematical tool for examining nontdiffuson modds. We present definitions and
important properties of the Cox and shot noise processes with the aid of piecewise
deterministic processes theory (Dassios, 1987 and Dassios & Embrechts, 1989). This theory
is used to cdcuae the mean of the number of cams and the mean of the clam intengty.
These are important factors in the reserving and pricing of any insurance products.

Since the cdam intendty is unobservable, the date edtimation is employed to derive the
digribution of the cam intendty. One of the methods used is the KamanBucy filter.
Based on thisfilter, we derive reserving formulae a any time.

2. DOUBLY STOCHASTIC POISSON PROCESS AND SHOT NOISE PROCESS

Under doubly stochastic Poisson process, or the Cox process, the dam intengty function is
assumed to be stochastic. The Cox process is more agppropriately used as a clam arrival
process as some events should be based on a specific stochastic process.

The doubly stochastic Poisson process provides flexibility by letting the intengty not only
depend on time but dso dlowing it to be a dochastic process. Therefore the doubly
stochagtic Poisson process can be viewed as a two step randomisation procedure. A process
| , is used to generate another process N, by acting as its intendty. That is, N, is a Poisson
process conditional on |, which itsdf is a stochagtic process (if |, is determinidtic then N, is
a Poisson process).

Many dternative definitions of a doubly stochastic Poisson process can be given. We will
offer the one adopted by Bremaud (1981).

Definition 2.1 Let (W,F,P) be a probability space with information structure F. The
information structure F is the filtration, i.e. F :{At t1 [O,T]} . F consists of s-algebra's A,
on W, for any point t in the time interval [0, T], representing the information available at
timet. Let N, be a point process adapted to a history A, E A" , where A isthe s-algebra
generated by the process N :{Nt; t3 O} up totimet. Let |, bea non- negative process and
suppose that | , is A, -measurable, t 3 0 and that

t
O ds<¥ almost surely (no explosions).
0

If for all O£t,£t,and ul A

E{ g (M) ‘A,Z} = exp? (ei” - 1)6 Sdsg (2.1)
) v b



then N, iscalled a A, -doubly stochastic Poisson process with intensity | , .

Equation (2.1) givesus
A sds$ Ok
e §J.0sT
— . — ty (%]
Pr{N, - N, =K ;t, EsEL,}= : 2.2)

Now let us look a the shot noise process described in the previous section. The shot noise

process can never reech 0, where the decay is exponentid d which is a condant. The
frequency of jump arivds follons a Poisson digribution with r  and we will have generdly

digributed jump szes with didribution function G(y) (y >0). If the jump Sze digribution
is exponentid, itsdengity is g(y) =ae™®, y>0,a >0.

If |, is a Markov process, the generator of the process (| ,, t) acting on a function f (I ,t)
belonging to its domain is given by

it i %
Af( t)=—-d —+r{Qf ( +y,t)dG(y)- f(I,t)}. (2.3)
1t 1 o
It is aufficent that f(l,t) is diffeentidble wrt. |, t for dl |, t and tha

¥

Of (I +y,t)dG(y)- (I ,t)|<¥ for f(l,t) tobelong to the domain of the generatorA.
0

L et us derive the mean and variance of | , assuming thet | , isgiven.

Theorem 2.2 Let | , bea shot noise process. Assuming that we know | ,

Bl 1) =4 - 2y (2.4)
d d

¥
where m = (ydG(y) .

0
Pr oof
Set f(1)=1 in(23), then

Al =-dl +mr

¥

where m = (ydG(y) .
From E(l t|I )-1e= E[téA f(l S)|I o} as]

E(J1o)=1,-doEl | 0)ds+t‘ rds.

0 0



Differentite w.r.t t
t
m—-dE( )+ gmrds.
0

Solving the differentiad equation

Bl 1) =T+ (- e

Lemma 2.3 Let |, beasdefined. Assuming that we know | ,
(I || ) 2d Zmr (I nér )(e—dt _ e—zdt)+(m

d2

¥
where m, = ¢y dG(y).
0

Proof
Set f(1)=12in(23) then
Al?=-2dl%+2mrl| +mr

¥
where m, = ¢y*dG(y).
0

t
From E( %)l 4)- 1 2= E[A 1Yl ,)ds]
0

”“)(1 )

t t t
EQ 2 o) =12 2d 6E( 2 o)ds+ 20mrEQ Jl o)ds+mr ds.
0 0 0

Differentictew.r.t t

dE( 21,
dt
Multiply by e** , then

ALl e el o) omr ]

Solving the differentid equation
2
el o) =™ + 2000, - My oy (B

Corollary 2.4 Let |, beasdefined. Assuming that we know | ,

mr
Var(l JI,o)= (- &) g

Var (I |l o) = E(13|l o) - {EQ |l o)}

= - 20E{1 2|1 o)+ 2mr EQ 1 o)+ myr .

”“)(1 ey,

(2.5)

(2.6)



Therefore (2.6) follows immediatdy from (2.5) and (2.4).

Similarly, the asymptotic (Stationary) mean and variance can be obtained from theorem 2.2
and corollary 2.4.

Corollary 25 Let N,, |, be as defined. Furthermoreif | , is stationary, that is | , hasthe
stationary distribution, then

()= % (27)

Pr oof
Lett® ¥ in(2.4) and the corollary followsimmediately.

Corollary 2.6 Let |, beasdefined. If |, isstationary then
r
Var(| I):%. 2.8)

Pr oof
Lett ® ¥ in(2.6) and the corallary follows immediately.

It will be of interest to examine to derive reserving formulae for common events based on the
asymptotic (ationary) digribution of the clam intendty (Dassos 1987, Dassos & Jang,
19983, 1998b and Jang, 1998, 2000).

3. TRANSFORMATIONSAND APPROXIMATIONS

We have obtained E(l ,) when |, is dationary. Therefore the mean of the number of claims
in afixed timeinterva, E(N, ), can be easily found;

E(N,) :”—élrt. 3.1)

We can dso obtain
t N .
Var(@ o ) =Var (1 ) = | - TR €M)+ e @2
0

o

and, when | | isdationary,

3 am. m 4 mag
Vi ds) =Var(X,)=C=t+—= - —= 3.3
ar(ods S) ar( t) gdz +d3e dS;r ( )

t
where X, = ) ,0s (the aggregated process).
0

The shot noise process |, has been teken to be unobservable.  However, in practica
gtuations, we observe clams and we want to filter the ‘noise out and ‘estimate’ the vaue of



|, a any time. This is useful for reserving (and pricing) of insurance contract as it helps us
edimate the didribution of | ;, from past data. In order to find an estimate of | , based on the
observations {N_;0 £ s£t} we assume r is large and start by transforming the processes |

N, and C, usng
lo-= r [mr
="t~ 74 ”1 © M
Z, — ie |, +Z, >d (3.4)
2d
N, - &t . mr myr
M=—"_d_ je N =——t+WO / 35
W mr e W 2d (39
2d
and
C-m=t rqr m,r
(N =t d ) /
U, m e C=m——t+U, >d (3.6)

¥
where m, = (udH (u) .
0

We gart with a proposition used by Ethier & Kurtz (1985).

Propostion 3.1 For n=12,®, let {A"} be a filtration and let M, be an {A'}-local
martingale with sample paths in D,,[0,¥) and M, (0)=0. Let A =((A/)) be symmetric
d” d matrix-valued processes such that A’ has sample pathsin D;[0,¥) and A (t) - A (S)
is nonnegative definitefor O£ s<t. Assume that

im Eesup|Aj(t) Al (t- )|u 0,

EteT G
U

lim Eesup|M ®- M, (t-)° u 0,
et£T u

andfori,j=12,® ,d,
ML ()M (1) - Al(1)

isan {A"} -local martingale.

If foreacht3 Oandi,j=12,®,d,

A1) ® c;(t)
in probability where C =((c;)) is a continuous, symmetric, d” d matrix-valued function,
defined on [0,¥), satisfying C(0) =0 and § (c; (t) - ¢;(9)x;x; 2 0, xT A’. Then
in law where X is a process with indepenl:j/lennltDqussian increments such that XX, - ¢; are
(local) martingales with respect to { A" }.



t
N, -  sds
Jt'rrlrt L(r): 0 :Nt- XI and Q(r):

frr 7 myr mr
2d A \Voa

My
where J, :é_ y, and M, isthetotal number of primary event’sjumpsup to timet.

i=1

C - mN,

mr
N

Let us now define V") =

Lemma 3.2 LetV,"”, L” and Q" beasdefinedand r ® ¥. Then
&/ g«/ZdBt‘l) y
L§” z é . [Zg? (3.7)
g t(r)H Kk Z—mlBt(S)H

in law where B“), B® and B® are three independent standard Brownian motions and

y .2

0
k, = c‘yde (u) - éc‘}‘dH(”)i (the variance of claim size).
0

0 g
Pr oof
The generator of the processV," acting on afunction f (V) isgiven by
¥
Af(v):-ﬂﬁﬂ{(‘)f(w Y )dG(y)- f(v)}. (3.8)
Va0 5

Set f (v) =V, Then
A Vv =2d.

The generator of the process (X, N,,C,l,,J,,t) ating on a function f(x,n,c,l,j,t) is
given by
A f(x,n,c,l ,j,t)—— +1 I dl E+r{§é)f(xncl +y,) +y,)dG(y)- f(x,n,cl,j,t)}
fit ix ll

+1 {i‘)f (x,n+Lc+ul,j,0dHu)- fxn,cl,j b}

0

(3.9
Clearly, for f(x,n,c,l,j,t) to belong to the domain of the generator A, it is essentid that
f(x,n,c,1,j,t) is dffeentidble wrt x, ¢, |, t for dl X, n, ¢, |, j, t and that

¥

Of (31 +y3dG(y)- f(xl ¥

¥

<¥ and |of (xc+uRdH(u) - f(xc) <¥ .
0

2 .2

0 - 0
Set f(xn,cl ,j,t):?‘;rxj and f (x,n,c,| ,j,t):?C ”}nj . Then
2 2
(0] 0
%-x;_@_ md ACCTMNZ 2]
ez T §Vzr 5 M



¥ ¥
where m = ¢pdH (u), m, = ¢p’dH (u) and k, =m, - 7.
0

0

t
f(X)- QA f(X,)ds is a matingde therefore Af is the solution to the 'martingde
0

problem’.  Hence (Vt“))z-Zdt, (Li))2 Zr:;lr_ds and ( )2 d(zﬁl—ds are

0
martingaes.

t
As can be seen from (3.3), Var(( ,ds) =K(t)r . Therefore, by Chebyschev's inequdity, as
0

re® ¥
t
. (&)*Var(§ ds) o
N : m =) K(t)r
Prijg Le gs- 2My >e_§£ o _GIROE o, (3.10)
flom 1 m, r’e r’e
and
t
2l om | g @V ey gy
i, o2 s ds- k, 2T > el o =2m 1 @0, (311)
i Com ¢ m |} r e e
Therefore from (3.10) and (3.11)
t
2d|—Sds ® 2m
o I m,
and
t
Fo 2 Legs @ K, 2M
o M T
in probability.
N S 6
Set f(x,n,c,|,j,t)=§” X:fgj mre= f(x,n,c,l,j,t)=§c ”? Mt o
mpr - mr ' mpr mpr '
evza ge \Vd g eV ge ™A g
f(x,n,c,l,j,t)= g mn? XI.Then
mpr ' '”hr '
eNad geNAd g
aEh xS - mlrtg o Ag%-mn%-mrtQ:OmdAg%-nyn%-xg_o
%VE%J’% EVE A% o % &g
(3.12)

Hence from proposition 3.1,



V) = ”l” b J2dB" (3.13)

Nt - d Sds 2
D=9 —rth(Z) (3.14)
/"Zk—d m,
and
=G MmNy 2Mpo (3.15)

t r
N7
in lav where B®, B® and B are three independent standard Brownian motions. Therefore
(3.7) follows immediately from (3.12), (3.13), (3.14) and (3.15).

Let us now prove the main result of this section.

Theorem 33 Let Z", W™ and U{"” be as defined and r ® ¥. Then ", W and U{"
convergeinlawto Z,, W and U, where

dz, = - dz,dt +~/2ddB® (3.16)
dwW = Zdt + /%da@ (3.17)

du, = Ik, 2M 456 = mz o / dB® 3.18
mdw + m B =mZat + mzmz B (3.18)

where B®, B®, BP® are three independent standard Brownian motions and
m |2Mge 4 i 2Mpe

2
B = m m (also a standard Brownian motion).
e +1) 2
“m,
Pr oof
Z, W and U " can bewritten as
m My ty -
70 =] = e :.zr)e n:l” det(-v gt~ MY :}rudu (3.19)
N2d V2d Vzd 0 \d
o - N- Aot Ne- deS - oo
Wi =—t_—2d = z +O——="0ds (3.20)
\l% V% 0 V 2
and
mr mr 0
Ut(r) _Ct m, = t_Ct mth +M§\I t (3_21)
mr mr g



Therefore by continuous mapping theorem (see Billingdey (1968)) and lemma 3.2, (3.19),
(3.20) and (3.21) convergeto

t
Z, =2 " +2d ¢p 2 dBY (3.22)

0
W, = (7. ds+ /2—"1852) (3.23)
0 m,
U, =mw + /k2 %‘1553). (3.24)

From (3.23) and (3.24), we have

/ 2m 3 — ’ ) ’ 2m €}
du, = mdw, +_[k,—dB mZdt +m_[—dB* + —dB, (3.25)
m, m, \k2 m,

Since the sum of two independent standard Brownian motions is dso a standard Brownian
motion this completes the proof of the theorem.

and

Theorem 33 has proved that Z,, W and U, are normdly didtributed. As a result of this, we

define| ¢, N and C, as Gaussan approximationsof | ., N, and C;
- - T
t:ﬂ o L P L g (3.26)
E
Ne=M e M e gy = N (3.27)
d 2d o
and
mJ /mzr : _Ci- m 3t
Ci = =m—t+U, 2q e U, — T (3.28)

4. THE KALMAN-BUCY FILTER AND THE DISTRIBUTION OF Z,

We will derive the conditiona distribution of Z,, given {W,;0£ s£t}, by the Kaman-Bucy
filter where

dz, = - dz,dt ++/2ddB® (4.1)

— 2 (2)
oW =7t + |2, 42
+ m 4.2

Let us begin with a proposition used by @ksenda (1992) (see theorem 6.10 in chapter 1V).

and



y
Proposition 4.1 The solution Z: = E(Zt[\NS;OE s£t) of the 1-dimensional linear filtering
problem

dz, = F(t)Zdt+C(t)dB®; F(t),C(t)T A (4.3)
dW, = G(t)Z,dt + D(t)dB®; G(t),D(t)T A (4.4)
satisfiesthe stochastic differential equati on
_ G (H)S(t), 5 . , SHS(H) 0
dZ F Zo=E 4.5
=R Zgag H 2 e =g 5 W (Z) (45)

\I U g 'I,J L ) . .
where S(t) = Ej gZ - Zi+ i:/) satisfies the Riccati equation
f 2}

%—ZF()S&) G (t;SZ(t)+C ®, S0 = Efz, - EZ,}?]=varz,).  9)

Theorem 4.2 Let (Z,,W) be a two-dimensional normal process satisfying the system of
equations of (4.1) and (4.2). Then the estimate of Z, based on the observed {WS;O £sE t} is

m,
2m ?exp{ ?Y (U)du S(s)dwy,  (4.7)

7 = E(zW,0£s£t)= exp{oY(s)ds}Zo+

h
where S0 ot
2m | a2dm gll a+2"”“+ﬁﬁ(m aeﬁﬁ(m —|
E\/démﬂa}“am Bl & 4w
S(s) = a+m+ﬁ\/_(m %ﬁmo ey
4.8)
and
2”1 3 a+2dml+\/ﬁﬂm &Zrn\ d(zm 42 gIJ
Y (s)=- Zﬁlla +2dml+\/mﬂ—+2) \/*\/—(m 5 1=J :
si- 1y
e FRE) E w5 |
4.9)
Proof

Let S(0) = a®. Thenfrom (4.6), the Riccati equation has the solution



Um " &m, ga_(ﬂ—z)g % a{)

_ m
S(t) = a+2d“+FﬂW+2) %ﬁﬂmo 2
(4.10)

0
Therefore from (4.5), (4.10) offers the solution for Z, of the form

U t V] t t
Z. =E(ZW,;0£ s£t) = exp{oY (90} Zo+ 2"% Sexp{ oY (U)du} S(S)dW,
0 0 S

where
e m, 2dn1 2m 2dm 5 ™ :
Y(s)=- & \/7\/7+ é m ﬂfo

2d 2 d o U
2n1|a+ ”1+/”f, n1+2 /( 2) o
de 2y 2dr’r1 m Sy 1.3./

2dm _ 2 T

fa%+ V', V +2 é " g b

Y
We have obtained E(Zt|VVS;0 £sE t) =Z:. Now let ustry to find the digtribution of Z,.

V]
Corollary 4.3 Let Z,, W, Z: and S(t) be asdefined. Then
N U .
Ele®M.0£s£t)=exp}- g zt+%928(t)§. (4.12)
[

Pr oof
From theorem 4.2 and the fact that Var (Zt OEs £t) =S(t) and Z, is normally distributed,
gven\W,;0 £ s £, the result follows immediately.

5. RESERVING BASED ON THE KALMAN-BUCY FILTER

Let R denote the free reserve (or surplus) of the insurer a time T. We assume that
premiums are received continuoudy a a condant rate k (>0) and let R denote the reserve
required on hand a timet. Then

Rr=R+k(T-1)-(C-C), O£t£T (5.1)
where C, - C, = NTaNtA

i=1



The surplus R- must be non-negative if the insurer is able to meet his lidbilities.  Therefore it
is very important thet the probability that R becomes negeative be small (e say), i.e.

Pr(R; <0)=e (5.2
or

Pr[C, - G > R+k(T-t)]=e. (5.3)

Snce we have obtained C~3t which is Gaussan agpproximation of C, we will use this
gpproximeation, then

P o - -
préCrCoECr-C) , RHK(T-D-EG- Cu_ (54)

e ~ - ~ ~
& \/Var (Cr-Cv) \/Var(CT- Ci) g

Set k(T - t) =(1+q)E(Cr - C:) and e =5%, then
R =1.645\Var (Cr - C.) - qE(Cr- Cy). (5.5)

Consdering the information available (i.e. the observed claims) up to timet,

R = 1.645\/Var E%T -G

N.:0£s£t2- qEX:- C.
5 &

N OESELY. (5.6)
(4]

Now let us examine how the above equation would be dtered if the direct insurer purchase a
stop-loss reinsurance contract that covers the total loss excess over b, a retention limit. Let

R' denote the free resarve of the insurer after purchasing reinsurance contract at time T. We
assume that reinsurance premiums are paid continuoudy a a condant rate k, (>0) and let
R" denote the reserve required on hand at timet. Then

R'=R'+K(T-t)- Kk (T-1t)-(C;-C/), OEtET (5.7)

1C,-C,, G- C £b

| I
WhereCT-Ct—% b, C.-C >b

4 .

Smilar to the equation (5.4), s&t k(T - t):(1+x)E§(CT- C)- b} g ad e=5%, then
9]

consdering the information available (i.e. the observed claims) up to timet,

R" :1.645\/Var§d - cft'

N.O£ s£t?
9

N.;0Es£L0-qER - C
g &

+xE§(c5T- G)- b]+

~ u
Ns;O£sEty, (5.8)
¢!

If x =q , the equation (5.8) becomes



NS,OE s£t_ anct‘;

1 INL;0E sE12. (5.9)
%]

R" 1645\/Var% C

From (5.6) and (5.8), we can see that mean and variance of Cr- C: need to be determined to
mr mr

obtain the reserve required a any time t. Therefore set ét :ranHUt > in the
expectation then
PO N é u
ESC - C|N:OEsEtY=Ea 2 (U, - U)+m AL (T - tW,;0£ sEtg,
8 H gV d 4  (5.10)

From (5.10), we can dso see that mean and variance of U, - U, need to be determined to
obtain the above expectation.

0
Lemma 5.1 Let Z,, W, U, and Z; be asdefined. Then
1- @940 v

G=E(U, - U|W,0£ s £t) =m=——7 (5.11)
and
Q=Var (U, - U,W,;0£ s£t)
) )
8“19{(1 eSO f 5ty M0 +4g 900 _ gy 2§1+—m2n1%(T-t). (5.12)
éd g d m g4
Pr oof
From (3.18)

U,-U, = oz ds+ /mz 018(4) (5.13)
Set (3.22) in (5.13) then

1- @d(™1 e d(T-u)
Ur-U=m=———7, +ml«/_07d8‘1) + /m2 giB“” (5.14)

Take expectation in (5.14) then (5.11) follows |mmed| ately.

var(U, - U W,0£s£t)= E{U, - U, )W, 0£s£4- E{U, - U W 0EsEL).

(5.15)
Therefore (5.12) follows immediately from (5.14) and (5.11).
Asreaults of lemma5.1, we can eadily obtain
W=E§C, - C|N,0E sEtd=, [ g+ DML (1) (5.16)
€ ] 2d d
and
é: u r
=Var &, - G [N,;0£ sEty;= %Q (5.17)
€ u




Therefore we can obtain the reserve required on hand at timet by
R =1.645\/3 - qW. (5.18)

Now let us find the dop-loss reinsurance premium at time t based on the observations

[NS;OE s£t] to obtain the reserve required on hand at time t after purchasing a stop-loss

reinsurance contract.

Theorem 5.2 Let Z, \W, Et and S(t) be as defined. Then

W =EZ(C;- G)-b} Ns;0EsE L= MrQ 3,1 mr g, mmr (T- 1) -byF (-L)
& u v 4dp T
(5.19)
_ e
where L:K—G, K=b m-(T-1 and F () is the cumulative normal distribution
JQ Jm
function.
Pr oof
Similar to (5.10),
A . € i’ u
Eg(CT- C)- b *W,;0£ s£t§: Eg /%(u )+ml—(T- ) - bi; LOESELY
s u
\/7 1(u 6)?
d+m (T b  du (5.20)
%JZpQ
o mm
WhereK: Mg (T t).
mpr
e
set y=2"C in(520) and put L =N then (5.19) follows immeditely.
JQ JQ
Let usaso find the second moment of C; - C' to obtain the variance of C; - C/ .
Corollary 5.3 Let Z, W, Et and S(t) be asdefined. Then
, N - (':')2 _ |:I
E&C- G 2 [Ns;0£s£tg
g g
e 1p TRV
S MrQ g3 gy I G‘/— 2 [MIQMME o \Hg2" . 2"
2d\/5 I 24 d b

2f

(741 %{F(-A)- F(-L)}




+b2F (_ L) (5.22)

where A=S_C g=_MT@-H . F() is the cumulative normal distribution

JQ o

function.

Pr oof

u
Ns:OE£ s£tg
8|
K3 .2 1u-GY 1(u-6)2
_ I [mr mr Y 1 ——
= u+m (T-1) ——_e? & du+ ez’a du (5.22)
Bdr\j 2d d b V2Q d) «/
-m(T-1)

’n}r
2d

Set y= u-G in(5.22) andput A=

VQ

%, L0
qu QB

where B =

B-G , K-G

o' R

then (5.21) follows immediately.

Asthe result of corollary 5.3, the variance of C; - Q' denoted by &',

Var%r C
_E§t c'?

..--2

u -
Ns;O£ s £t0- :E&‘q C Ns;OESEt%

g1 e

INs:0£ s£C- Ee.ai; c 9 p!
a @I 2

2

N.:OE sEt0= Eggci c'? 0
2

NS;O£s£tL:|g .
od

u
NS,O£S£tu
s

CDD>%('D~

E%T

Therefore the reserve required on hand a time t, R, after purchasing a stop-loss reinsurance
contract can be obtained by

R" =1.645\/& " - qW+xW" (5.23)
andif x =q , it becomes
R"=1.645&" - gW (5.24)
where W = E?}- Cl' Ns;0£ SELS.
2

Now let usillugtrate the calculation of reserves using the formulae derived above.

Example5.1



The numericd values used to smulae the clam ariva process ae d=0.5, | , =200. We
will assume that r =100 i.e the interarrival time between jumps is exponentid with mean
0.01 and that the jump sze follows exponentid with meen 1, i.e. y ~ Exponential(1). S
Plus was used to generate random values and to Smulate the claim arrival process.

v
The numericd vaues used to cdculate (4.7) and (5.18) are Zo =0, S(0)=0, m =1, m =2,
m =1, m=3, t=1, T=2and q=0,0.1,0.2,0.2129. By computing (4.7) and (5.18)

0
uing MAPLE and SPlus, where Z; =0.5579152, the calculaion of the reserves & each
security loading g are shown in Table 5.1.

Table5.1
Security loading q Reserve R at e =5%
0.0 43.903
0.1 23.282
0.2 2.661
0.2129 0

Example 5.2

We will now examine the effect on reserves caused by purchasing a stop-loss reinsurance
contract. The reserves a the retention limit b=0, 270, 280, ¥ ae shown in Table 5.2
(g=x=0.1)andinTable5.3 (g =0.1 and x =0.2).

Table5.2 Table5.3
Retention levd b Resarve R[h a e=5% Retention levd b Reserve R[h a e=5%
0 0 0 20.621
270 8.874 270 8.889
280 18.442 280 18.447
¥ 23.282 ¥ 23.282
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